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Abstract. Bounded time series and time series of continuous propor-
tions are often encountered in statistical modeling. Usually, they are
addressed either by a logistic transformation of the data, or by spe-
cific probability distributions, such as Beta distribution. Nevertheless,
these approaches may become quite tricky when the data show an over-
dispersion in 0 and/or 1. In these cases, the zero-and/or-one Beta-inflated
distributions, ZOIB, are preferred. This manuscript combines ZOIB
distributions with hidden-Markov models and proposes a flexible model,
able to capture several regimes controlling the behavior of a time series
of continuous proportions. For illustrating the practical interest of the
proposed model, several examples on simulated data are given, as well
as a case study on historical data, involving the military logistics of the
Duchy of Savoy during the XVIth and the XVIIth centuries.

1 Introduction

Time series of continuous proportions or percentages are often encoun-
tered in various research fields such as economy, biology or history. For
instance, one may be interested in modeling the fraction of income a
family devotes to lodging or taxes; or in modeling the proportion of a
population exposed to fine particles pollution or subject to a certain type
of disease. In our case, as it will be shown later, we are interested in un-
derstanding the rhythms of the Sabaudian State during the XVIth and
the XVIIth centuries, and more particularly the evolution of the ratio
of legislative texts issued by the Duchy and related to military logistics,
among the entire production of law.

In statistical modeling, the two common approaches for dealing with
continuous proportions are, on the one hand, a logistic transformation
of the data [1], and, on the other hand, the use of specific probability
distributions such as Beta or Dirichlet, [2]. However, both of these ap-
proaches have a major drawback, since they do not take into account the
possibility of an over-dispersion in the limit values, 0 and/or 1. During
the last few years, this issue has been addressed by several authors, who
proposed either further transforming the data [3], or introducing spe-
cific probability masses in 0 and/or 1, hence using zero-and/or-one Beta
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Inflated distributions. The latter approach has been intensively studied
during the last five years, mainly in a regression context [4], [5].
In this manuscript, we aim at using the Beta inflated distributions in a
framework different from that of regression, since our main interest is
to uncover and to highlight the possible existence of several regimes in
a time series of proportions. With this in mind, we introduce a hidden-
Markov model, having as emission distribution a Beta inflated distribu-
tion, ZOIB-HMM in abbreviated form. Originally introduced for speech
recognition [6], hidden Markov models (HMM hereafter) are especially
interesting in the context of the presumed existence of several regimes
controlling the parameters of the model, or the parameters of the emis-
sion distribution.
The next sections are organized as follows: in Section 2, we recall the
definition and the properties of the zero-and-one Beta-inflated distribu-
tion and then, in Section 3, we introduce the ZOIB-HMM model and
describe the estimation procedure, which is essentially an expectation-
maximisation (EM) scheme. Section 4 contains several experimental re-
sults, with a discussion on the convergence properties, the speed of the
algorithm and the possible identifiability issues, while Section 5 is de-
voted to presenting the results on a real data set, coming from medieval
history. Finally, a conclusion will follow in Section 6.

2 Zero-and-one Beta-inflated distributions

As mentioned in the introduction, statistical models based on Beta dis-
tributions assume the data to be valued in the open interval ]0, 1[. In
practical applications, this is rarely the case, and the situation of an
over-dispersion in 0 and/or 1 appears quite often. The solution for deal-
ing with this is to mix the Beta distribution either with a Dirac mass
(in 0 for data valued in [0, 1[, in 1 for data valued in ]0, 1]), or with a
Bernoulli distribution (for data valued in [0, 1]). Only the latter case will
be addressed here, but the reader may refer to [7] for a complete review
of Beta inflated distributions.
The probability density function of a Beta distribution with parameters
α, β > 0, denoted Be(α, β), is

fB (x;α, β) =
Γ (α+ β)

Γ (α)Γ (β)
xα−1(1− x)β−1

1x∈]0,1[, (1)

where Γ is the Gamma function. Also, if X ∼ B(α, β) and µ = α
α+β

,
φ = α+ β, the expectation and the variance of X may be expressed as :

E(X) = µ ; V(X) =
µ(1− µ)

φ+ 1
. (2)

Besides its support reduced to the interval ]0, 1[, the interest of using a
Beta distribution for statistical modeling also resides in the large variety
of shapes for its density, which makes it quite appealing for applications
(see Figure 1).
Let us now define the zero-and-one Beta-inflated as a mixture between a
Bernoulli and a Beta distribution, using a latent variable Y . If Y ∼ B(η),
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Fig. 1. Examples of Beta distributions for various parameters α and β.

define X conditionally to Y such that X|(Y = 1) ∼ B(γ) and X|(Y =
0) ∼ Be(α, β). The marginal density3 of X is

f(x; η, γ, α, β) = (ηγ)1x=1(η(1− γ))1x=0((1− η)fB(x;α, β))1x∈]0,1[ , (3)

where η ∈]0, 1[ is the mixture parameter, γ ∈]0, 1[ is the Bernoulli-
distribution parameter and α, β > 0 are the Beta-distribution param-
eters. Throughout the rest of the paper, let ξ = (η, γ, α, β) be the
four-dimensional parameter of a zero-and-one Beta-inflated distribution,
ZOIB(ξ).
Consider now XT

1 = (X1, ..., XT ) an i.i.d. T -sample of ZOIB(ξ). The
likelihood may be written as :

L(XT
1 ; ξ) =

T∏
t=1

[
η1Xt∈{0,1}(1− η)1Xt∈]0,1[

]
×

T∏
t=1

[
γ1Xt=1(1− γ)1Xt=0

]
×

T∏
t=1

fB(Xt;α, β)1Xt∈]0,1[ = L1(XT
1 ; η)L2(XT

1 ; γ)L3(XT
1 ;α, β).(4)

Maximizing the likelihood consists in maximizing each of the three terms
in the product, which are independent in the parameter components. For
the mixture parameter η, the maximum likelihood estimate (MLE) is
computed by maximizing

lnL1(XT
1 ; η) = ln η

T∑
t=1

1Xt∈{0,1} + ln(1− η)

T∑
t=1

1Xt∈]0,1[, (5)

3 the density is taken with respect to the probability measure λ+ δ0 + δ1, where λ is
the Lebesgue measure on [0, 1], and δ0 and δ1 are Dirac masses in 0 and 1.
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which yields

η̂ =

∑T
t=1 1Xt∈{0,1}∑T

t=1 1Xt∈{0,1} +
∑T
t=1 1Xt∈]0,1[

=
T1

T
, (6)

where T1 =
∑T
t=1 1Xt∈{0,1}. For the Bernoulli parameter γ, the MLE is

computed by maximizing

lnL2(XT
1 ; γ) = ln γ

T∑
t=1

1Xt=1 + ln(1− γ)

T∑
t=1

1Xt=0, (7)

which yields

γ̂ =

∑T
t=1 1Xt=1∑T

t=1 1Xt=1 +
∑T
t=1 1Xt=0

=
T2

T1
, (8)

where T2 =
∑T
t=1 1Xt=1. Finally, for the Beta parameters, α and β, one

has to maximize

lnL3(XT
1 ;α, β) =

∑
Xt∈]0,1[

ln fB(Xt;α, β). (9)

In this case, since there is no analytical form for the MLE of a Beta
distribution, the solution may be found using numerical optimization.
However, in order to avoid numerical issues linked to the initial values
of the gradient-descent based algorithms, an approximation of the MLE
with the moment estimates is preferred. Following Equation 2, the mo-
ment estimates of α and β are :

α̃ = µ̃φ̃ , β̃ = (1− µ̃)φ̃, (10)

where

µ̃ =
1

n− T1

∑
Xt∈]0,1[

Xt , φ̃ =
µ̃(1− µ̃)

s2
− 1,

and s2 =
1

n− T1

∑
Xt∈]0,1[

(Xt − µ̃)2 . (11)

3 Estimation procedure for the ZOIB-HMM
model

In this section, the parameters of a zero-and-one Beta-inflated distribu-
tion are supposed to be controlled by a hidden Markov chain with a finite
number of states.
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3.1 The model

Let (Xt)t∈Z be the observed time series, valued in [0, 1], and let (St)t∈N be
the unobserved process, controlling the parameters of the distribution of
Xt. Throughout the rest of the paper, St is supposed to be a homogeneous
Markov chain, irreducible, recurrent and aperiodic, valued in a finite
state-space E = {e1, ..., eq} and defined by its transition matrix Π =
(πij)i,j=1,...,q,

πij = P (St = ej |St−1 = ei) ,

with πij > 0,
∑q
j=1 πij = 1, and by its initial probability distribution

π0, π0
i = P (S1 = ei), ∀i = 1, ..., q.

Furthermore, let us suppose that Xt are independent conditionally to
St, and that Xt conditionally to St is distributed according to a zero-
and-one Beta-inflated distribution, ZOIB(ξi), with ξi = (ηi, γi, αi, βi) ∈
]0, 1[2× ]0,+∞[2. For a fixed number of states q in the hidden Markov
chain, the set of possible values for the parameters may be written as:

Θ =
{
θ = ((ξi)i=1,...,q, Π) ∈ (]0, 1[2× ]0,+∞[2)q×]0, 1[q

2

,

and ∀i ∈ {1 · · · q},
q∑
j=1

πij = 1

}
. (12)

3.2 The EM algorithm for ZOIB-HMM

Since the above model involves a hidden Markov chain, the estima-
tion procedure is carried out using the EM algorithm [6], [8]. With
the previous assumptions, and with the notations XT

1 = (X1, ..., XT ),
ST1 = (S1, ..., ST ), the complete likelihood is given by:

L(XT
1 , S

T
1 ; θ) =

T∏
t=1

q∏
i=1

f(Xt|St = ei; ξi)
1{St=ei}

T∏
t=2

q∏
i,j=1

π
1{St−1=ei,St=ej}
ij ×C ,

(13)
where f(Xt|St = ei; ξi) is the Beta-inflated density, conditionally to
the hidden state St = ei and defined in Equation 3, and C =∏q
i=1

(
π0
i

)1{St=ei} is the likelihood of the initial state of the Markov
chain.
When expressing the Beta-inflated density in its analytical form, the
complete likelihood may further be written as:

L(XT
1 , S

T
1 ; θ) =

T∏
t=1

q∏
i=1

(
η
1Xt∈{0,1}
i (1− ηi)1Xt∈]0,1[

)1{St=ei} ×

T∏
t=1

q∏
i=1

(
γ
1Xt=1

i (1− γi)1Xt=0

)1{St=ei} ×

T∏
t=1

q∏
i=1

(fB (Xt, αi, βi))
1{Xt∈]0,1[,St=ei} ×

T∏
t=2

q∏
i,j=1

π
1{St−1=ei,St=ej}
ij × C

= L1(XT
1 , S

T
1 ;η)L2(XT

1 , S
T
1 ;γ)L3(XT

1 , S
T
1 ;α,β)L4(XT

1 , S
T
1 ;Π),(14)
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where η = (η1, ..., ηq), γ = (γ1, ..., γq), α = (α1, ..., αq) and β =
(β1, ..., βq). The EM algorithm consists in iteratively maximizing the
expected value of the complete likelihood with respect to θ and condi-
tionally to the observed data set XT

1 and a fixed value of the parameter
θ?, and then updating θ? at each step.
E-Step. The E-step is given by the computation of the expected value
of the complete likelihood, conditionally to the observed data,

Q(θ|θ?) = Eθ?
[
lnL(XT

1 , S
T
1 ; θ)|XT

1

]
. (15)

According to Equation 14, Q(θ|θ?) can be split into :

Q(θ|θ?) = Q1(η|θ?) +Q2(γ|θ?) +Q3(α,β|θ?) +Q4(Π|θ?) , (16)

where

Q1(η|θ?) = Eθ?
[
lnL1(XT

1 , S
T
1 ;η)|XT

1

]
=

q∑
i=1

 ∑
Xt∈{0,1}

ωt(ei) ln ηi +
∑

Xt∈]0,1[

ωt(ei) ln(1− ηi)

 , (17)

with ωt(ei) = Pθ?(St = ei|XT
1 );

Q2(γ|θ?) = Eθ?
[
lnL2(XT

1 , S
T
1 ;γ)|XT

1

]
=

q∑
i=1

[∑
Xt=1

ωt(ei) ln γi +
∑
Xt=0

ωt(ei) ln(1− γi)

]
; (18)

Q3(α,β|θ?) = Eθ?
[
lnL3(XT

1 , S
T
1 ;α,β)|XT

1

]
=

q∑
i=1

∑
Xt∈]0,1[

ωt(ei) ln (fB (Xt, αi, βi)) ; (19)

Q4(Π|θ?) = Eθ?
[
lnL4(XT

1 , S
T
1 ;Π)|XT

1

]
=

q∑
i,j=1

T∑
t=2

ωt(ei, ej) lnπij ,(20)

with ωt(ei, ej) = Pθ?(St−1 = ei, St = ej |XT
1 ). The probabilities ωt(ei)

and ωt(ei, ej) may be easily computed using the forward-backward pro-
cedure, typical for the EM algorithm [9].
M-Step. Thanks to the factorization of the complete likelihood, the
optimization step may be performed by independently maximizing each
term of Q(θ|θ?). For ηi, γi and πij , the following analytical expressions
are straightforward:

η̂i =

∑
Xt∈{0,1} ωt(ei)∑T
t=1 ωt(ei)

, γ̂i =

∑
Xt=1 ωt(ei)∑

Xt∈{0,1} ωt(ei)
,

and π̂ij =

∑T
t=2 ωt(ei, ej)∑T
t=1 ωt(ei)

. (21)
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As for αi and βi, there are no analytical expressions of the estimates,
directly tractable from Q3(α,β|θ?). Rather than numerically optimiz-
ing this function, operation which would slow down the algorithm and
possibly introduce numerical instability, we prefer the use of moment
estimates, which appear as good substitues for the MLE:

α̃i = µ̃iφ̃i , β̃i = (1− µ̃i)φ̃i, (22)

where

µ̃i =

∑
Xt∈]0,1[ ωt(ei)Xt∑
Xt∈]0,1[ ωt(ei)

, φ̃i =
µ̃i(1− µ̃i)

s2i
− 1,

s2i =

∑
Xt∈]0,1[ ωt(ei) (Xt − µ̃i)2∑

Xt∈]0,1[ ωt(ei)
. (23)

As one may easily notice, Equations 22 and 23 are very similar to Equa-
tions 10 and 11, except for the weights ωt(ei), which are introduced by
the hidden Markov chain and represent the conditional probabilities of
being in state ei at time t, given the observed data, XT

1 .

4 Experimental results

In order to test the quality of the estimates and its convergence rate, the
algorithm was trained on several simulated examples. For each of the
following scenarios and for sample sizes ranging from 500 to 1 000, 100
different trajectories of a two-state (q = 2) ZOIB-HMM are simulated.
The values of the parameters used for the simulations are the following :

Π =

(
0.9 0.1
0.1 0.9

)
, (α1, α2) = (1; 0.5), (β1, β2) = (1; 2), (γ1, γ2) = (0.5; 0.9),

and (η1, η2) = (η1, 0.8), where η1 ∈ {0.1, 0.3, 0.5, 0.7}. The results are
detailed in Tables 1, 2, 3 and 4 below. In each case are reported the mean
values of the estimates, as well as their standard errors and medians. We
also provide the squared bias and the ratio of errors in the a posteriori
identification of the hidden regimes (mean-values, standard errors and
medians).
According to these first results on synthetic data, most of the parame-
ters (Π, the η’s and the γ’s) are generally correctly estimated, even for
short time series. However, the quality of the estimated transition ma-
trix diminishes when η1 has larger values (the ratio of zeros and ones is
overriding the ratio of values in ]0, 1[). The α’s and the β’s are correctly
estimated for small values of η1 and sufficiently large time series, with
a length at least equal to 1 000. However, the algorithm fails in fairly
approaching them when η1 is greater than 0.5 or for time series shorter
than 1 000 observations.
Furthermore, when comparing the mean values of the estimates with
their medians, one may easily see that, if considering the medians, the
performances of the algorithm are eventually not bad even in this limit
cases. When looking into details, some of the incoherences come from
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T = 500 T = 1000

Π̂ 0.82(0.18 ) 0.18(0.18 ) 0.84(0.16 ) 0.16(0.16 )
0.89 0.11 0.89 0.11
0.19(0.20 ) 0.81(0.20 ) 0.16(0.16 ) 0.84(0.16 )
0.11 0.89 0.11 0.89

α̂1, α̂2 0.99(0.27 ) 0.74(0.66 ) 0.99(0.14 ) 0.54(0.15 )
0.96 0.60 1.00 0.52

β̂1, β̂2 0.98(0.11 ) 2.70(1.83 ) 1.00(0.11 ) 2.11(0.75 )
0.99 2.35 1.00 2.09

γ̂1, γ̂2 0.55(0.22 ) 0.88(0.09 ) 0.52(0.18 ) 0.89(0.07 )
0.53 0.90 0.51 0.90

η̂1, η̂2 0.15(0.13 ) 0.76(0.15 ) 0.15(0.14 ) 0.77(0.13 )
0.10 0.80 0.10 0.80

Bias(θ)2 1.39(1.65 ) 0.71(0.57 )
0.89 0.53

%ERR 14.6(18.4 ) 12.1(14.8 )
6.9 6.7

Table 1. Simulation results for η1 = 0.1 and 100 time-series of length T . Mean,
standard error (italics) and median (bold) of the estimates.

T = 500 T = 1000

Π̂ 0.78(0.19 ) 0.22(0.19 ) 0.81(0.17 ) 0.19(0.17 )
0.86 0.14 ? ?
0.24(0.24 ) 0.76(0.24 ) 0.18(0.17 ) 0.82(0.17 )
0.11 0.89 ? ?

α̂1, α̂2 1.06(0.78 ) 1.12(3.49 ) 0.96(0.14 ) 0.56(0.15 )
0.97 0.56 ? ?

β̂1, β̂2 1.01(0.18 ) 2.91(3.30 ) 0.98(0.11 ) 1.99(0.77 )
0.99 1.88 ? ?

γ̂1, γ̂2 0.51(0.21 ) 0.86(0.15 ) 0.54(0.19 ) 0.86(0.10 )
0.48 0.89 ? ?

η̂1, η̂2 0.34(0.14 ) 0.75(0.16 ) 0.32(0.14 ) 0.77(0.13 )
0.29 0.80 ? ?

Bias(θ)2 2.23(4.51 ) 0.76(0.55 )
0.94 ?

%ERR 21.2(16.5 ) 18.2(16.0 )
12.2 ?

Table 2. Simulation results for η1 = 0.3 and 100 time-series of length T . Mean,
standard error (italics) and median (bold) of the estimates.

atypical time series in the simulations which rise identifiability issues.
In all cases, the experimental section should be further improved with
more examples, involving more diverse scenarios for the parameters and
longer time series.
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T = 500 T = 1000

Π̂ 0.69(0.23 ) 0.31(0.23 ) 0.77(0.19 ) 0.23(0.19 )
0.76 0.24 0.88 0.12
0.24(0.19 ) 0.76(0.19 ) 0.24(0.22 ) 0.76(0.22 )
0.18 0.82 0.13 0.87

α̂1, α̂2 13.08(80.91 ) 4.01(27.24 ) 0.94(0.19 ) 0.58(0.30 )
0.93 0.60 0.97 0.54

β̂1, β̂2 4.30(20.91 ) 7.58(45.68 ) 0.98(0.12 ) 2.27(2.59 )
1.00 1.74 0.98 1.71

γ̂1, γ̂2 0.50(0.24 ) 0.81(0.20 ) 0.54(0.21 ) 0.83(0.16 )
0.48 0.88 0.51 0.89

η̂1, η̂2 0.51(0.22 ) 0.75(0.18 ) 0.50(0.13 ) 0.76(0.15 )
0.49 0.79 0.50 0.79

Bias(θ)2 20.31(98.05 ) 1.25(2.39 )
1.34 0.79

%ERR 30.6(18.7 ) 26.4(16.2 )
23.2 18.2

Table 3. Simulation results for η1 = 0.5 and 100 time-series of length T . Mean,
standard error (italics) and median (bold) of the estimates.

T = 500 T = 1000

Π̂ 0.59(0.25 ) 0.41(0.25 ) 0.61(0.24 ) 0.39(0.24 )
0.60 0.40 0.61 0.39
0.33(0.21 ) 0.67(0.21 ) 0.30(0.19 ) 0.70(0.19 )
0.26 0.74 0.27 0.73

α̂1, α̂2 4.15(31.39 ) 10.58(53.98 ) 0.89(0.37 ) 5.96(51.40 )
0.81 0.56 0.86 0.54

β̂1, β̂2 2.15(11.52 ) 80.26(664.83 ) 0.97(0.20 ) 5.77(36.67 )
0.99 1.53 0.99 1.56

γ̂1, γ̂2 0.51(0.26 ) 0.80(0.19 ) 0.53(0.24 ) 0.81(0.16 )
0.53 0.83 0.50 0.87

η̂1, η̂2 0.64(0.23 ) 0.77(0.19 ) 0.64(0.19 ) 0.78(0.17 )
0.69 0.80 0.68 0.80

Bias(θ)2 85.93(666.99 ) 7.86(63.01 )
1.46 1.24

%ERR 37.8(15.2 ) 30.0(15.0 )
35.8 31.0

Table 4. Simulation results for η1 = 0.7 and 100 time-series of length T . Mean,
standard error (italics) and median (bold) of the estimates.

5 A case study on historical data

The aim of this section is to apply the proposed model in studying the
rhythms of the Duchy of Savoy, during the XVIth and the XVIIth cen-
turies. These two centuries were marked by deep political changes and
by several long and intense wars. It was a period during which the Duchy
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changed and shaped its structure and its functioning as a state. More
specifically, we are interested in the production of legislative texts re-
lated to military logistics, compared to the entire production of law. The
corpus of data comes from the massive work of F-A. Duboin [10] [11].
According to [11], this edition would be exhaustive, and few texts would
be missing. Between 1559 and 1661, the State as a whole issued 55.5
law texts per year (in average), of which 4.8 in connection with military
logistics. The ratio between the texts on military logistics and the total
number of texts of law varies between 0 and 0.23, and, as one may see
in Figure 2, the importance of military logistics is far from negligible.

In order to evaluate the temporality of the State, the selected corpus
of documents is thus represented as a time series. After having consid-
ered several representations (yearly, quarterly, monthly), the monthly
approach was selected, as being sufficiently fine for one to observe the
closeness between making the decision and issuing the associated text of
law. A full description of the corpus and of its construction is available
in [12]. In a previous work [13], the series of texts related to military
logistics only was studied, using hidden Markov models for count data.
The results appeared as very encouraging and they allowed to point out
several specificities of the historical period of interest such as short-term
events, but also a long transition between two normative systems of the
Duchy. However, in [13] the relation between the texts on military logis-
tics and the entire production of law was left out. In this manuscript,
we focus on this ratio, computed between the number texts on military
logistics and the complete production of law, recorded each month. The
resulting series is of length 1 236 and has an important over-dispersion
in 0.

After having trained a two-state hidden Markov model with Beta-inflated
distributions, the estimated parameters are the following :

Π̂ =

(
0.83 0.17
0.26 0.74

)
, (α̂1, α̂2) = (5.92; 4.11) , (β̂1, β̂2) = (8.07; 15.83),

(γ̂1, γ̂2) = (0.01; 0.02) and (η̂1, η̂2) = (0.87, 0.45).

The Viterbi algorithm allows to track the a posteriori probabilities of
the hidden states and to represent the estimated trajectory of the hidden
Markov chain, as shown in Figure 3. The results are globally consistent
with our previous findings in [13]. The second regime is more persis-
tent during the XVIIth century, which mainly corresponds to the end of
the long transition period found in our previous work. However, the two
regimes do not appear as stable and the Markov chain is changing often
from one state to another. From this point of view, these results on the
ratio series appear as less convincing than the results on logistic texts
only. Some adjustments should thus be made in order to improve this
and one way to tackle this would be to restrict the Beta-inflated distri-
butions in the HMM either to 0 or to 1 additional probability masses.
Indeed, this assumption would favor the hypothesis of a regime with an
intense production of texts on military logistics versus a regime with a
low production.
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Ratio of military logistics and war periods
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Fig. 2. Ratio of texts on military logistics among the entire production of law. The
periods of war for the Duchy are in grey.

Hidden Markov chain and war periods
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Fig. 3. A posteriori estimated hidden states of the model. The periods of war for the
Duchy are in grey.

6 Conclusion

The present manuscript introduced the Beta-inflated distributions in the
framework of hidden-Markov models. The results on simulated examples
showed that the EM algorithm usually manages quite well in estimating
the parameters of the model, provided the time series is sufficiently long
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and provided the parameters of the regimes are sufficiently different.
We aim at further improving this section, by adding more, and more
various, examples. Finally, the results on the real dataset were consistent
with previous findings, although less convincing in terms of stability of
the regimes. We are currently studying the possibility of restricting the
Beta-inflated distribution in the model to 0 or to 1 additional probability
masses.
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