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Abstract

We discuss the determination of the CKM angle α using the non-leptonic two-
body decays B → ππ, B → ρρ and B → ρπ using the latest data available. We illus-
trate the methods used in each case and extract the corresponding value of α. Com-
bining all these elements, we obtain the determination αdir = (86.2+4.4

−4.0∪178.4+3.9
−5.1)

◦.
We assess the uncertainties associated to the breakdown of the isospin hypothesis
and the choice of statistical framework in detail. We also determine the hadronic am-
plitudes (tree and penguin) describing the QCD dynamics involved in these decays,
briefly comparing our results with theoretical expectations. For each observable of
interest in the B → ππ, B → ρρ and B → ρπ systems, we perform an indirect
determination based on the constraints from all the other observables available and
we discuss the compatibility between indirect and direct determinations. Finally,
we review the impact of future improved measurements on the determination of α.
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1 Introduction

Over the last few decades, our understanding of CP violation has made great progress,
with many new constraints from BaBar, Belle and LHCb experiments among others [1, 2].
These constraints were shown to be in remarkable agreement with each other and to
support the Kobayashi–Maskawa mechanism of CP violation at work within the Standard
Model (SM) with three generations [3, 4]. This has led to an accurate determination of
the Cabibbo–Kobayashi–Maskawa matrix (CKM) encoding the pattern of CP violation
as well as the strength of the weak transitions among quarks of different generations
[5, 6, 7, 8, 9, 10]. These constraints prove also essential in assessing the viability of New
Physics models with well-motivated flavour structures [11, 12, 13, 14].

As the CKM matrix is related to quark-flavour transitions, most of these constraints
are significantly affected by hadronic uncertainties due to QCD binding quarks into the
observed hadrons. However, some of these constraints have the very interesting feature of
being almost free from such uncertainties. This is in particular the case for the constraints
on the CKM angle α that are derived from the isospin analysis of the charmless decay
modes B → ππ, B → ρρ and B → ρπ. Indeed, assuming the isospin symmetry and
neglecting the electroweak penguin contributions, the amplitudes of the SU(2)-conjugated
modes are related. The measured branching fractions and asymmetries in the B±,0 →
(ππ)±,0 and B±,0 → (ρρ)±,0 modes and the bilinear form factors in the Dalitz analysis of
the B0 → (ρπ)0 decays provide enough observables to simultaneously extract the weak
phase β + γ = π − α together with the hadronic tree and penguin contributions to each
mode [15, 16, 17]. Therefore, these modes probe two different corners of the SM: on one
side, they yield information on α that is a powerful constraint on the Kobayashi–Maskawa
mechanism (and the CKM matrix) involved in weak interactions, and on the other side,
they provide a glimpse on the strong interaction and especially the hadronic dynamics of
charmless two-body B-decays.

In the following, we will provide a thorough analysis of these decays, based on the data
accumulated up to the conferences of Winter 2017. Combining the experimental data for
the three decay modes above, we obtain the world-average value at 68% Confidence Level
(CL):

αdir = (86.2+4.4

−4.0 ∪ 178.4+3.9

−5.1)
◦ . (1)

The solution near 90◦ is in good agreement with the indirect determination obtained by
the global fit of the flavour data performed by the CKMfitter group in Summer 2016 [18]:

αind = (92.5+1.5

−1.1)
◦ . (2)

Considered separately, the B → ππ and B → ρρ decays yield direct determinations of
α in very good agreement with the indirect determination Eq. (2), whereas the B → ρπ
decay exhibits a 3σ discrepancy. This discrepancy affects only marginally the combination
Eq. (1), which is dominated by the results from ρρ decays, and to a lesser extent ππ
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decays, whereas ρπ modes play only a limited role. At this level of accuracy, it proves
interesting to assess uncertainties neglected up to now, namely the sources of violation
of the assumptions underlying these determinations (∆I = 3/2 electroweak penguins,
π0 − η − η′ mixing, ρ width) and the role played by the statistical framework used to
extract the confidence intervals. These effects may shift the central value of αdir by around
2◦, while keeping the uncertainty around 4◦ to 5◦, thus remaining within the statistical
uncertainty quoted in Eq. (1).

Besides the CKM angle α, the isospin analysis of the charmless decays data provides a
determination of the hadronic tree and penguin parameters for each mode. The penguin-
to-tree and colour-suppression ratios in the B→ ππ and B→ ρρ decay modes can be
determined precisely: they show overall good agreement with theoretical expectations for
ρρ modes, whereas the ratio between colour-allowed and -suppressed tree contributions
for ππ modes do not agree well with theoretical expectations (both for the modulus and
the phase). We also perform indirect predictions of the experimental observables, using
all the other available measurements to predict the value of a given observable, and we
can compare our predictions to the existing measurements: a very good compatibility is
observed for the ππ and ρρ channels, whereas discrepancies occur in some of the observ-
ables describing the Dalitz plot for B → ρπ decays. Among many other quantities, the
yet-to-be-measured mixing-induced CP asymmetry in the B0→ π0π0 decay is predicted
at 68% CL:

S00
ππ = 0.65± 0.13. (3)

using as an input the indirect value of α, see Eq. (2). Finally, we study how the determi-
nation of α would be affected if the accuracy of specific subsets of observables is improved
through new measurements. We find that an improved accuracy for the time-dependent
asymmetries in B0 → ρ0ρ0 and the measurement of S00

ππ would reduce the uncertainty on
α in a noticeable way.

The rest of this article goes as follows. In Sec. 2, we discuss the basics of isospin
analysis for charmless B-meson decays. In Sec. 3, we provide details on the extraction
of the α angle, focusing on the B → ππ, B → ρρ and B → ρπ modes in turn, before
combining these extractions in a world average. In Sec. 4, we consider the uncertainties
attached to the extraction of α. First, we discuss the SU(2) isospin framework under-
lying these analyses, considering three sources of corrections: the presence of ∆I = 3/2
electroweak penguins (isospin breaking due to different charges for the u and d quarks),
π0 − η − η′ mixing (isospin breaking due to different masses for the u and d quarks), ρ
width (additional amplitude to include in the isospin relations for B → ρρ). In addition,
we discuss the statistical issues related to our frequentist framework. In Sec. 5, we ex-
tract the hadronic (tree and penguin) amplitudes associated with each decay, comparing
them briefly with theoretical expectations. We use our framework to perform indirect
predictions of observables in each channel and discuss the compatibility with the avail-
able measurements in Sec. 6. We perform a prospective study to determine the impact of
reducing the experimental uncertainties on specific observables in Sec. 7, before drawing
our conclusions. Dedicated appendices gather additional numerical results for observables
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ū

u

1

Figure 1: Tree (left) and penguin (right) topology diagrams for the transition b̄→ uūd̄.

in three modes, separate analyses using either the BaBar or Belle inputs only, and a brief
discussion of the quasi-two-body analysis of the charmless B0 → a±1 π

∓ that may provide
some further information on α.

2 Isospin decomposition of charmless two-body B de-

cays

The decay of neutral Bd and charged Bu mesons into a pair of light unflavoured isovector
mesons B → hi1h

j
2 (h=π, ρ and i, j = −, 0,+) is described by the weak transition b̄→ ūud̄,

followed by the hadronisation of the (ūud̄, q) system, where q = d(u) is the spectator quark
in the neutral (charged) component of the mesons isodoublet. The weak process receives
dominant contributions from both the tree-level b̄ → ū(ud̄) charged transition and the
flavour-changing neutral current penguin transition, b̄ → d̄(uū), whose topologies are
shown in Fig. 1.

2.1 Penguin pollution

We can write the charmless Bq → (ūud̄, q) → hi1h
j
2 transition amplitude, accounting for

the CKM factors for the tree and penguin diagrams with three different up-type quark
flavours (u, c, t) occurring in the W loop:

Aij = 〈hi1h
j
2|Heff |Bd〉 = VudV

∗
ub(T iju + P iju ) + VcdV

∗
cbP ijc + VtdV

∗
tbP

ij
t (4)

where Heff is the effective Hamiltonian describing the transition. The amplitudes T iju and
P iju,c,t represents the tree-level and (u, c, t)-loop mediated topologies, respectively.

The unitarity of the CKM matrix can be used to eliminate one of the three terms in
Eq. (4), resulting in three conventions U , C and T defined as:

U − convention : Aij = VcdV
∗
cb(P ijc − T iju − P iju ) + VtdV

∗
tb(P

ij
t − T iju − P iju ) ,

C − convention : Aij = VudV
∗
ub(T iju + P iju − P ijc ) + VtdV

∗
tb(P

ij
t − P ijc ) , (5)

T − convention : Aij = VudV
∗
ub(T iju + P iju − P

ij
t ) + VcdV

∗
cb(P ijc − P

ij
t ) .
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The C-convention is adopted in the following, so that the amplitudes can be rewritten as:

Aij = VudV
∗
ubT̃ ij + VtdV

∗
tbP̃ ij (6)

where the terms T̃ ij = T iju +P iju −P ijc and P̃ ij = P ijt −P ijc associated with specific CKM
factors will be referred to as ’tree’ and ’penguin’ amplitudes, respectively, following a
conventional abuse of language (these amplitudes are not physical, in the sense that both
mix contributions of distinct topologies and are not renormalisation invariant). The choice
of convention is arbitrary and it has no physical implication on the determination of the
weak phase affecting the transitions. However, the particular choice sets the dynamical
content of the hadronic tree and penguin amplitudes: for instance, it fixes the definition
of the penguin-to-tree ratio and the other hadronic quantities discussed in Sec. 5.

Pulling out the weak phases γ = arg
(
−VudV

∗
ub

VcdV
∗
cb

)
and β = arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
, the amplitude

can be rewritten as:

Aij = −eiγT ij + e−iβP ij , (7)

where the magnitude of the CKM products Ru = |VudV ∗ub| and Rt = |VtdV ∗tb| is included in
the redefined amplitudes T ij = RuT̃ ij and P ij = −RtP̃ ij.

Similarly, the decay amplitudes of the CP -conjugate isodoublet (B̄0, B−) can be
expressed as

p

q
Āij = −e−iγT ij + eiβP ij , (8)

where the factor p/q ∼ e2iβ is included to take into account the B0 − B̄0 mixing phase of
neutral B-meson that arises naturally in physical observables. For consistency between
all the SU(2)-related decay modes considered in the isospin analysis, the same phase
convention has been applied to define the amplitudes for the charged B meson. The CP
invariance of the strong interaction means that the same hadronic amplitudes T ij and P ij

are involved in the CP -conjugate processes, whereas a complex conjugation is applied to
the weak phases.

Rotating all amplitudes by the weak phase β through the redefinition Aij = eiβAij
and Āij = eiβĀij, the parameter α = π − β − γ appears as half of the phase difference
between the tree contributions to the CP -conjugate amplitudes:

e2iα =
eiαT ij

e−iαT ij
=
Āij − P ij

Aij − P ij
. (9)

In the absence of penguin contributions, α can be related to the relative phase of CP -
conjugate amplitudes describing the B0 and B̄0 mesons decaying into the same final state
hi1h

j
2. In particular, the time-dependent analysis of the B0/B̄0 → h+

1 h
−
2 decay yields the

CP asymmetry:

aCP (t) =
Γ(B̄0(t)→ h+

1 h
−
2 )− Γ(B0(t)→ h+

1 h
−
2 )

Γ(B̄0(t)→ h+
1 h
−
2 ) + Γ(B0(t)→ h+

1 h
−
2 )

= S+− sin(∆md t)−C+− cos(∆md t) ,
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(10)

where ∆md is the B0 − B̄0 oscillation frequency, and t is either the decay time of the
meson, or (in the case of B-factories) the time difference between the CP - and tag-side
decays. The coefficients can be expressed as

λ =
Ā+−

A+− , S+− =
2Imλ

1 + |λ|2
, C+− =

1− |λ|2

1 + |λ|2
. (11)

Therefore, in the absence of the penguin contributions, the measurement of S+− would
yield sin(2α). The a priori non-negligible penguin contributions to the B charmless decays
modify this picture: if we introduce the effective angle corresponding to the phase of λ,
we have [19]

λ = |λ|e2iαeff , S+− =
√

1− (C+−)2 sin(2αeff) . (12)

The non-negligible penguin contributions prevent us from identifying α and αeff obtained
from the sole consideration of B0(t)→ h+

1 h
−
2 . However, since isospin is conserved during

the hadronisation process, we can write useful relations among the hadronic amplitudes
in SU(2)-related modes. These relationships will help us to determine the amount of
penguin pollution from the data and thus to extract α in spite of hadronic effects [15, 16].

2.2 General isospin decomposition and application to the ρπ

final-state

One can factorise the decay amplitudes in two parts. First, the weak decay b̄ → uūd̄
(common to all Bq → hi1h

j
2 decay processes) corresponds to a shift of isospin ∆I. The

hadronisation into two light mesons can then be described as 〈hi1h
j
2|Hs|uūd̄, q〉 where

Hs represents the isospin-conserving strong interaction Hamiltonian. The Wigner-Eckart
theorem can be used to express these amplitudes in tersm of reduced matrix elements,
A∆I,If , identified by the shift ∆I and the final-state isospin If (If = 0, 1, 2)1. Tab. 1
yields the decomposition of the Aij amplitudes in the general case of two distinguishable
isovector mesons (h1 6= h2).

This general decomposition applies for instance to the B → ρπ system. Neglecting
the ∆I = 5/2 transition, the four remaining isospin amplitudes constrain the five decays
amplitudes to follow the pentagonal relation:

A+− + A−+ + 2A00 =
√

2(A+0 + A0+). (13)

The same identity applies to the CP -conjugate amplitudes. Moreover, the sum of the
decay amplitudes of the charged modes (A+0 + A0+) is a pure A 3

2
,2 isospin amplitude.

1Considering only the valence quarks, the isospin shift ∆I can only take the values 3/2 and 1/2 in the
b̄ → (ūud̄) transition. Tree and strong penguin topologies correspond to ∆I = 1/2, whereas electroweak
penguins contain both ∆I = 1/2 and ∆I = 3/2 contributions. For completeness, the possible ∆I = 5/2
contribution due to long-distance rescattering effects [20, 21] is also reported in Tab. 1. This contribution,
suppressed by a factor αem ∼ 1/127, will be neglected until Sec. 4.1.2.
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Aij = 〈hi1h
j
2|Hs|uūd̄, q〉 A 5

2
,2 A 3

2
,2 A 3

2
,1 A 1

2
,1 A 1

2
,0

A+0 = 〈h+
1 h

0
2|Hs|uūd̄, u〉 −

√
1/6 +

√
3/8 −

√
1/8 +

√
1/2 0

A0+ = 〈h0
1h

+
2 |Hs|uūd̄, u〉 −

√
1/6 +

√
3/8 +

√
1/8 −

√
1/2 0

A+− = 〈h+
1 h
−
2 |Hs|uūd̄, d〉 +

√
1/12 +

√
1/12 +1/2 +1/2 +

√
1/6

A−+ = 〈h−1 h+
2 |Hs|uūd̄, d〉 +

√
1/12 +

√
1/12 −1/2 −1/2 +

√
1/6

A00 = 〈h0
1h

0
2|Hs|uūd̄, d〉 +

√
1/3 +

√
1/3 0 0 −

√
1/6

Table 1: General decomposition of the amplitudes Aij = 〈hi1h
j
2|Hs|uūd̄, q〉 (q = u, d ; i, j =

−, 0,+) in terms of the reduced matrix elements A∆I,If for a pair of distinguishable isovector

mesons hi1 and hj2.

A usual simplifying assumption consists in neglecting the ∆I = 3/2 contribution from
electroweak penguins, as they are expected to be small: in this limit, all penguins (gluonic
and electroweak) are mediated only by the ∆I = 1/2 transition b̄→ d̄(uū)I=0. The isospin
relation for the amplitudes Eq. (13) may then be projected onto the penguin amplitudes,
leading to the triangular relations:

P+− + P−+ + 2P 00 =
√

2(P+0 + P 0+) = 0 , (14)

Both combinations are identical and vanish under our assumptions, as they involve only
∆I = 3/2 amplitudes. Under this assumption, some combinations of the decay amplitudes
are free of penguin contributions. The parameter α can thus be identified as half of the
phase difference between the sum of the CP -conjugate amplitudes of the charged modes,
or equivalently as a function of the amplitudes of the neutral modes only:

e2iα =
Ā+0 + Ā0+

A+0 + A0+
=
Ā+− + Ā−+ + 2Ā00

A+− + A−+ + 2A00
. (15)

Similarly, the combination of amplitudes (A+0 −A0+)−
√

2(A+− −A−+) receives a pure
A 3

2
,1 contribution and is thus free from penguin contributions, so that:

P+0 − P 0+ =
√

2(P+− − P−+) , (16)

and the phase α can also be obtained from the pure tree combination:

e2iα =
(Ā+0 − Ā0+)−

√
2(Ā+− − Ā−+)

(A+0 − A0+)−
√

2(A+− − A−+)
. (17)

Combining Eqs. (14) and (16), one can see that there are actually only two independent
penguin amplitudes involved:

P+0 = −P 0+ = (P+− − P−+)/
√

2, P 00 = −(P+− + P−+)/2, (18)

illustrating the power of the SU(2) isospin approach to reduce the number of independent
hadronic quantities to be determined from the data in order to extract a constraint on α.
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Aij = 〈hihj|Hs|uūd̄, q〉 A 5
2
,2 A 3

2
,2 A 1

2
,0

A+0 = 〈π+π0|Hs|uūd̄, u〉 −1 3/2 0

A+− = 〈π+π−|Hs|uūd̄, d〉
√

1/2 +
√

1/2 +1

A00 = 〈π0π0|Hs|uūd̄, d〉 +1 +1 −
√

1/2

Table 2: Decomposition of the amplitude 〈hihj |Hs|uūd̄, q〉 (q = u, d ; i, j = −, 0,+) in terms of
the isospin amplitudes A∆I,If for indistinguishable mesons in the final state (h1 = h2 = h). A

global factor
√

3 is applied to all the coefficients with respect to the general coefficients given in
Tab. 1.

2.3 Application to the ππ and ρρ cases

In the cases where the two isovector mesons in the final state are indistinguishable from
the point of view of isospin symmetry (h1 = h2 = h), as for the B → ππ and B → ρρ
systems, only the even amplitudes If = 0, 2 are allowed due to the Bose–Einstein statistics.
Defining the symmetrised amplitudes:

A+−
h1=h2

=
A+− + A−+

√
2

, A+0
h1=h2

=
A+0 + A0+

√
2

, (19)

the isospin decomposition gets simplified as reported in Tab. 2, leading to the triangular
identity:

A+0 =
A+−
√

2
+ A00, (20)

with a similar identity for the CP -conjugate amplitudes 2. In the case of the ρρ channel,
one should consider a different set of independent amplitudes for each of the three possible
polarisations (which is identical for the two ρ mesons).

Under the assumption of negligible contributions from ∆I = 3/2 electroweak penguins,
the penguin relations Eq. (18) reduce down to P+0 = 0 and P+−/√2 = −P 00. The total
amplitude of the charged modes A+0 = e−iαT+0 is free from penguin contributions, and
the angle α can be derived from:

e−2iα =
Ā+0

A+0
. (21)

This complex ratio cannot be determined from a single measurement, but it is possible
to reconstruct the two isospin triangles corresponding to CP -conjugate amplitudes using
branching ratios and CP asymmetries for all the modes. Fig. 2 illustrates this construc-
tion, which translates the measurement of αeff into a determination of the CKM angle
α. This procedure is affected by discrete ambiguities, since there are several manners of

2Unless otherwise stated, the subscript h1 = h2 is dropped and Aij implicitly refers to the symmetrised
amplitude in the case of a decay into two mesons of same type.
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A+-/√2

A00

Re


Im

2αeff

Figure 2: Geometrical representation of the isospin triangular relation A+0 = A+−/
√

2 + A00

and its CP -conjugate equivalent in the complex plane of B → hh amplitudes (red and blue shaded
areas). The angle between the CP -conjugate charged amplitudes A+− and Ā+− corresponds to
twice the weak phase αeff (yellow solid arrows), whereas the angle between the CP -conjugate
charged amplitudes A+0 and Ā+0 corresponds to twice the weak phase α (green solid arrows).
The other triangles with a lighter shade represents the mirror solutions allowed by the discrete
ambiguities in the observables, with the corresponding values for α represented with green dashed
arrows.

reconstructing the two isospin triangles. This leads to a fourfold ambiguity for sin(2α),
i.e. an eightfold ambiguity on the solutions of α in [0, 180]◦, in general. These additional
solutions are called “mirror solutions”. If one or both triangles are flat, several mirror
solutions become degenerate, decreasing the number of distinct solutions for α.

3 Determining the weak angle α

3.1 Procedure

If we consider that each of the five amplitudes Aij (ij = +−,−+,+0, 0+, 00) receives
two complex contributions, tree and penguin, the hadronic contributions to the generic
decay system Bi+j → hi1h

j
2 can be parametrised with 20 real parameters, in addition to

the weak phase α (one overall phase being irrelevant). In the case of a Bose-symmetric

8



final state (h1 = h2), the dimension of the parameter space reduces down to 13. Assuming
the isospin relations between the amplitudes discussed in Sec. 2, the three decay systems
B → ππ, B → ρρ and B → ρπ provide enough experimental measurements to fully
constrain the parameter space, hereafter denoted ~p=(α,~µ), where ~µ represents the set of
independent hadronic parameters (tree and penguin amplitudes). The actual dimension
of the parameter space depends on the decay system and will be discussed in the following
subsections.

The constraints on the parameter α are determined by an exploration of the N -
dimensional parameters space through the frequentist statistical approach discussed in
detail in Refs. [5, 6, 10, 22] and in Sec. 4.2, but we find it useful to briefly summarise its

main features here. The set of experimental observables, denoted ~Oexp, is measured in
terms of likelihoods that can be used to build a χ2-like test statistic:

χ2(~p) = −2 logL( ~Oexp − ~O(~p)) , (22)

where ~O(~p) represent the theoretical value of the observables in SM for fixed parameters
~p. The test statistic χ2 is first minimised over the whole parameter space, letting all
N parameters ~p free to vary. The absolute minimum value of the test statistic, χ2

min,
quantifies the agreement of the data with the theoretical model (assuming the validity of
the SM and SU(2) isospin symmetry in the present case). Converting χ2

min into a p-value is
however not trivial a priori, as one has to interpret χ2(~p) as a random variable distributed
according to a χ2 law with a certain number of degrees of freedom. The actual number
of degrees of freedom of the system can be ill defined in the case where the experimental
observables are interdependent (see for instance the related discussion in Sec. 3.4). In
the case of M independent observables, the number of degrees of freedom of the system
is defined as Ndof = M − N . This occurs in the Gaussian case, but it also can apply in
non-Gaussian cases in the limit of large samples, under the conditions of Wilks’ theorem
[23].

It is also possible to perform the metrology of specific parameters of the model, and in
particular α [5, 6, 10, 22]. Indeed, if we consider the ~µ hadronic parameters as “nuisance
parameters”, we can define the test statistic from the χ2 difference:

∆χ2(α) = min
~µ

[χ2(α)]− χ2
min (23)

where min~µ[χ2(α)] is the value of χ2, minimised with respect to the nuisance parameters
for a fixed α value. This test statistic assesses how a given hypothesis on the true value of
α agrees with the data, irrespective of the value of the nuisance parameters. Confidence
intervals on α can be derived from the resulting p-value, which is computed assuming that
∆χ2(α) is χ2-distributed with one degree of freedom:

p(α) = Prob(∆χ2(α), Ndof = 1) , Prob
(
∆χ2, Ndof

)
=

Γ(Ndof/2,∆χ
2/2)

Γ(Ndof/2)
. (24)

One can express Prob for Ndof = 1 in terms of the complementary error function:

Prob(∆χ2(α), Ndof = 1) = Erfc(
√

∆χ2(α)/2) . (25)
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Figure 3: On the left: p-value as a function of the assumed value for α, extracted from the
global CKM fit excluding direct information on α from charmless B decays. On the right: 95%
confidence-level constraint (light blue area) in the (ρ̄, η̄) plane defining the apex of the B-meson
unitarity triangle. The corresponding 68% confidence-level interval, indicated by the dark blue
area on the two figures, is given by Eq. (2).

Confidence intervals at a given confidence level (CL) are obtained by selecting the values
of α with a p-value larger than 1−CL. The derivation, robustness and coverage of this
definition for the p-value will be further discussed in Sec. 4.2.

Although the relevant information on the α constraint is fully contained in the p-value
function p(α), confidence intervals will be derived in the following subsections. It is worth
noticing that the p-value for α usually presents a highly non-Gaussian profile and that the
SU(2) isospin analysis suffers from (pseudo-)mirror ambiguities. Therefore, the confidence
intervals provided must be interpreted with particular care.

We consider here all the experimental inputs available up to Winter 2017 conferences
(for each channel, we provide the corresponding references). We compare the results of
the isospin-based direct determination of α from these inputs with the indirect result from
the global CKM fit obtained in Summer 2016. This indirect determination includes all
the quark-flavour constraints described in Refs. [10, 18], apart from the inputs from the
B → ππ, B → ρρ and B → ρπ decays used for the direct determination of α. The indirect
determination, hereafter denoted αind, is illustrated in Fig. 3 and the corresponding 68%
CL interval is given in Eq. (2).

3.2 Isospin analysis of the B → ππ system

The three decaysB0,+ → (ππ)0,+ depend on 12 hadronic parameters and the weak phase α.
One can set one irrelevant global phase to zero, and one can eliminate further parameters
using the complex isospin relation Eq. (20) and its CP conjugate (four real constraints) as
well as the absence of the penguin contribution to the charged mode amplitude (two real
constraints). The remaining system of amplitudes features six degrees of freedom. The
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Observable World average References
B+−
ππ (×106) 5.10± 0.19 [24, 25, 26, 27, 28]

B+0
ππ (×106) 5.48± 0.34 [25, 26, 27, 29]

B00
ππ (×106) 1.59± 0.18 [24, 30]

C00
ππ −0.34± 0.22 [24, 30]

C+−
ππ −0.284± 0.039 [31, 32, 33]

S+−
ππ −0.672± 0.043 [31, 32, 33]

ρ(C+−
ππ , S

+−
ππ ) +0.013 [31, 32, 33]

Table 3: World averages for the relevant experimental observables in the B → πiπj modes:
branching fraction Bijππ, time-integrated CP asymmetry Cijππ, time-dependent asymmetry Sijππ
and correlation (ρ).

isospin-related B → ππ decays (and similarly each of the helicity states of the B → ρρ
mode) can thus be described with six real independent parameters, including the common
weak phase α.

The relevant available experimental observables and their current world-average value
for the B → ππ modes are summarised3 in Tab. 3. Six independent observables are avail-
able, allowing us to constrain the six-dimensional parameter space of the SU(2) isospin
analysis. These branching fractions and CP asymmetries are related to the decay ampli-
tudes as:

1

τBi+j
Bij =

|Aij|2 + |Āij|2

2
, Cij =

|Aij|2 − |Āij|2

|Aij|2 + |Āij|2
, S ij =

2Im(ĀijAij∗)

|Aij|2 + |Āij|2
, (26)

where τBi+j is the measured lifetime of the charged (i + j = 1) or neutral (i + j = 0) B
meson.

Taking into account the isospin relation Eq. (20), the amplitudes can be parametrised
in terms of their penguin and tree contributions as

A+− = T+−e−iα + P , Ā+− = T+−e+iα + P,√
2A00 = T 00e−iα − P ,

√
2Ā00 = T 00e+iα − P ,√

2A+0 = (T+− + T 00)e−iα ,
√

2Ā+0 = (T+− + T 00)e+iα, (27)

where T+−, T 00 and P are three complex parameters, among which one can be taken as
real to set the global phase convention.

The actual choice of the representation for the amplitudes is irrelevant from the math-
ematical point of view in the frequentist approach adopted here [36]. We use the following

3The CP asymmetry for the charged mode explicitly vanishes in the parametrisation of the amplitudes
based on exact SU(2) isospin symmetry. Therefore the corresponding observable is not included here.
The current experimental measurement, fully consistent with the null hypothesis, would only affect the
minimal value χ2

min of the fit, but not the metrology of the parameters. This additional observable will
be useful to study isospin-breaking effects in Sec. 4.1.
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alternative representation of the amplitude system, which proves more convenient for our
purposes [37]:

A+0 = µei(∆−α) , Ā+0 = µei(∆+α) ,

A+− = µa , Ā+− = µāe2iᾱ ,

A00 = A+0 − A+−
√

2
, Ā00 = Ā+0 − Ā+−

√
2
, (28)

where the parameters a, ā and µ are real positive parameters related to the modulus
of the decay amplitudes and ᾱ and ∆ are relative phases. A+− is chosen to be a real
positive quantity, which sets the phase convention. The weak phase α clearly appears as
2α = arg(Ā+0/A+0). The parameter ᾱ, satisfying ᾱ = 2 arg(Ā+−/A+−), would coincide
with α in the limit of a vanishing penguin contribution.4

This alternative representation provides a convenient and compact parametrisation
enabling a fast and stable exploration of the six-dimensional parameter space. Besides
its technical convenience, this representation has a pedagogical benefit, as it exhibits the
discrete ambiguities affecting the determination of the weak phase α in the B → hh modes
in a clear way. Indeed, the above experimental B → ππ observables can be written as a
function of the chosen set of parameters as

B+0 = τB+µ2, B+− = τB0µ2a
2 + ā2

2
,

B00 = τB0

µ2

4
(4 + a2 + ā2 − 2

√
2(ac+ ā.c̄) ,

C+− =
a2 − ā2

a2 + ā2
, S+− =

2aā

a2 + ā2
sin(2ᾱ) ,

C00 =
a2 − ā2 − 2

√
2(ac+ āc̄)

4 + a2 + ā2 − 2
√

2(ac+ āc̄)
. (29)

where we define c = cos(α−∆) and c̄ = cos(α+ ∆− 2ᾱ). The system exhibits a fourfold
trigonometric ambiguity under the phase redefinitions:

(α,∆)→ (∆, α), (2ᾱ− α, 2ᾱ−∆), (2ᾱ−∆, 2ᾱ− α) . (30)

There is also an additional discrete symmetry involving not only α and ∆, but also ᾱ:
indeed, c, c̄ and S+− are left invariant by the reflection:

(ᾱ, α,∆)→ π

2
− (ᾱ, α,∆) . (31)

The combination of these two discrete symmetries yields an heighfold ambiguity in the
determination of the α angle in the [0, 180]◦ range. Geometrically speaking, the fourfold

4This model is a valid representation of the amplitude system for α 6= 0. When α vanishes exactly,
the constraints ā = a and ᾱ = 0 must be added to the system in order to satisfy the equality of the
CP -conjugate amplitudes A+− = Ā+−.
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Figure 4: Constraint on the reduced amplitude a+− = A+−/A+0 in the complex plane for the
B → ππ (left) and B̄ → ππ systems (right). The individual constraint from the B0(B̄0)→ π+π−

observables and from the B0(B̄0) → π0π0 observables are indicated by the yellow and green
circular areas, respectively. The corresponding isospin triangular relations a00 + a+−/

√
2 = 1

(and CP conjugate) are represented by the black triangles.

ambiguity results from the choice left concerning the position of the apex with respect
to the A+0 base for each of the two isospin triangles, and a twofold ambiguity arises in
relation with the relative direction of the two A+0 and Ā+0 bases.

In the absence of any additional input, the available B → ππ observables lead thus to
height strictly equivalent mirror solutions for α. The degeneracy could be partially lifted
with the measurement of the time-dependent CP asymmetry in the B0 → π0π0 decay,
S00. This observable can be written as:

S00 =
4 sin(2α) + 2aā sin(2ᾱ)− 2

√
2(as+ ās̄)

4 + a2 + ā2 − 2
√

2(ac+ āc̄)
, (32)

where s = sin(α+∆) and s̄ = sin(α−∆+2ᾱ) are not invariant under the phase redefinition
of α and ∆ Eq. (30), leaving only a twofold ambiguity on α. The B0 → π0π0 decay is
so far observed only in the 4-photon final state preventing the measurement of the time-
dependent decay rate. Future high-luminosity facilities have investigated the feasibility
of the S00

ππ asymmetry measurement, either by considering the rare Dalitz decays of the
neutral pions or by exploiting the conversion of photons in the detector material [38, 39].

The consistency of the experimental B → ππ data with the triangular isospin relation
of Eq. (20) can be assessed by the means of the two-side sum:

t =
|a+−|√

2
+ |a00| (33)
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where aij denotes the normalised amplitude aij = Aij/A+0. The sum of the length of
two sides of a triangle being greater than the third one [40], we have t ≥ 1, the equality
occurring for a flat triangle. The values

t = 1.05± 0.09 and t̄ = 1.45± 0.08 (34)

are obtained for the B → ππ and B̄ → ππ systems and are consistent with an almost-flat
and an open triangle, respectively, as illustrated in Fig. 4. Both isospin triangles display
the expected mirror symmetry, therefore the α constraint exhibits height non-degenerate
solutions in [0, 180]◦, as illustrated in Fig. 5. The minima of the χ2 test statistic over the
parameter space (χ2

min = 0) are found at α = 5.9◦, α = 84.1◦, α = 100.1◦, α = 124.4◦,
α = 129.6◦, α = 140.4◦, α = 125.6◦ and α = 169.9◦. This system of six observables for six
independent parameters is not over-constrained and the vanishing value of χ2

min reflects
the closure of both the B̄ → ππ and the B → ππ isospin triangles. The corresponding
(symmetrised) α intervals at 68% and 95% CL are

αππ : (93.0± 14.0 ∪ 135.0± 17.7 ∪ 177.1± 14.2)◦ (68% CL) and

(135.3± 60.3)◦ (95% CL) . (35)

The interval α = [20.0, 71.0]◦ is excluded at more than 3 standard deviations by the SU(2)
isospin analysis of the B → ππ system. The solution around 90◦ is in excellent agreement
with the indirect determination of α, Eq. (2), from the other constraints of the global CKM
fit [18]. If we include αind derived from Fig. 3 as an additional and independent constraint
to the SU(2) isospin fit, the minimal χ2 increases by 0.3, indicating a consistency at the
level of 0.6 standard deviation.

It is interesting to note the isospin constraints present a discontinuity at α = 0 (modulo
π) as illustrated on the right-hand side of Fig. 5. The α = 0 hypothesis is rejected with
a high significance (χ2(α = 0) = 296) as expected by the direct CP violation observed in
the B0 → π+π− decay [31, 32]. However, for any finite α in the vicinity of zero, the isospin
relation can be satisfied if arbitrary large penguin amplitudes are allowed (the limit case
α → 0 happens if |T+−|, |T 00|, |P | are sent to infinity, see Eq. (27) and Refs. [36, 42]).
The limit α→ 0 was also discussed in the context of the Bayesian statistical approach in
Ref. [41]. External data, e.g., based on SU(3) consideration, could be used to set bounds
on the penguin over tree ratio and thus further constrain α around 0. These bounds stand
beyond the pure SU(2) approach adopted here and we will not attempt at including such
additional information for the following reasons. On one hand, other charmless modes
(such as ρπ) will provide further information on the small α region, and on the other
hand, we will ultimately use the determination of α in a global fit together with other
well-controlled constraints on the CKM parameters [18]: both types of constraints will
rule out the region around α = 0, so that additional theoretical hypotheses on the size of
the B → ππ amplitudes are not necessary for our purposes.
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Figure 5: One-dimensional scan of α in the [0, 180]◦ range (left) from the SU(2) isospin analysis
of the B → ππ system. The interval with a dot indicates the indirect α determination introduced
in Eq. (2). The zoom in the vicinity of α = 0 (right figure) displays the punctual discontinuity,
whose width due to the scan binning has no physical meaning.

3.3 Isospin analysis of the B → ρρ system

A similar SU(2) isospin analysis can be performed on each polarisation state of the B → ρρ
system. Experimentally, the decays are completely dominated by the longitudinal polar-
isation of the ρ mesons, and in the following, we will always imply this polarisation for
the ρρ final state (which will be denoted explicitly as ρLρL when we quote experimental
measurements). This final state presents several advantages with respect to B → ππ. The
measured branching fractions B+− and B+0 are approximately five times larger than for
B → ππ, while B00 is of same order of magnitude, indicating a smaller penguin contam-
ination in the ρρ case. Moreover, the time-dependent CP asymmetry in the B0 → ρ0ρ0

decay, S00, is experimentally accessible for the final state with four charged pions, poten-
tially lifting some of the discrete ambiguities affecting the determination of α. However,
the current measurement S00 = 0.3± 0.7 suffers from large uncertainties, leaving pseudo-
mirror solutions in α. The available experimental observables5 and their current world
averages are summarised in Tab. 4. Under the SU(2) isospin hypothesis, the direct CP
asymmetry in B+ → ρ+ρ0 vanishes and we will not take into account the experimental
measurement of this quantity (which is consistent with our hypothesis and will be used to
test this assumption in Sec. 4.1). Seven independent observables are available for the lon-
gitudinal helicity state of the ρ mesons, allowing us to over-constrain the six-dimensional
parameter space of the SU(2) isospin analysis.

The situation of the B → ρρ system is illustrated in Fig. 6. The following two-side
sums are consistent with flat triangles for both B → ρρ and B̄ → ρρ systems:

t = 1.00± 0.10 and t̄ = 0.97± 0.11 . (36)

5As can be seen from Tab. 4, the longitudinal polarisation fL is always used as an input in combination
with branching ratios B, and both are defined as CP -averaged quantities.
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Observable World average References
B+−
ρρ × f+−

L (×106) (27.76± 1.84) × (0.990± 0.020) [43, 44]

B+0
ρρ × f+0

L (×106) (24.9± 1.9) × (0.950± 0.016) [45, 46]

B00
ρρ × f00

L (×106) (0.93± 0.14) × (0.71± 0.06) [47, 48, 49]

C+−
ρLρL

−0.00± 0.09 [43, 44]

S+−
ρLρL

−0.15± 0.13 [43, 44]

ρ(C+−
ρLρL

, S+−
ρLρL

) +0.0002 [43, 44]

C00
ρLρL

0.2± 0.9 [47, 48, 49]

S00
ρLρL

0.3± 0.7 [47, 48, 49]

Table 4: World averages for the relevant experimental observables in the B → ρiρj modes:
branching fraction Bijρρ, fraction of longitudinal polarisation f ijL , time-integrated CP asymmetry

Cijρρ, time-dependent asymmetry Sijρρ and correlation (ρ).
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Figure 6: Constraint on the reduced amplitude a+− = A+−/A+0 in the complex plane for the
B → ρρ (left) and B̄ → ρρ systems (right). The individual constraint from the B0(B̄0)→ ρ+ρ−

observables and from the B0(B̄0) → ρ0ρ0 observables are indicated by the yellow and green
circular areas, respectively. The corresponding isospin triangular relations a00 + a+−/

√
2 = 1

(and CP conjugate) are represented by the black line. Both B → ρρ and B̄ → ρρ isospin
triangles are flat.

This further reduces the degeneracy of the (pseudo) mirror solutions in α leaving a twofold
ambiguity; see Fig. 7. The minima of the χ2 test statistic over the parameter space
(χ2

min = 0.14) are found at α = 92.1◦ and 178.0◦. The corresponding 68 and 95% CL
intervals on α are

αρρ : (92.0+4.7

−4.8 ∪ 177.9+4.9

−4.6)
◦ (68% CL) and

(92.0+10.0

−11.0 ∪ 177.9+10.7

−10.0)
◦ (95% CL) . (37)
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Figure 7: One-dimensional scan of α in the [0, 180]◦ range (left) from the SU(2) isospin analysis
of the B → ρρ system. The interval with a dot indicates the indirect α determination introduced
in Eq. (2). The zoom in the vicinity of α = 0 (right) displays the punctual discontinuity, whose
width, due to the scan binning, has no physical meaning.

The solution around 90◦ is in excellent agreement (less than 0.1 standard deviation) with
the indirect determination of α, Eq. (2), from the other constraints of the global CKM
fit [18], and is more tightly constrained than in the B → ππ case, in relation with the
smaller penguin contamination.

The region α = [14.0, 76.0]◦ ∪ [112.0, 158.0]◦ is excluded at more than 3 standard
deviations by the SU(2) isospin analysis of the B → ρρ system. On the right hand
side of Fig. 7, a zoom around α = 0 exhibits a small discontinuity, corresponding to
χ2(α = 0) = 1.61 and indicating that this hypothesis is mildly disfavoured by the data,
consistently with the absence of large direct CP asymmetries in B → ρρ decays.

3.4 Isospin analysis of the B → ρπ system

The three neutral and two charged B0,+ → (ρπ)0,+ decays can be described with 10
complex (tree and penguin) amplitudes and one weak phase α, i.e., 21 real parameters.
Assuming the pentagonal isospin relation Eq. (13) that leaves only two independent com-
plex penguin contributions, the number of degrees of freedom of the system is reduced to
12 after setting an irrelevant global phase to zero. The dimension of the system gets down
to 10 if we consider the three neutral decays only. The time-dependent Dalitz analysis of
the neutral B0 → (ρ±π∓, ρ0π0)→ π+π−π0 transitions has been shown to carry enough in-
formation to fully constrain the isospin-related B → ρπ system, thanks to the finite width
of the intermediate ρ-mesons that yields a richer interference pattern of the three-body
decay [15, 16]. For instance, 11 independent phenomenological observables can be defined
from the flavour-tagged time-dependent Dalitz distribution of the three-pion decay, e.g.,
the branching fractions of the three intermediate ρiπj transitions, the corresponding direct
and time-dependent CP asymmetries and two relative phases between their amplitudes.
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The extraction of the parameter α through the SU(2) analysis of the neutral modes
will be referred to as the “Dalitz analysis” and will be considered first in Sec. 3.4.1. An
extended analysis (referred to as the “pentagonal analysis”), including the information
coming from the charged decays B+ → ρ+π0 and B+ → ρ0π+, will be discussed in
Sec. 3.4.2.

3.4.1 Dalitz analysis of the neutral B0 → (ρπ)0 modes

Considering the neutral modes only, the time-independent amplitude of the π+π−π0 final
state can be written as

A3π = f+A
+ + f−A

− + f0A
0 , (38)

Ā3π = f+Ā
+ + f−Ā

− + f0Ā
0 ,

where Ai (Āi) is the amplitude of the B0(B̄0) → ρiπj transition6 and fi (i = −,+, 0) is
the form factor accounting for the ρi line-shape. Neglecting the tiny B0 width difference
∆Γd, the time-dependent decay rate can be written as a function of three combinations
of these amplitudes:

Γ(t)B0/B̄0→π+π−π0 ∝ e−t/τB0 [Γ0 ∓ ΓC cos(∆mdt)± 2ΓS sin(∆mdt)] , (39)

with Γ0 = (|A3π|2 + |Ā3π|2), ΓC = (|A3π|2 − |Ā3π|2) and ΓS = Im
(
q
p
Ā3πA

∗
3π

)
.

These amplitudes are described phenomenologically in terms of form factors fi de-
scribing the decay of the ρ meson into two pions, multiplied by coefficients, denoted U
and I, related to the B → ρπ dynamics:

|A3π|2 ± |Ā3π|2 =
∑

i=+,−0

U±i |fi|2 + 2
∑
j<i

U±,Reij Re(fif ∗j )− 2
∑
j<i

U±,Imij Im(fif
∗
j )

Im
(
q

p
Ā3πA

∗
3π

)
=

∑
i=+,−0

Ii|fi|2 +
∑
j<i

IReij Re(fif ∗j ) +
∑
j<i

IImij Im(fif
∗
j ) (40)

with

U±i = |Ai|2 ± |Āi|2 , Ii = Im(ĀiAi
∗
) ,

U±,Reij = Re(AiAj∗ ± ĀiĀj∗) , IReij = Re(ĀiAj∗ − ĀiAj∗) ,
U±,Imij = Im(AiAj

∗ ± ĀiĀj∗) , IImij = Im(ĀiAj
∗

+ ĀiAj
∗
) . (41)

For given form factors fi, these 27 coefficients U and I fully parametrise the time-
dependent Dalitz distribution of the B → π+π−π0 decay. The U parameters are related
to the branching fractions and the direct CP asymmetries in the B → ρiπj intermediate
states while the I coefficients parametrise the mixing-induced CP asymmetries.

6With this convention the Ai (Āi) amplitude carries a superscript referring to the electric charge of
the ρi meson in both B0 and B̄0 decays, i.e., A+ = A+−, A− = A−+ and Ā+ = Ā−+, Ā− = Ā+− where
the Aij (Āij) amplitude is defined in Sec. 2.1.
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 Quasi-2-body terms-π+ρ 

+
+U  (norm.) : 2|

+
|f 1.00

+
-U mt)  : ∆cos(2|

+
|f 0.09±0.24

+I mt)  : ∆sin(2|
+

|f 0.06±0.04

 Quasi-2-body terms+π-ρ 

-
+U   : 2|-|f 0.07±1.19

-
-U mt)  : ∆cos(2|-|f 0.09±-0.37

-I mt)  : ∆sin(2|-|f 0.06±0.03

 Quasi-2-body terms0π0ρ 

0
+U   : 2|

0
|f 0.03±0.22

0
-U mt)  : ∆cos(2|

0
|f 0.06±0.04

0I mt)  : ∆sin(2|
0

|f 0.04±-0.03

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

Table 5: Relative value of the quasi-two-body related U and I coefficients extracted from the
time-dependent Dalitz analysis of the B0 → (ρπ)0 decay [50, 51]. The corresponding form-factor
bilinear is indicated for each coefficient. The red vertical line indicates the overall normalisation,
defined by U+

+ = 1.

As long as only the neutral modes are considered, it is worth noticing that the absolute
normalisation of these coefficients is irrelevant for the SU(2) isospin analysis. The mea-
sured values and correlations [50, 51] of the 26 remaining U and I coefficients (normalised
with respect to U+

+ that is set to unity) are collected in Tabs. 5, 6, and 7. The following
compact representation of the amplitude system for the neutral transitions can be chosen:

A+ = cos(Θ+) , Ā+ = sin(Θ+)eiΨ
+

,

A− = µ−eiφ
−

, Ā− = ν−eiΨ
−
,

A0 = µ0eiφ
0

, 2Ā0 = e2iα(2A0 + A+ + A−)− Ā+ − Ā− . (42)

This modelisation explicitly embeds the isospin relations Eq. (13) as well as the normal-
isation choice U+

+ = |A+|2 + |Ā+|2 = 1. We thus obtain a system depending on 9 real
parameters, consisting in four relative amplitudes (cos(Θ+), µ−, µ0, ν−) and 5 phases (α,
φ−, φ0, Ψ+, Ψ−) (including the weak phase α). It is worth stressing again that the actual
parametrisation of the amplitudes has no impact on the results obtained in our frequentist
framework [36]. The parametrisation Eq. (42) is mostly based on technical considerations:
this minimal representation ensures a fast and stable exploration of the nine-dimensional
parameter space constrained by the 26 correlated observables. The isospin relations for
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 interfering terms +π-ρ/-π+ρ 

+-
+ReU *) : -f+

Re(f 0.37±0.08

+-
+ImU *) : -f+

Im(f 0.34±0.17

+-
-ReU mt) : ∆*)cos(-f+

Re(f 0.81±-0.43

+-
-ImU mt) : ∆*)cos(-f+

Im(f 0.84±0.68

+-
ReI mt) : ∆*)sin(-f+

Re(f 1.06±-0.34

+-
ImI mt) : ∆*)sin(-f+

Im(f 1.04±-0.66

  Interfering terms 0π0ρ/+π-ρ 

-0
+ReU *) : 0f-Re(f 0.22±0.07

-0
+ImU *) : 0f-Re(f 0.28±-0.61

-0
-ReU mt) : ∆*)cos(0f-Re(f 0.47±0.33

-0
-ImU mt) : ∆*)cos(0f-Im(f 0.60±0.69

-0
ReI mt) : ∆*)sin(0f-Re(f 0.76±-0.46

-0
ImI mt) : ∆*)sin(0f-Im(f 0.57±-0.57

  Interfering terms 0π0ρ/-π+ρ 

+0
+ReU *) : 0f+

Re(f 0.22±0.08

+0
+ImU *) : 0f+

Im(f 0.21±0.27

+0
-ReU mt) : ∆*)cos(0f+

Re(f 0.47±-0.06

+0
-ImU mt) : ∆*)cos(0f+

Im(f 0.47±-0.11

+0
ReI mt) : ∆*)sin(0f+

Re(f 0.78±0.48

+0
ImI mt) : ∆*)sin(0f+

Im(f 0.53±0.01

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

Table 6: Relative value of the interference-related U and I coefficients extracted from the time-
dependent Dalitz analysis of the B0 → (ρπ)0 decay [50, 51]. The corresponding form-factor
bilinear is indicated for each coefficient. The red vertical line indicates the overall normalisation,
defined by U+

+ = 1.

both CP -conjugate modes are illustrated on Fig. 8. The resulting constraint on α is
shown on the left-hand side of Fig. 9.

Using the 26 correlated U and I observables, the minimum of the χ2 test statistic over
the parameter spaces (χ2

min = 8.6) is found at α = 54.1◦. The corresponding 68% and
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Table 7: Correlation matrix of correlations, in percent, for the U and I coefficients extracted
from the time-dependent Dalitz analysis of the B0 → (ρπ)0 decay [50, 51].

95% CL intervals are

α(ρπ)0 (Dalitz) : (54.1+7.7

−10.3 ∪ 141.8+4.8

−5.4)
◦ (68% CL) and

(54.1+15.0

−27.0 ∪ 141.8+11.2

−23.8)
◦ (95% CL) . (43)

The interval α = [92.0, 112.0]◦ is excluded at more than 3 standard deviations by the
SU(2) isospin analysis of the B0 → (ρπ)0 system. These results do not show a good
agreement with the indirect determination of α, Eq. (2), based on the other constraints
of the global CKM fit [18]. Adding the indirect determination as an additional constraint
to the SU(2) isospin fit, the minimal χ2 increases by 9.1 units, corresponding in the
Gaussian limit to a 3.0 σ discrepancy. In front of this uncomfortable discrepancy, we
should remember that this result will be combined with constraints from ρρ and ππ
systems. Without a dedicated statistical study, it is difficult to determine the effective
number of degrees of freedom associated with the set of 26 interdependent observables
for the ρπ system, but it remains interesting to notice that the χ2

min for ρπ appears
less significant (statistically) than in the case of ρρ (which dominates the combination)
and ππ (which contributes significantly). The latter constraints will dominate, leading
to a combined determination remaining in good agreement with the indirect value of
α obtained from the other constraints of the global fit. A detailed study of the actual
significance of this χ2 offset in the ρπ case is discussed in Sec. 4.2. In addition, the ρπ
Dalitz observables have been scrutinized to understand more precisely the origin of the
tension, as reported in section 6.3.
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Figure 8: Constraint on the reduced amplitude (a+−+a−+) = (A+−+A−+)/(A+0 +A0+) in the
complex plane for the B0 → (ρπ)0 (left) and B̄0 → (ρπ)0 systems (right). The individual 95%
CL constraint from the B0(B̄0) → ρ±π∓ observables and from the B0(B̄0) → ρ0π0 observables
are indicated by the yellow and green areas, respectively, whose non-trivial shapes are due to
the correlations between the two modes. The corresponding isospin triangular relations a00 +
a+−/

√
2 = 1 (and CP conjugate) are represented by the black line.

 (deg.)α

0 20 40 60 80 100 120 140 160 180

p
­v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Alpha 2017

CKM
f i t t e r

 Dalitz data (WA)
0
)πρ(→

0
B

CKM fit

 (deg.)α

0 20 40 60 80 100 120 140 160 180

p
­v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Alpha 2017

CKM
f i t t e r

 pentagonal analysis (WA)πρ→B

CKM fit

Figure 9: One-dimensional scan of α in the [0, 180]◦ range from the “Dalitz” SU(2) isospin
analysis of the B0 → (ρπ)0 system (left) and the “pentagonal” analysis (right). The interval
with a dot indicates the indirect α determination introduced in Eq. (2).

3.4.2 “Pentagonal” analysis of the B → ρπ system

The amplitudes of the two charged decay modes B+ → ρ+π0 and B+ → ρ0π+ are related
to the amplitudes of the three neutral decays B0 → (ρπ)0 through the pentagonal relation
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Observable World average References
B+0
ρπ (×106) 10.9± 1.4 [54, 56, 57]

C+0
ρπ −0.02± 0.11 [54, 56, 57]

B0+
ρπ (×106) 8.3± 1.2 [54, 58, 59]

C0+
ρπ −0.18+0.17

−0.09 [54, 58, 59]

B±∓ρπ (×106) 23.0± 2.3 [54, 52, 55]

B00
ρπ (×106) 2.0± 0.5 [54, 53, 55]

Table 8: World averages for the branching fractions Bijρπ and time-integrated CP asymmetries
Cijρπ for the charged (top) and neutral (bottom) B → ρπ decay modes.

Eq. (13). The measurement of the branching ratios and CP -asymmetries of the charged
modes may provide additional constraints to the isospin system. Considering simulta-
neously the charged and the neutral modes, the U and I observables that describe the
relative amplitudes of the neutral decays must be supplemented with an absolute normal-
isation. This is achieved by identifying the sum of branching ratios, B+−

ρπ + B−+
ρπ , with

the scaled amplitude µ+(U+
+ + U+

− )τB0/2, where µ+ is the absolute normalisation of the
relative U and I coefficients. The experimental measurements of the branching fractions
for the charged and neutral B → ρπ modes and the CP asymmetries for the charged
modes are listed in Tab. 8.

At this stage, we would like to comment on some of these inputs. The measurement
of the branching fractions for the neutral intermediate states B0 → ρiπj is experimentally
tricky. Indeed, the three ρ mesons, charged and neutral, contribute to the neutral modes,
whereas only one ρ state contributes to each of the charged modes. A quasi-two-body
analysis was performed by the BaBar and CLEO experiments [54, 52, 53] assuming that
the interferences are negligible in the Dalitz region where the measurements were per-
formed. The Belle measurement [55] extracts the partial branching ratio B±∓ρπ and B00

ρπ

simultaneously from a global B0 → π+π−π0 Dalitz analysis, rescaling the U coefficients
to the overall three-body branching fractions. The reliability of the measurements on the
quasi-two-body intermediate states, B0 → ρ±π∓ and B0 → ρ0π0, is thus questionable and
this may bias the pentagonal constraint. Since the Dalitz-based SU(2) isospin analysis
already provides a complete and self-consistent description of the B0 → (ρπ)0 amplitude
system, we will use the Dalitz analysis rather than the pentagonal one in the combined
direct determination of the α angle. However, for completeness, we briefly discuss the
results of the pentagonal analysis, interpreting the B±∓ρπ measurement as an independent
constraint on B+−

ρπ +B−+
ρπ . Further discussions can be found in Sec. 6.3.3, where predictions

for these observables can be found.
Including the charged decays, the amplitude model for the neutral modes discussed in

Sec. 3.4.1 can be completed with two additional real parameters (µ+0,φ+0):

A+0 = µ+0eiφ
+0

, A0+ = −A+0 +
2A0 + A+ + A−√

2
, (44)
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where the second identity uses the pentagonal relation Eq. (13) explicitly. Using Eq. (17),
the CP -conjugate amplitudes are defined as

Ā+0 = (A+0 − A+ − A−√
2

)e2iα +
Ā+ − Ā−√

2
,

Ā0+ = (
√

2(A+ + A0)− A0+)e2iα − Ā+ − Ā−√
2

. (45)

Adding the normalisation factor µ+0, the whole B → ρπ dynamics is described through
a 12-parameter system that is over-constrained by the set of observables for neutral and
charged modes given in Tabs. 5, 6, 7 and 8.

The minimum of the χ2 test statistic over the parameter space (χ2
min = 12.1) is found

at α = 49.8◦. The following 68% and 95% CL intervals on α are obtained:

αρπ (pentagonal) : (49.8+4.1

−4.3)
◦ (68% CL) and

(49.8+8.0

−10.4)
◦ (95% CL) . (46)

The compatibility with the indirect α determination is estimated at 3.2 standard devi-
ations, slightly larger than for the Dalitz analysis of the neutral modes. The constraint
on α is displayed on the right-hand side of Fig. 9. The same comments as in Sec. 3.4.1
apply also here concerning the relative statistical significance of this constraint compared
to B → ππ and B → ρρ channels.

3.5 Combined result

The SU(2) isospin analyses of B → ππ, B → ρρ and B → ρπ provide three independent
constraints on α. A combined analysis can be performed by summing the individual χ2(α)
curves. Using the Dalitz analysis for the B0 → (ρπ)0 mode together with B → ππ and
B → ρρ, the minimum of the χ2 test statistic (χ2

min = 17.1) is obtained for α = 86.2◦, as
illustrated on Fig. 10. A slightly disfavoured second solution peaks at α = 178.4◦ with
∆χ2 = χ2(α = 178.4◦)− χ2

min = 0.4. The corresponding 68% and 95% CL intervals are

αdir : (86.2+4.4

−4.0 ∪ 178.4+3.9

−5.1)
◦ (68% CL) and

(86.2+12.5

−7.5 ∪ 178.4+10.5

−9.9 )◦ (95% CL) . (47)

The preferred solution near 90◦ is consistent with the indirect determination αind. given
in Eq. (2) at 1.3 standard deviations. As discussed earlier, the combined constraint is
dominated by B → ρρ and to a lesser extent, by B → ππ, whereas B → ρπ plays only a
limited role. The constraint resulting of the partial combination based on B → ππ and
B → ρρ only is reported in Tab. 11.

The one-dimensional constraint on α can be recast in a constraint on the (ρ̄, η̄) Wolfen-
stein parameters of the CKM matrix representing the apex of the B-meson unitarity
triangle [10, 18]. The following relation can be derived:(

η̄ − cotan(α)

2

)2

+

(
ρ̄− 1

2

)2

=
1

4 sin2(α)
, (48)
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Figure 10: SU(2) constraint on α (green shaded area) from the combination of B → ππ (dashed
line), B → ρρ (dashed-dotted line) and B0 → π+π−π0 Dalitz analyses (dotted line) compared to
the indirect value (dot) obtained from the global CKM fit [18].

so that the curves at fixed α consist in circles centred on the point (ρ̄, η̄) =
(1/2, cotan(α)/2). In particular, the curve at α=90◦ is a circle of radius 1/2 centered
on (ρ̄, η̄) = (1/2, 0), while α=0◦ amounts to a circle of an infinite radius tangent to the
axis η̄ = 0. All the curves of constant α meet at the points (0, 0) and (1, 0). Fig. 11
displays the constraint resulting from the direct determination of α in the (ρ̄, η̄) plane.

In this section, we have used world averages for all the observables, combining infor-
mation from the BaBar, Belle and LHCb experiments. Since both B-factory experiments,
BaBar and Belle, have measured all these observables independently, it is also possible
to perform separate SU(2) isospin analyses for each of the three decay channels and each
experiment. The corresponding constraints are discussed in App. A.

4 Additional uncertainties in the extraction of α

In this section, we are going to test the limits of the assumptions made to extract α from
the data: the breakdown of isospin symmetry and the statistical approach used to build
confidence intervals.

4.1 Testing the SU(2) isospin framework

As discussed in Sec. 2, the extraction of the weak phase α relies on isospin symmetry,
which is used at different levels [60, 61]:
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Figure 11: 95% CL (dark green) and 68% (light green) constraints on α in the (ρ̄, η̄) plane from
the combined SU(2) isospin analysis of B → ππ, B → ρρ and B → ρπ (Dalitz) decays. The
small yellow area indicates the 95% CL region for the apex of the B-meson unitarity triangle
(solid black lines) from the global CKM fit excluding the charmless B → hh data used in the
direct α determination [18].

• The charges of the u and d quarks are taken as identical. The ∆I = 3/2 contribution
induced by the electroweak penguins topology to the B+ → h+h0 decay is considered
negligible. As the gluonic penguins only yield a ∆I = 1/2 isospin contribution, the
pure ∆I = 3/2 B

+ → h+h0 decay only receives tree contributions in the absence of
electroweak penguins. In this limit, the weak phase α can be identified as half the
phase difference between the amplitude of the charged mode and its CP conjugate.

• The masses of the u and d quarks are taken as identical. Isospin symmetry is as-
sumed to be exact in the strong hadronisation process following the weak transition
b̄(q) → ūud̄(q) where q represents the light spectator quark u or d. This assump-
tion allows one to relate the decay amplitudes of the charged (b̄u) meson to the
decay amplitudes of its isospin-related neutral state b̄d according to the pentagonal
(triangular) identity given in Eq. (13) (respectively Eq. (20)).

• The ρρ final state is supposed to obey Bose–Einstein statistics, and thus the analysis
for the ππ and the ρρ systems are supposed to follow the same isospin decomposition
(for a given ρ polarisation). However, the ρ mesons cannot be distinguished only
in the limit of a vanishing width. Once the finite ρ width is taken into account,
additional terms (forbidden by Bose symmetry fin the limit Γρ = 0) must be taken

26



into account in the isospin decomposition of the amplitudes.

All these hypotheses are valid a priori to a very good approximation, but the accuracy
reached in the determination of α in Sec. 3.5 is an incentive to investigate their limitations
in more detail.

4.1.1 ∆I = 3/2 electroweak penguins

While preserving the isospin relations between charged and neutral decay amplitudes,
the electroweak penguin topology induces a ∆I = 3/2 contribution to the charged modes
B+ → h+h0. With such a contribution, the system of amplitudes in the ππ and ρρ cases
still obeys the triangular relation Eq. (20), but Eq. (27) has to be rewritten as

A+− = T+−e−iα + P+− ,√
2A00 = T 00e−iα − P+− + P+0

ew ,√
2A+0 = (T+− + T 00)e−iα + P+0

ew , (49)

where the amplitude P+0
ew accounts for the ∆I = 3/2 contribution from electroweak pen-

guins to the charged mode while P+− is redefined to absorb the contributions from both
gluonic and electroweak penguins to the B0 → h+h− neutral decay.

The electroweak penguin contribution can be related to the tree amplitude in a model-
independent way by performing the Fierz transformation of the relevant current-current
operators in the effective Hamiltonian for B → ππ decays [62, 63, 64]. This leads to an
estimate of the relative contribution of the electroweak penguin, P+0

ew , compared to the
tree amplitude, T+0 = (T 00 + T+−), for the charged decay. Neglecting the penguins with
internal light quarks u and c as well as the electroweak operators O7 and O8 (suppressed
by tiny Wilson coefficients), the amplitude ratio:

rewp =
P+0
ew

T+0
' −3

2

(
C9 + C10

C1 + C2

)
VtdV

∗
tb

VudV ∗ub
e−iα (50)

can be computed in terms of the short-distance Wilson coefficients Ci associated to the
effective operators Oi describing the dominant electroweak penguin processes (i = 9, 10)
and the current-current tree processes (i = 1, 2). Following this estimate, the electroweak
penguin amplitude does exhibit no strong phase difference compared to the tree amplitude,
preserving the charge symmetry |A+0| = |Ā+0| in the charged B decay. Consequently,
the impact of the electroweak penguin can be accounted for introducing the single real
parameter rewp = P+0

ew /T
+0 in the isospin analysis of the B → hh systems.

The above modification of the amplitude A+0 affects the determination of α, which is
the argument of A+0 in the absence of ∆I = 3/2 penguin contributions. The CKM phase
measured in B → hh systems under this hypothesis is an effective phase α0, which can
be related to the true phase α through the relation:

tanα0 =
sinα

rewp + cosα
, (51)

27



 (deg.)α

0 20 40 60 80 100 120 140 160 180

p
­v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Alpha 2017

CKM
f i t t e r

0≠
EWP

  rππ→B

=0)
EWP

  SU(2)  (rππ→B

CKM fit

 (deg.)α

0 20 40 60 80 100 120 140 160 180

p
­v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Alpha 2017

CKM
f i t t e r

0≠
EWP

  rρρ→B

=0)
EWP

  SU(2)  (rρρ→B

CKM fit

Figure 12: SU(2) constraint on α including an electroweak penguin contribution given by
Eq. (53) (red dashed line) and neglecting this penguin contribution (green shaded area) for
B → ππ (left) and B → ρρ (right).

and the relative electroweak contribution rewp induces the shift:

δα = α− α0 = arcsin[rewp sinα0] . (52)

on the determination of α. A numerical evaluation yields [6, 62, 63, 64]:

rewp =
P+0
ew

T+0
= −(1.35± 0.12)× 10−2 ×

∣∣∣∣ VtdV ∗tbVudV ∗ub

∣∣∣∣ = −(3.23± 0.30)× 10−2 , (53)

using the CKM matrix parameters constrained from the global analysis of the flavour
constraints [18]. A maximal shift δα = −1.9◦ occurs at α0 = 90◦, in agreement with the
numerical results shown in Fig. 12. The resulting 68% CL intervals are

αewp
ππ : (91.2± 14.2 ∪ 133.8± 18.1 ∪ 177.1± 14.8)◦, (54)

αewp
ρρ : (90.1+4.7

−4.8 ∪ 177.9+4.9

−4.8)
◦.

Conversely, neglecting all other isospin-breaking effects, we can set a limit on the
electroweak penguin contamination in the B → ππ and B → ρρ systems. For this purpose,
we require the modified isospin analysis to agree with the indirect prediction of α, Eq. (2),
determined from all the other constraints used in the global CKM fit [18]. Fig. 13 shows
the resulting constraints on the amplitude ratio rewp for B → ππ (left panel) and B → ρρ
(right panel) systems. We have rejected the mirror solutions that would yield very large,
unphysical, differences δα and thus exceedingly large electroweak penguin contributions
(see the discussion at the end of Sec. 3.2). This is achieved by applying an additional
constraint on the strong and electroweak penguin hierarchy |P+0

ew | < |P+−| for this specific
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Figure 13: Constraint on the relative contamination from ∆I = 3/2 electroweak penguin
rewp = P+0

ew /T
+0 from the SU(2) analysis of B → ππ (left) and B → ρρ (right), obtained

by constraining the weak phase α with the indirect determination provided by the global CKM
fit [18]. An additional constraint on the strong and electroweak penguin hierarchy has been im-
plemented (|P+0

ew | < |P+−|) in order to single out the solution for α compatible with the indirect
determination.

study.7 The following 68% CL intervals are obtained:

rewp = (−2± 26)× 10−2 for the B → ππ system, and

rewp = (0.1+8.4

−7.8) × 10−2 for the B → ρρ system , (55)

showing results consistent with an electroweak penguin contribution of only a few percents,
in agreement with our theoretical expectations.

The contribution of the electroweak penguin can be added in a similar way to the
B → ρπ system [21]:

A+− + A−+ + 2A00 =
√

2(A+0 + A0+) = T+e−iα + P+
ew , (56)

Ā+− + Ā−+ + 2Ā00 =
√

2(Ā+0 + Ā0+) = T+e+iα + P+
ew ,

where T+ and P+
ew denote the penguin and tree contributions to the sum of the charged

amplitudes. Considering only the Dalitz analysis of the neutral modes, the penguin
triangular relation Eq. (14) is violated:

P+− + P−+ + 2P 00 = P+
ew. (57)

The weak phase α derived from

e2iα =
Ā+− + Ā−+ + 2Ā00 − P+

ew

A+− + A−+ + 2A00 − P+
ew

, (58)

7While eliminating mirror solutions, this constraint does not distort the p-value for α in the vicinity of
the solution compatible with the indirect determination. We stress that we do not use such a constraint
anywhere else in this article.
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Figure 14: SU(2) constraint on α including an electroweak penguin contribution given by
Eq. (53) (red dashed line) and neglecting this penguin contribution (green shaded area) for the
B → ρπ system alone (left) and the combination of the three charmless systems (right).

can still be extracted by constraining the electroweak penguin-to-tree ratio:

rewp(ρπ) =
P+
ew

A+− + A−+ + 2A00 − P+
ew

=
P+
ew

T+
. (59)

As discussed in Refs. [65, 66], the numerical expectation given in Eq. (53) does not apply
to the ρπ system: there are additional contributions in this case compared to ππ and ρρ,
coming from matrix elements of tree operators that do not cancel anymore since the final
state does not have a symmetric wave function. Following Refs. [65, 66], we parametrise
the penguin-to-tree ratio for the B → ρπ transition as

rewp(ρπ) = rewp
1− |ra|eiδa
1 + |ra|eiδa

, ra =
C1 − C2

C1 + C2

× 〈(ρπ)+|Ou1 −Ou2 |B+〉
〈(ρπ)+|Ou1 +Ou2 |B+〉

, (60)

rewp is the ratio given by Eq. (53) for the symmetrical B → hh transition where
the Bose-Einstein symmetry applies. On the other hand, ra = |ra|eiδa is a correc-
tion parameter accounting for the non-vanishing If = 1 contribution, with the notation
〈(ρπ)+| = 〈ρ+π0|+ 〈ρ0π+|. We let the correction parameter free to vary up to |ra| < 0.3:
this rather conventional rule of thumb seems fairly conservative compared to estimates
based on naive factorisation [65, 66], but data-based extractions in the case of B → K∗π
decays suggest that it is the appropriate order of magnitude [67]. The unknown phase δa,
which can generate a charge asymmetry in B+ → (ρπ)+ decays, is unconstrained in the
B0 → (ρπ)0 Dalitz analysis considered here.

As illustrated on the left panel of Fig. 14, including the estimate of ∆I = 3/2 elec-
troweak penguin in the B0 → (ρπ)0 isospin analysis induces a small shift of δα = −1.2◦

for the preferred value for α:

αewp
(ρπ)0 : (52.9+8.7

−11.1 ∪ 142.9+5.3

−6.3)
◦ , (61)
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indicating that even a larger bound on |ra| would have only a limited impact.
The right panel of Fig. 14 shows the combination of the three channels in the presence

of the ∆I = 3/2 electroweak penguin that produces an overall shift of δα = −0.7◦ on the
solution near 90◦. The corresponding 68% CL interval is:

αewp
SU(2) : (85.6+4.1

−4.2)
◦ , (62)

in agreement with the indirect value αind given in Eq. (2) at 1.5 standard deviations.
Assuming the same amplitudes ratio, rewp, hold for the three decay systems (modulo

the correction term included for the asymmetrical B → ρπ decay), the combined 68% CL
interval:

rewp = (8.1+4.3

−4.8)× 10−2 (63)

is obtained when α is constrained to the indirect determination from Eq. (2) and any other
SU(2)-breaking effect is neglected, in good agreement with the theoretical expectation
Eq. (53).

4.1.2 Isospin-breaking effects due to mixing in the ππ system

We have worked up to now under the assumption that isospin symmetry was exact for the
hadronic part of the B-meson decay. Even though isospin-breaking effects are known to
be tiny, due to the very small mass difference between the u and d quarks, it is interesting
to assess more precisely how it could affect our analysis.

In the B → ππ system, the breaking of isospin symmetry due to the difference of quark
masses triggers a mixing between light pseudoscalar mesons. This affects in particular
the π0 meson. Following Refs. [60, 61], at leading order of isospin breaking, the π0 state
can be written as

|π0〉 = |π3〉+ εη|η〉+ εη′ |η′〉 (εη, εη′ � 1) , (64)

where the flavour states are defined as follows: |π3〉 represents the I = 0 component
of the SU(2) triplet and |η〉, |η′〉 are the states resulting from the mixing of the SU(3)
pseudoscalar meson octet and singlet components (according to the flavour decomposition
3⊗ 3 = 8⊕ 1). The triangular isospin relation that applies to the isospin amplitudes:

A+−
√

2
+ A33 = A+3 (65)

can be translated into mass-eigenstate amplitudes upon introducing the shifts δAi0:

A33 = A00 − δA00 , A+3 = A+0 − δA+0 . (66)

The mixing among light pseudoscalar mesons thus generates a slight modification of the
triangular relation in the B → ππ amplitudes:

A+−
√

2
+ A00 = A+0(1− e) , e =

δA+0 − δA00

A+0
, (67)
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Observable World average

Bπ0η (×106) 0.41+0.18
−0.17

Bπ0η′ (×106) 1.2± 0.4

Bπ+η (×106) 4.02± 0.27

Bπ+η′ (×106) 2.7+0.5
−0.4

Cπ+η 0.14± 0.05

Cπ+η′ −0.06± 0.15

Table 9: World averages for the branching ratios and direct CP asymmetries of the B0,+ →
π0,+η(′) modes [68].

Observable World average Reference
C+0
ππ (−2.6± 3.9)10−2 [29, 25]

C+0
ρLρL

(−5.1± 5.4)10−2 [45, 35]

Table 10: World averages for the C+0 direct CP asymmetries for the B → π+π0 decay and for
the longitudinally polarised state in B+ → ρ+ρ0 decay.

with a similar equation for the CP -conjugate amplitudes.
At leading order in εη(′) , the amplitude shifts δAi0 can be written in terms of the

B → πη(′) amplitudes Aπη
(′)

as

δA00 =
√

2(εηA
π0η + εη′A

π0η′) , δA+0 = εηA
π+η + εη′A

π+η′ , (68)

where the factor
√

2 in the first equation accounts for the Bose–Einstein symmetry in the
symmetric A00 − A33 amplitude. Both neutral and charged B → πη(′) decay amplitudes
can be constrained using the experimental branching ratios and CP-asymmetries reported
in Tab. 9. Contrary to the ∆I = 3/2 contribution discussed in Sec. 4.1.1, the a priori
unknown strong phase affecting δA+0 may generate a charge asymmetry |A+0| 6= |Ā+0| in
the charged B meson decay. Consequently, the amplitude system is further constrained
by introducing the measured CP -asymmetry in the B+ → π+π0 mode, see Tab. 10, which
was not considered in the isospin-symmetric analysis.

We must add eight complex amplitudes, Aπ
+η, Aπ

+η′ , Aπ
0η, Aπ

0η′ and their CP conju-
gates, to the B → ππ system. We use Ref. [69] for the numerical estimates of the mixing
parameters:

εη = (1.7± 0.3)× 10−2 , εη′ = (0.4± 0.1)× 10−2 , (69)

leading to a slightly modified constraint on the weak phase α, shown in Fig. 15:

αmixing
ππ : (92.5± 15.5 ∪ 135.0± 19.0 ∪ 172.2± 10.4)◦, (70)

at 68% CL. We obtain thus a global shift for α of δα = −0.5◦. The linear increase of
the 68% interval, namely ±1.5◦, is mostly due to the limited experimental resolution on
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Figure 15: Determination of α from the B → ππ system including π0 − η − η′ mixing (red
dashed line) and neglecting this mixing (green shaded area).

the B → πη(′) data and it must be considered as an upper limit of the mixing-induced
breaking effect on α.

It is possible to go one step further using the admittedly naive simplification that there
is no gluonic component to the η(′) states. Additional relations between the B → ππ and
the B → πη(′) amplitudes can then be derived, unaffected by first-order SU(3) breaking
[70]:

A+η = cos(φP )A+0 +
√

2A0η , (71)

A+η′ = sin(φP )A+0 +
√

2A0η′ , (72)

where φP is the mixing angle for the isospin singlets |ηq〉 = (|uū〉+ |dd̄〉)/
√

2 and |ηs〉=|ss̄〉
forming the η(′) states. With these additional constraints, only four additional complex
parameters are needed to account for the B → πη(′) amplitudes. In that case, the devia-
tion for the triangular isospin relation Eq. (67) is given by:

e = cos(φP ) εη + sin(φP ) εη′ . (73)

Using this relation and without further assumption on the η-η′ mixing angle, the isospin-
breaking effect on the B → ππ determination of α is found to be δα = −1◦ with a slightly
reduced resolution ±1.0◦. Assuming the physical η(′) states are well described by the
flavour combinations:

|η〉 =

√
2|ηq〉 − |ηs〉√

3
, |η′〉 =

|ηq〉+
√

2|ηs〉√
3

, (74)

corresponding to an η− η′ mixing angle tan(φP ) = 1/
√

2, a deviation δα = (−0.3± 1.4)◦

is obtained for the B → ππ system, in the same ball park as our previous estimate.
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4.1.3 Additional isospin-breaking effects for the ρρ and ρπ systems

In the limit of a vanishing ρ meson width, the isospin analysis of each B → ρρ polarisation
state is identical to the B → ππ analysis, with a dominance of the longitudinal polari-
sation. In parallel with the previous section, isospin breaking manifests itself though the
ρ− ω − φ mixing:

|ρ0〉 ∼ |ρ3〉+ εω|ω〉+ εφ|φ〉 , (75)

where the mixing term εω is of O(1%) and εφ is negligible as there is an almost ideal
mixing in the case of the φ meson. Additional sources of isospin breaking can occur in
the ρ→ ππ decay (see Ref. [21] for a detailed review):

• The isospin breaking due to the π0 − η − η′ mixing may affect the ρ+ → π+π0

decay but turns out negligible, as the leading term in εη is suppressed by the small
ρ+ → π+η decay rate: Γ(ρ+ → π+η)/Γ(ρ+ → π+π0) < 0.6% [71].

• Differences in the di-pion couplings for the neutral and charged ρ mesons are exper-
imentally limited to less than 1%: indeed, 1− (Γρ+/Γρ0) = (0.2± 0.9)% [71]

• Isospin breaking affecting the ρ0, ω → π−π+ interference is restricted to a small
window in the ππ mass spectrum: this effect, integrated over the whole ππ range,
is estimated at the order of 2% [21].

• The dominant source of isospin breaking is actually due to the large decay width
Γρ that makes the two final-state mesons distinguishable in the B → ρ1(ππ)ρ2(ππ)
decay. This results in a residual If = 1 amplitude contribution, forbidden by Bose–
Einstein symmetry in the limit Γρ = 0, but potentially as large as (Γρ/mρ)

2 ∼ 4%.
It is a slight abuse of language to call this effect an isospin-breaking contribution,
as it does not vanish in the limit mu = md (but it does in the limit of a vanishing
decay width Γρ ∼ (m(ππ)1 −m(ππ)2) = 0).

The above isospin-breaking effects can be accounted for by modifying the isospin
triangular relation in the same way as in Eq. (67):

A+−
√

2
+ A00 = A+0 −∆+0 . (76)

The unknown amplitude ∆+0 is parametrised in a generic way:

∆+0 = rTT
+− + rPP

+− , (77)

where rT and rP are two independent complex parameters accounting for isospin breaking
in the tree and penguin contributions, respectively. The arbitrary strong phase affecting
these parameters can generate CP violation in the charged decays. The measured CP
asymmetry in the B+ → ρ+ρ0 mode given in Tab. 10 is thus included as an additional
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Figure 16: Determination of α from the B → ρρ system including SU(2)-breaking amplitudes
limited to 4% (red dashed line), limited to 10% (blue dot-dashed line) and neglecting this contri-
butions (green shaded area).

constraint in the presence of these isospin-breaking terms. Fig. 16 illustrates the deter-
mination of the weak phase α in the case of isospin-breaking contributions smaller than
|rT |, |rP | < 4% and the very conservative bound |rT |, |rP | < 10%. A small shift on the
preferred α value near 90◦, δα = −0.6◦ (−1.2◦), results from isospin-breaking contribu-
tions limited to 4% (10%) respectively. The linear increase of the 68% interval, (+0.2

−1.7)◦ for
|rT |, |rP | < 4%, has to be understood as an upper limit of the impact of these contributions
on the determination of α.

Isospin breaking arises similarly in the B → ρπ system through mixing in the light
pseudoscalar and vector sectors. However, as long as the weak phase determination is
limited to the neutral B0 → (ρπ)0 Dalitz analysis, the isospin constraints reduces to the
triangular penguin relation Eq. (14). Any isospin breaking in the tree amplitudes can be
absorbed by a redefinition of the unconstrained charged amplitudes T+0, T 0+. Corrections
to the penguin amplitude relation Eq. (14) in the B → ρπ system will be suppressed by
the small penguin-to-tree ratios. For instance, the impact of the π0 − η − η′ mixing
on the weak phase determination in the B0 → (ρπ)0 analysis is suppressed by factors
like εη(′)

∣∣Pρη(′)/T+
∣∣, where Pρη(′) represents the penguin contribution to the B+ → ρ+η(′)

transition and T+ is defined in Eq. (57). The corresponding deviation is found to be
negligible, δα < 0.1◦ [21]. Therefore, apart for the electroweak penguin contribution
discussed in section 4.1.1, no further isospin breaking will be considered for theB0 → (ρπ)0

analysis.
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4.2 Impact of the statistical treatment

4.2.1 p-values based on the bootstrap approach and Wilks’ theorem

In Sec. 3.1, we have outlined our framework to determine confidence intervals on α,
starting from a test statistic ∆χ2(α), which is converted into a p-value following Eq. (24).
This procedure can be proven to be exact in the simple case where the observables obey
Gaussian probability distribution functions and they are linearly related to the parameters
of interest. Following Wilks’ theorem, this can be extended to more general cases, at least
asymptotically, if the data sample is large and the observables resolutions are small enough
to consider the problem as locally linear [23]. In such case, the construction in Sec. 3.1
ensures exact coverage: if one repeated the determination of α using independent data
sets from many identical experiments, the 68% CL interval for α would encompass the
true value of α in 68% of the cases.

However, many effects can alter this picture. Even in the exact Gaussian case, the
p-value can be distorted when the observables have a nonlinear dependence on the funda-
mental parameters of interest. An example consists in Eq. (12), where the reexpression
of the CP -asymmetries in terms of αeff is nonlinear and implements the trigonometric
boundary on CP -asymmetries

√
C2 + S2 < 1 [6]. More generally, one may wonder if we

stand close to the hypotheses of Wilks’ theorem with the current set of data. Other-
wise, the construction given in Sec. 3.1 might suffer from under- or over-coverage. In this
section, we will assess the finite-size errors associated with our statistical framework by
considering a different construction of the p-value that takes into account some of the
effects deemed subleading in the Wilks-based approach.

We start by recalling some elements related to the construction of p-values in our
context, as discussed in Refs. [22, 72, 73, 74]. We want to assess how much the data
is compatible with the hypothesis that the true value of the weak phase α, denoted αt,
is equal to some fixed value α, i.e., Hα : αt = α. This hypothesis is composite, as
it sets the value of some of the theoretical parameters, but not all of them. Indeed,
the hadronic parameters (tree and penguin amplitudes) are also theoretical parameters
required in our isospin analysis but are not set in Hα. These hadronic parameters are
nuisance parameters, denoted collectively as ~µ.

The test statistic ∆χ2(α) defined in Eq. (23) can be seen as the maximal likelihood
ratio comparing the most plausible configuration under Hα with the most plausible one in
general. It is a definite positive function chosen in a way that large values indicate that the
data present evidence against Hα: in the following, we will state explicitly its dependence
on the data X by using the notation ∆χ2(X;α). A p-value is built by calculating the
probability to obtain a value for the test statistic at least as large as the one that was
actually observed, assuming that the hypothesis Hα is true:

1− p(X0;α, ~µ) =

∫ ∆χ2(X0;α)

0

d∆χ2 h(∆χ2|α, ~µ) = P [∆χ2 < ∆χ2(X0;α)] , (78)

where the probability distribution function (PDF) h of the test statistic is obtained from
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the PDF g of the data as

h(∆χ2|α, ~µ) =

∫
dX δ

[
∆χ2 −∆χ2(X;α)

]
g(X;α, ~µ) . (79)

A small value of the p-value thus provides evidence against the hypothesis Hα. We notice
that in general the p-value Eq. (78) exhibits a dependence on the nuisance parameters
through the PDF h, even though the test statistic ∆χ2 itself is independent of ~µ.

For linear models, in which the observables X depend linearly on the parameter αt,
∆χ2(X;α) is a sum of standard normal random variables, and is distributed as a χ2 with
Ndof = 1. Under the conditions of Wilks’ theorem [23], this property can be extended to
non-Gaussian cases, the distribution of ∆χ2(X;α) will converge to a χ2 law depending
only on the number of parameters tested. The p-value becomes independent of the nui-
sance parameters ~µ and can be still interpreted as coming from a χ2 law with Ndof = 1.
This is the rationale for the statistical framework presented in Sec. 3.1.

We compare this Wilks-based approach with the bootstrap one based on the plug-in
principle [75]. It consists here in defining

pbootstrap(X0;α) = p(X0;α, ~̂µ(α)) , χ2(α, ~̂µ(α)) = min
~µ
χ2(α, ~µ) . (80)

We perform the evaluation of the p-value for a given value of α by setting the nuisance
parameters to the value minimising χ2(α, ~µ). This approach assesses the role played by

nuisance parameters by replacing them with an estimator ~̂µ(α) that depends on α. Other
constructions could have been considered, with more conservative statistical properties
(supremum, constrained supremum, etc.) [76], but this would go beyond the scope of our
study. We focus here on the bootstrap approach: it is relatively simple to implement, it
exhibits good coverage properties in the examples considered here and it provides a first
glimpse of the role played by nuisance parameters in coverage, which is neglected in the
Wilks-based approach used up to now.

4.2.2 Comparison of p-values for the extraction of α

The comparison between the two approaches may be performed by examining their cover-
age properties. Once computed, a p-value can be used to determine confidence-level inter-
vals for the parameter of interest α. These intervals have a correct frequentist interpreta-
tion if the p-value exhibits exact coverage, i.e., for any β between 0 and 1, P (p ≤ β) = β.
Over-coverage P > β corresponding to a conservative p-value and too wide a CL interval,
under-coverage P < β corresponding to a liberal p-value and too narrow a CL interval.
In general, an exact p-value, or if not possible, a reasonably conservative p-value, is desir-
able, at least for the confidence levels of interest. This conservative approach is generally
adopted in high-energy physics in order to avoid rejecting a hypothesis (such as “the SM
is true”) too hastily.

We have already discussed the extraction of the p-value using the Wilks-based ap-
proach. In the case of the bootstrap approach, the statistical coverage of the α intervals
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Figure 17: p-value for α comparing the Wilks-based approach (denoted Erfc) and the full fre-
quentist approach based on the bootstrap method for B → ππ (top left), B → ρρ (top right),
B → ρπ (bottom).

has been studied through a full frequentist exploration of the space of nuisance param-
eters. A complete analysis with toy Monte Carlo simulations was carried out in order
to compute the PDF h and thus the p-value for the angle α. The individual constraints
on α from the B → ππ, B → ρρ and B0 → π+π−π0 systems, are displayed in Fig. 17,
comparing the bootstrap and Wilks-based approaches. Considering the 68% CL interval
on α, the Wilks-based approach is slightly more conservative than the bootstrap one for
both B → ππ and B → ρρ systems, whereas the situation is reversed for the B0 → (ρπ)0

analysis. The 68% CL intervals obtained with the bootstrap method for the three systems
are

αbootstrap
ππ : (84.1+6.0

−5.3)
◦ ∪ (100.1+6.1

−6.9)
◦ ∪ (135.0± 17.0)◦ ∪ (169.9+6.9

−6.1)
◦ ∪ (5.9+5.3

−6.0)
◦ ,

αbootstrap
ρρ : (92.0+4.2

−4.1)
◦ ∪ (177.9+4.2

−4.1)
◦ ,

αbootstrap
ρπ : (54.0+10.0

−17.0)
◦ ∪ (142.0+6.8

−8.7)
◦ . (81)

For the latter system, the bootstrap approach slightly reduces the tension with the indirect
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Figure 18: p-value for α comparing the Wilks-based approach (denoted Erfc) and the full fre-
quentist approach based on the bootstrap method, for the combination of the three B → hh decay
modes (left) and for the partial combination based on B → ππ and B → ρρ only.

determination αind to 2.7 standard deviations.
As shown on Fig. 18, when combining the three analyses for the 68% CL interval,

the over-coverage for B → ππ and B → ρρ almost compensates the under-coverage
for B → ρπ. The 68% CL interval for the preferred solution close to 90◦ increases by
about 1◦, which can be considered as an estimate of the finite-size errors associated to the
statistical framework. The second solution near 180◦ is slightly less disfavoured, increasing
the corresponding 68% CL interval by ±1.4◦ with respect to the Wilks-based approach.
The overall combination results in

αbootstrap
dir : (86.1+5.3

−5.0)
◦ ∪ (178.5+5.5

−6.4)
◦ (68% CL) and

(86.1+14.3

−9.3 )◦ ∪ (178.5+13.5

−12.5)
◦ (95% CL) . (82)

This direct α measurement within the bootstrap approach is consistent with the indirect
CKM determination αind at the level of 1.1 standard deviation.

Going one step further, we can compare the coverage of the two methods. This can be
done by studying the PDF of the p-values to check whether they are exact, conservative
or liberal. Even though pbootstrap does not depend on the true value of the nuisance
parameters explicitly, its distribution does in general. For illustrative purposes, we choose
here to compute the distribution of both tests assuming as true values α = 92.5◦ and
~µ = ~̂µ(α = 92.5◦) (we do not attempt to investigate other values of α or the nuisance
parameters). The computation of the PDF of pbootstrap requires a twofold recursion of
the bootstrap procedure (double bootstrap)8. The p-value for the ∆χ2 test is obtained
assuming that it obeys Wilks’ theorem while the bootstrap test is assumed to be a true
p-value, i.e., uniformly distributed over [0, 1].

8This computation is a CPU-consuming exercise which was carried on at the CC-IN2P3 computing
farm (scoring 49 · 103 HS06 · hours, i.e. approximatively 200 CPUs over one day).

39



Figure 19: Coverage test displaying the true significance as a function of the test significance
using the bootstrap and Wilks-based approaches (the latter being denoted Erfc) for the combined
extraction of α (left) and for the partial combination based on B → ππ and B → ρρ only (right).

The results are shown in Fig. 19. Rather than showing the PDF of the two p-values
as a function of p, we have expressed p in units of σ (assumed test significance) and
expressed the cumulative distribution function (integral of the PDF from 0 to p) once
again in units of σ (true test significance). A p-value with exact coverage corresponds
to a diagonal straight line, over-coverage (under-coverage) happens if the curve is above
(below) this diagonal. In our particular case, one can clearly see the improved coverage
from the bootstrap test with respect to the ∆χ2 case, assuming Wilks’ theorem. The
bootstrap distribution has a flat distribution at least up to the 2σ level, as shown by the
curve in Fig. 19, which is close to a diagonal straight line (this is expected since we set the
true values of the nuisance parameters to their plug-in values). On the other hand, the
∆χ2 test combined with Wilks’ theorem is too aggressive (under-covers) for confidence
levels above 0.6σ for the global combination of the three B → hh decays modes and above
1.2σ when considering B → ππ and B → ρρ only. Due to the highly CPU-consuming
nature of this computation, we have not tried to perform the same computation for other
true values of α and the nuisance parameters, but one may expect that the results of these
coverage tests should hold for values of α in the vicinity of the solution compatible with
its indirect determination.

The difference in the 68% CL intervals between the bootstrap and Wilks-based ap-
proaches could be taken as a linear correction to the direct extraction of the parameter
α, i.e. focusing only on the solution around 90◦:

αdir =
(
86.2 +4.4

−4.0 (stat.) ⊕ +0.9

−1.0 (bootstrap)
)◦
. (83)

It is important to notice that the size of the bootstrap correction is an indication of
the non-asymptotic regime only for the direct determination of the weak phase based on
the current data on charmless decays. This estimate is likely to change when including
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Iso ewp Stat B → ρρ B → ππ B → ππ + ρρ B0 → (ρπ)0 All combined
Y N W 92.0+4.7

−4.8 (0.03σ) 93.0± 14.0 (0.6σ) 92.1+5.2
−5.5 (0.03σ) 54.1+7.7

−10.3 (3.0σ) 86.2+4.4
−4.0 (1.3σ)

Y N B 92.0+4.2
−4.0 (0.03σ) 92.5± 13.5 (1.1σ) 92.2+4.9

−5.3 (0.03σ) 54.0+10.0
−17.0 (2.7σ) 86.1+5.3

−5.0 (1.1σ)

Y Y W 90.1+4.7
−4.8 (0.4σ) 91.2± 14.2 (0.5σ) 90.1+5.1

−5.6 (0.3σ) 52.9+8.7
−11.1 (3.0σ) 85.6+4.1

−4.2 (1.5σ)

N N W 91.4+4.9
−5.7 (0.2σ) 92.5± 15.5 (0.4σ) 91.4+5.4

−6.0 (0.2σ) 54.1+7.7
−10.3 (3.0σ) 84.4+5.2

−4.3 (1.5σ)

N Y W 89.8+4.6
−4.9 (0.5σ) 91.0± 15.0 (0.3σ) 89.8+4.9

−5.3 (0.5σ) 52.9+8.7
−11.1 (3.0σ) 83.3+6.1

−3.1 (1.6σ)

Table 11: 68% CL intervals for the weak phase α for different theoretical hypotheses, statisti-
cal approaches and channels. In the “Iso” column, Y indicates that the analysis is performed
assuming isospin symmetry, wheras N denotes the inclusion of isospin breaking, namely, the
effect of π0 − η − η′ mixing in B → ππ and the breakdown of isospin triangle relations up to
|rT |, |rP | < 4% in B → ρρ, as discussed in Sec. 4.1.2 (isospin-breaking effects are neglected in
the B0 → (ρπ)0 Dalitz analysis). In the “ewp” column, Y indicates that a contamination from
∆I = 3/2 electroweak penguins is included as discussed in Sec. 4.1.1, whereas N corresponds to
setting these penguin contributions to zero. In the “Stat” column, B corresponds to the boot-
strap approach and W to the Wilks-based one. For each channel or combination of channels, the
deviation with respect to the indirect determination αind is indicated within brackets.

additional or improved observables. In particular, the observed under-coverage for the
Wilks-based approach is likely to be reduced in a global fit of the CKM matrix, where the
direct α measurement Eq. (83) is combined with the more precise indirect determination
Eq. (2). The bootstrap interval correction has been computed here for the direct mea-
surement of α alone, for a particular set of observables. Therefore this correction cannot
be considered as an absolute uncertainty to be included automatically when combined
with another independent measurement.

4.3 Summary for the direct determination of α

Our results for the direct determination of the weak phase α are summarized in Tab. 11
for the different model hypotheses and the different statistical approaches considered up
to now. The 68% CL interval (only for the solution near 90◦ 9) is reported as well as
the compatibility with the indirect αind determination Eq. (2). We see that depending
on the approach, the central value for the combination shifts by 2◦ or less, remaining
thus within the error quoted in Eq. (1). The uncertainty remains between 4◦ and 5◦

when isospin-breaking effects are allowed. On the other hand, as discussed in Sec. 4.2.2,
the comparison between the bootstrap and Wilks-based approaches suggests a sizeable
uncertainty attached to the statistical framework, but this uncertainty is attached to the
direct extraction of α from the three B → ππ, B → ρρ and B → ρπ modes and cannot

9For B → ππ, the bootstrap approach (second row in Tab. 11) provides two peaks that are just
separated at 68% CL, as can be seen in Fig. 17. However, in Tab. 11, a single range for α is given for this
method, which is obtained by merging the intervals corresponding to the two peaks. Even though this
range is not the exact outcome of the bootstrap analysis for B → ππ at 68% CL, it allows us to perform
more meaningful comparisons with the extractions of α using the Wilks-based approach, for which the
two peaks are not distinguished at this level of significance and a single range is obtained for α.
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Figure 20: 68% (dark area) and 95% CL (light area) constraints on the modulus and phase for
the penguin-to-tree ratio P ij/T ij = Rijeiδ

ij
for B0 → π+π− (left) and B0 → π0π0 (right).

be used as such when it is combined with other constraints, e.g., within global fits. It is
likely that one would get a smaller uncertainty if a similar analysis was performed with
an extended set of observables leading to a more accurate determination of α.

These various arguments lead us to keep Eq. (1) as our final answer for the direct
extraction of α from charmless B decays to be used in latter analyses.

5 Hadronic amplitudes

In addition to the CKM angle α, our study of the B → ππ, B → ρπ and B → ρρ
systems provides constraints on the hadronic amplitudes that cannot be computed in
QCD directly. We can thus determine some features of hadronisation from the data, to
be compared with the theoretical approaches proposed to describe these decays.

In order to sharpen the constraints on these parameters, we will not only consider the
experimental measurements discussed previously, but we will also take as an additional
constraint the indirect prediction αind derived from Fig. 3 and Eq. (2). This constraint is
obtained excluding B → ππ, B → ρρ and B → ρπ data from the global CKM fit, and
therefore provides an independent constraint on the isospin analysis.
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5.1 Penguin-to-tree ratios

Following the C-convention defined in Sec. 2.1, the penguin-to-tree ratio is given by:

R̃ij =
P ij

T ij
=
Rt

Ru

× P
ij

T ij
,

Rt

Ru

=

∣∣∣∣ VtdV ∗tbVudV ∗ub

∣∣∣∣ . (84)

The isospin analysis assumes that there are no penguin contributions to the charged
decays in the B → ππ, B → ρρ and B0 → (ρπ)0 systems. This hypothesis allows us to
extract α and the tree and penguin contributions simultaneously in each decay mode. We
start with the (complex) penguin-to-tree ratio:

R̃ij = Rijeiδ
ij

=
P ij

T ij
, (85)

in the B0 → (hi1h
j
2)0 neutral modes. The isospin analysis of the B → ππ system constrains

the ratio of moduli Rij
ππ for both colour-allowed (B → π+π−) and colour-suppressed

(B0 → π0π0) neutral modes at a precision level of around 20%. The two-dimensional
constraint in the (complex) R̃ij plane for these two modes is shown in Fig. 20. A large
penguin contamination is observed in both modes. The one-dimensional extraction of the
modulus and the phase gives the following 68% (respectively 95%) CL intervals:

R+−
ππ = 0.40± 0.04 (+0.08

−0.10) , δ+−
ππ = [154.7± 3.6 (+6.9

−9.2)]
◦ ,

R00
ππ = 0.52+0.08

−0.07 (+0.18

−0.16) , δ00
ππ = [32.7+9.2

−10.3 (+17.2

−22.3)]
◦ , (86)

We observe that values of the phases close to 0 or π are favoured, in agreement with QCD
factorisation expectations [77, 78], which also predicts value for R+−

ππ around 0.5 [79, 80].
Recent fits of two-body non-leptonic B decays into light pseudoscalar mesons based on
SU(3) flavour symmetry yield smaller values for these ratios [81].

The penguin contamination to the colour-allowed B0 → ρ+ρ− decay is significantly
smaller than for its B → ππ counterpart, as expected from the flatness of the ρρ isospin
triangles discussed in Sec. 3.3. The two-dimensional constraint in the (complex) R̃ij

ρρ plane
is shown in Fig. 21. A tight constraint on the penguin contamination to the B0 → ρ+ρ−

decay is obtained with a 68% (respectively 95%) CL upper limit:

R+−
ρρ < 0.08 (0.13) , (87)

on the edge of the expectations from QCD factorisation, which predicts this ratio to be
around 0.12 [80]. Due to the small overall amplitudes contributing to the B0 → ρ0ρ0

mode, a looser constraint is found:

R00
ρρ < 0.40 (0.72). (88)

No constraint is obtained on the phase of the ratio for either B0 → (ρρ)0 decays.
Another representation of the penguin hierarchy between the B0 → π+π− and B0 →

ρ+ρ− decays is provided by the phase shift ∆α = (α − αeff) where the effective weak
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Figure 21: 68% (dark area) and 95% CL (light area) constraints on the modulus and phase of
the penguin-to-tree ratio P ij/T ij = Rijeiδ

ij
for B0 → ρ+ρ− (left) and B0 → ρ0ρ0 (right).
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Figure 22: 68% CL constraint on the phase shift ∆α = (α−αeff) for B → ππ (left) and B → ρρ
(right).

phase αeff , introduced in Eq. (12), describes the B0 → h+h− transition. In the limit of a
vanishing penguin contribution, the mixing phase αeff coincides with the weak phase α.
The following 68% CL intervals on ∆α, derived from Fig. 22, are obtained

∆αππ = ±(23.8± 13.9)◦ , ∆αρρ = (2.1+3.7

−3.6)
◦ . (89)

The phase shift is consistent with the absence of penguin in the B0 → ρ+ρ− decay while
the sizeable shift obtained in B0 → ππ excludes the ∆α = 0 hypothesis at 1.9 σ in
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Figure 23: 68% (dark area) and 95% CL (light area) two-dimensional constraints on the modulus
and phase of the penguin-to-tree ratio P ij/T ij = Rijeiδ

ij
for B0 → ρ+π− (top left), B0 → ρ−π+

(top right) and B0 → ρ0π0 (bottom). These results are obtained using the pentagonal isospin
analysis, including the experimental inputs from the charged B+ → (ρπ)+ decays.

this mode, confirming the difference of size of penguin contributions for the two decay
channels. A similar quantity can be defined for the asymmetric B0 → ρ±π∓ decay and is
further discussed in Sec. 6.3.2.

Due to the limited experimental statistics currently available, the Dalitz isospin anal-
ysis of the three-pion decay does not lead to a significant constraint on the penguin
contribution in any of the three B0 → (ρπ)0 decays. The pentagonal approach, involving
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Figure 24: 68% (dark area) and 95% CL (light area) 1D intervals on the |P ij/T ij | ratios for
the different B0 → hihj charmless decays.

further constraints from the charged modes, only provides a weak constraint on R+− and
R−+, see Fig. 23. Phases close to 0 or π are mildly favoured, in agreement with the
expectations from QCD factorisation. No constraint can be derived for the B0 → ρ0π0

mode. For comparison, the constraints on the modulus of the penguin contribution to the
various decays modes can be found in Fig. 24.

5.2 Testing colour suppression

The hadronisation of the b̄d→ ūd(ud̄) final state into a pair of charged isovector mesons,
h+

1 h
−
2 , is colour allowed while the hadronisation of this tree transition into a neutral pair,

h0
1h

0
2, is colour suppressed. This colour suppression can be probed through the ratio of

the corresponding tree amplitudes10:

R̃C = RCe
iδC =

T 00

T+− , (90)

where RC and δC represent the modulus and the phase of the complex ratio, respectively.
The two-dimensional constraint on the phase and modulus of the colour-suppression

ratio is shown in Fig. 25 for B → ππ, B → ρρ and B → ρπ channels. As expected,
no constraint is obtained for that latter due to the limited statistics. The modulus of
the colour-suppression ratio is determined with a relative resolution of about 10% for the

10We identify this ratio of “tree” amplitudes to a colour-suppressed ratio from the analysis of tree
diagram topologies. In the C-convention used here, this identification is correct only in the limit of
vanishing u- and c-penguin topological amplitudes, as discussed in Sec. 2.1. Moreover, the W -exchange
topology that provides a colour suppressed contribution that can be absorbed in the tree amplitudes
for both B → h+h− and B → h0h0 transitions are neglected here. A similar statement holds for the
penguin-to-tree ratio discussed previously.
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Figure 25: Two-dimensional constraints on the modulus and phase of the colour-suppressed
ratio T 00/T+− = Rce

iδc for B → ππ (top left), B → ρπ (top right) and B0 → ρπ (bottom).

B → ππ and B → ρρ modes. The corresponding one-dimensional 68% (95%) CL intervals
on the modulus and the phase are:

RC(ππ) = 0.54± 0.04 (+0.08

−0.09) , δC(ππ) = [−58.4+10.3

−8.6 (+22.9

−16.6)]
◦ ,

RC(ρρ) = 0.16± 0.02 (+0.03

−0.04) , δC(ρρ) = [2.9+38.4

−41.8 (±63.0)]◦ , (91)

indicating that the colour suppression is much more effective for B → ρρ than for B → ππ.
In studies based on QCD factorisation [78, 79, 80], similar values for these moduli are
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Figure 26: Constraint on the B → ππ branching fractions from the SU(2) isospin analysis
(from left to right, and from top to bottom: π+π−, π+π0 and π0π0). The direct measurement,
not included in the fit, is indicated for each mode with an interval with a dot.

found, apart from the modulus of the ratio between colour-allowed and colour-suppressed
tree amplitudes for ππ modes, RC(ππ), smaller and around 0.2. Similarly, the relative
phase for the latter ratio is significantly different from 0 and π, contrary to general expecta-
tions from leading-order QCD factorisation. This may explain the difficulties experienced
with this approach to reproduce the B → π0π0 branching ratio [82] and may point to-
wards significant power-suppressed contributions for some of these modes. Recent fits of
two-body non-leptonic B decays into light pseudoscalar mesons based on SU(3) yield sim-
ilar values for RC(ππ), indicating that large phase and modulus of the colour-suppressed
tree contribution T 00 are required not only in the ππ system, but also in other B → PP
decays [81].
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6 Prediction of observables

If we use the indirect determination of the weak phase αind, Eq. (2), as an additional
input, the system of isospin-related amplitudes becomes over-constrained for the three
charmless decay modes of interest. The isospin analysis can then be used to perform an
indirect determination for each of the experimental observables introduced in Sec. 3 and
to make predictions for yet unmeasured quantities. For each observable Oi, this indirect
determination is obtained by performing a fit to the experimental data excluding the mea-
surement of the observable considered. The compatibility of the indirect determination
with the measurement is quantified by comparing the minimal χ2 values reached by the
fit when excluding and including the direct measurement. The difference between these
two quantities is distributed as a χ2 law with Ndof = 1, whose interpretation in terms of
standard deviations yields the compatibility pull defined as:

Pull(Oi) =

√
χ2

min(αind, ~O)− χ2
min(αind, ~O!i) , (92)

where ~O = { ~O!i,Oi} represents the full data set of experimental measurements, and ~O!i

the subset out of which the specific observable Oi has been excluded. The pull quantifies
the compatibility of the measurement of the observable Oi with all the other experimental
observables under the isospin hypothesis. Let us add that the individual pulls are not in
general independent from each other, so that one should refrain from giving a statistical
interpretation of their distribution in each of the B→ ππ, B→ ρπ, B→ ρρ systems.

6.1 B→ ππ observables

As already indicated in Sec. 3.2, the number of independent amplitudes in the B →
ππ system matches the number of experimental measurements available. Including the
indirect determination of α as an additional constraint, the minimal χ2 increases only
slightly, reflecting the excellent agreement between αind and B→ ππ data, at the level of
0.6 standard deviation.

The indirect constraints on the three branching fractionsBij
ππ are shown in Fig. 26 while

Fig. 27 displays the two-dimensional constraint on the CP asymmetries (Cππ,Sππ) for the
neutral modes B0 → π+π− and B0 → π0π0. When excluding any of the experimental
measurements, either for the branching ratios Bijππ or for the direct CP asymmetries
Cijππ, the B → ππ amplitudes system is no longer over-constrained. As a consequence,

the corresponding χ2
min(αind, ~O!i) vanishes and the pull associated to these observables

saturates its maximal value: Pull(Bij
ππ, C

ij
ππ) =

√
χ2

min(αind, ~O) which turns out to vanish
thanks to the closure of both isospin triangles with the current world-average data. The
yet unmeasured time-dependent asymmetry, S00

ππ, is predicted to be:

S00
ππ = 0.65± 0.13 , (93)

with a 68% confidence level, and larger than 0.33 at 95% confidence level. The corre-
sponding one-dimensional projection of the constraint is displayed in Fig. 28.
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Figure 27: Two-dimensional SU(2) isospin constraint on the CP asymmetries Cππ and Sππ
for the B0 → π+π− decay (left) and the B0 → π0π0 decay (right). The direct measurement,
not included in the fit, is indicated by the shaded area. Only the direct CP asymmetry C00 is
measured in the B0 → π0π0 decay and we represent the direct constraint in the (C00,S00) plane
taking the theoretical inequality C2 + S2 < 1 into account.
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Figure 28: SU(2) isospin constraint on the unmeasured time-dependent CP asymmetries in the
B0→ π0π0 decay.

The experimental values, confidence intervals and pulls for the measured observables
are reported in Tab. 14 in App. B.
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6.2 B→ ρρ observables

As shown in Sec. 3.3, the B → ρρ data is in very good agreement with the indirect
determination of the weak phase αind. The SU(2) isospin constraint on the Bijρρ branching
ratios and the corresponding fractions of longitudinal polarisation are displayed in Fig. 29.
As expected theoretically [80], the isospin fit to the B→ ρρ data favours large fractions of
longitudinal polarisation in each of the three decay modes. The most precise constraint is
obtained for the neutral B0→ ρ+ρ− decay with an indirect determination f+−

ρLρL;ind > 0.91
(0.79) at 68% (95%) confidence level, in very good agreement with the experimental
measurement f+−

ρLρL;dir = 0.990± 0.020.
Weaker constraints are obtained on the CP asymmetries (Cρρ,Sρρ) for both neutral

modes B0 → ρ+ρ− and B0 → ρ0ρ0 as shown in Fig. 30. Numerical values, confidence
intervals and pulls for the measured observables are reported on Tab. 15 in App. B.

6.3 B→ ρπ observables

6.3.1 B0→ π+π−π0 Dalitz analysis

The normalised U and I observables provide a complete description of the relative B0→
π+π−π0 decay amplitudes. As discussed in Sec. 3.4, the data from B0→ (ρπ)0 → π+π−π0

Dalitz analyses disagrees with the indirect determination of α at the level of 3.0 standard
deviations. This disagreement is reflected through the indirect determination of several
of the form-factor coefficients U and I as listed in Tab. 16 in App. B, in particular U -

+,
U+

- , I-, U+Re
+0 , U+Re

-0 with pulls above 2 σ, and U+Re
+- , U+Im

+- with pulls near or above 3 σ.
We can separate the coefficients related to the dynamics of the ρπ intermediate state,

~Oρπ = (U+
i ,U−i , I i)(i=+,0,−) (quasi-two-body terms or Q2B), from the parameters describ-

ing the interference pattern, ~Ointerf = (U±,Re(Im)
i , IRe(Im)

ij ) (interference terms), as can be
seen in Eq. (41). The indirect determination of most of the Q2B coefficients, U ij and Ij,
related to the B0→ ρ±π∓ intermediate states, deviates from the direct measurement by
more than 2σ. This is also the case for the corresponding interference terms U+Re/Im

ij ,
which represent the real and imaginary parts of the combination of B0 → ρ±π∓ ampli-
tudes, (A+A−

∗
+Ā+Ā−

∗
). The largest deviation is observed for the U+Re

+− coefficient which
exceeds 3σ. Figs. 31 and 32 display the indirect determinations of the form-factor bilinear
coefficients for quasi-two-body and interference coefficients, respectively.

In order to understand these discrepancies, we can rely on two parametrisations focus-
ing on the dynamics of the ρπ intermediate state through Q2B observables. A first, “the-
oretical”, parametrisation was proposed in Ref. [83]. The time-dependent CP asymmetry
given by Eq. (10) is written independently for the three neutral B0→ ρiπj intermediate

51



)
6

 10× (ρρ

+0
B

0 10 20 30 40 50 60 70

p
­v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Alpha 2017

CKM
f i t t e r

 SU(2) (direct meas. not in fit)ρρ→B

Experimental data (WA)

 

)
6

 10× (ρρ

+0
B

0 10 20 30 40 50 60 70

p
­v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Alpha 2017

CKM
f i t t e r

 SU(2) (direct meas. not in fit)ρρ→B

Experimental data (WA)

 

)
6

 10× (ρρ

00
B

0 1 2 3 4 5 6 7 8 9 10

p
­v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Alpha 2017

CKM
f i t t e r

 SU(2) (direct meas. not in fit)ρρ→B

Experimental data (WA)

 

+­

L
f

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
­v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Alpha 2017

CKM
f i t t e r

 SU(2) (direct meas. not in fit)ρρ→B

Experimental data (WA)

 

+0

L
f

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
­v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Alpha 2017

CKM
f i t t e r

 SU(2) (direct meas. not in fit)ρρ→B

Experimental data (WA)

 

00

L
f

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p
­v

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0

Alpha 2017

CKM
f i t t e r

 SU(2) (direct meas. not in fit)ρρ→B

Experimental data (WA)

 

Figure 29: SU(2) isospin constraint on the B→ ρρ branching fractions (top and middle left)
and the fractions of longitudinal polarisation (middle right and bottom). For each observable,
the direct measurement, not included in the fit, is indicated by an interval with a dot.

states:

a+
CP (t) =

Γ(B̄0(t)→ ρ+π−)− Γ(B0(t)→ ρ+π−)

Γ(B̄0(t)→ ρ+π−) + Γ(B0(t)→ ρ+π−)
= S+ sin(∆mdt)− C+ cos(∆mdt) ,

a−CP (t) =
Γ(B̄0(t)→ ρ−π+)− Γ(B0(t)→ ρ−π+)

Γ(B̄0(t)→ ρ−π+) + Γ(B0(t)→ ρ−π+)
= S− sin(∆mdt)− C− cos(∆mdt) ,

a0
CP (t) =

Γ(B̄0(t)→ ρ0π0)− Γ(B0(t)→ ρ0π0)

Γ(B̄0(t)→ ρ0π0) + Γ(B0(t)→ ρ0π0)
= S0 sin(∆mdt)− C0 cos(∆mdt) , (94)
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Figure 30: Two-dimensional constraint on the B0→ (ρρ)0 CP asymmetries in the (C,S) plane.
The direct measurement, not included in the fit, is indicated for each mode as a shaded area.

where Ci and S i are direct and mixing-induced CP asymmetries, respectively, and the
subscript i refers to the charge of the emitted ρi meson.

The ρ±π∓ final state being a CP admixture, the parameters C± are not the only
measurements of direct CP violation. Considering either the decay where the ρ± meson
is emitted by the spectator interaction or by the W exchange, we can use one of the
following time-integrated flavour-independent asymmetries:

A− =
|A(B̄0 → ρ+π−)|2 − |A(B0 → ρ−π+)|2

|A(B̄0 → ρ+π−)|2 + |A(B0 → ρ−π+)|2
,

A+ =
|A(B̄0 → ρ−π+)|2 − |A(B0 → ρ+π−)|2

|A(B̄0 → ρ−π+)|2 + |A(B0 → ρ+π−)|2
, (95)

to constrain the B0 → ρ±π∓ amplitude system completely.
Due to the overlapping final states in the Dalitz analysis, the separation of the three

intermediate states is experimentally challenging and prevents a clean direct measurement
of the above Q2B asymmetries. The previous “theoretical” set of observables can be
traded for a second, “experimental”, parametrisation in order to avoid this problem.
Focusing only on the region of the charged ρ meson in the Dalitz plane and neglecting the
interferences and the residual contribution from the colour-suppressed B0→ ρ0π0 mode,
a specific time-dependent measurement of the CP -mixed B0→ ρ±π∓ intermediate state
was first performed at B-factories in 2005 [52, 84]. Introducing the flavour-integrated
charge asymmetry:

Aρπ =
|A(B0 → ρ+π−)|2 + |A(B̄0 → ρ+π−)|2 − |A(B0 → ρ−π+)|2 − |A(B̄0 → ρ−π+)|2

|A(B0 → ρ+π−)|2 + |A(B̄0 → ρ+π−)|2 + |A(B0 → ρ−π+)|2 + |A(B̄0 → ρ−π+)|2
,
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Figure 31: SU(2) isospin constraint on the Q2B-related coefficients U and I describing the
B0→ (ρπ)0 intermediate states. The upper left figure corresponds to the overall normalisation,
U+

+ =1. For each observable, the direct measurement, not included in the fit, is indicated by an
interval with a dot.

(96)

the B0(t)→ ρ±π∓ decay rate is written as

Γ(B0(t)→ ρ±π∓) = (1 + qρAρπ)e
− t
τ
B0 (1 − qB(S + qρ∆S) sin(∆mdt)

+ qB(C + qρ∆C) cos(∆mdt)), (97)

54



Experimental data (WA)

+­
+Re

U

2.0− 1.5− 1.0− 0.5− 0.0 0.5 1.0 1.5 2.0

+
­

+
Im

U

2.0−

1.5−

1.0−

0.5−

0.0

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p­value

excluded area has CL > 0.95

Alpha 2017

CKM
f i t t e r

Experimental data (WA)

+­
­Re

U

2.0− 1.5− 1.0− 0.5− 0.0 0.5 1.0 1.5 2.0

+
­

­I
m

U

2.0−

1.5−

1.0−

0.5−

0.0

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p­value

excluded area has CL > 0.95

Alpha 2017

CKM
f i t t e r

Experimental data (WA)

+­
Re
I

2.0− 1.5− 1.0− 0.5− 0.0 0.5 1.0 1.5 2.0

+
­

Im I

2−

1−

0

1

2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p­value

excluded area has CL > 0.95

Alpha 2017

CKM
f i t t e r

Experimental data (WA)

+0

+Re
U

2.0− 1.5− 1.0− 0.5− 0.0 0.5 1.0 1.5 2.0

+
0

+
Im

U

2.0−

1.5−

1.0−

0.5−

0.0

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p­value

excluded area has CL > 0.95

Alpha 2017

CKM
f i t t e r

Experimental data (WA)

+0

­Re
U

2.0− 1.5− 1.0− 0.5− 0.0 0.5 1.0 1.5 2.0

+
0

­I
m

U

2.0−

1.5−

1.0−

0.5−

0.0

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p­value

excluded area has CL > 0.95

Alpha 2017

CKM
f i t t e r

Experimental data (WA)

+0

Re
I

2.0− 1.5− 1.0− 0.5− 0.0 0.5 1.0 1.5 2.0

+
0

Im I

2.0−

1.5−

1.0−

0.5−

0.0

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p­value

excluded area has CL > 0.95

Alpha 2017

CKM
f i t t e r

Experimental data (WA)

­0

+Re
U

2.0− 1.5− 1.0− 0.5− 0.0 0.5 1.0 1.5 2.0

­0+
Im

U

2.0−

1.5−

1.0−

0.5−

0.0

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p­value

excluded area has CL > 0.95

Alpha 2017

CKM
f i t t e r

Experimental data (WA)

­0

­Re
U

2.0− 1.5− 1.0− 0.5− 0.0 0.5 1.0 1.5 2.0

­0­I
m

U

2.0−

1.5−

1.0−

0.5−

0.0

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p­value

excluded area has CL > 0.95

Alpha 2017

CKM
f i t t e r

Experimental data (WA)

­0

Re
I

2.0− 1.5− 1.0− 0.5− 0.0 0.5 1.0 1.5 2.0

­0Im I

2.0−

1.5−

1.0−

0.5−

0.0

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p­value

excluded area has CL > 0.95

Alpha 2017

CKM
f i t t e r

Figure 32: Two-dimensional SU(2) isospin constraint on the real and imaginary parts of
interference-related coefficients U and I describing the B0→ π+π−π0 Dalitz decay. For each
observable, the direct measurement, not included in the fit, is indicated by the shaded area. The
largest tension is observed in the uppermost left figure related to the B0 → ρ±π∓ amplitude
combination (A+A−

∗
+ Ā+Ā−

∗
).

where qB = +1(−1) for B0(B̄0) and qρ is the electric charge of the emitted ρ-meson. The
CP -violating (CP -conserving) parameters C and S (∆C and ∆S) generate the flavour-
dependent asymmetries:

C± = C ±∆C , S± = S ±∆S , (98)
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Figure 33: Two-dimensional constraints on the flavour-dependent, (Ci,Si)i=+,0,− (top), and
flavour-independent (A+, A−) (bottom) asymmetries. In each case, the experimental value de-
rived from the related U or I coefficients and not included in the fit is indicated as a shaded
area.

while the flavour-independent CP asymmetries defined in Eq. (95) can be rewritten in
terms of the experimental parameters as:

A+ = −Aρπ + C + Aρπ∆C

1 + ∆C + AρπC
, A− = −Aρπ − C − Aρπ∆C

Aρπ −∆C − AρπC
. (99)

In order to remove experimental biases due to the imperfect separation of the interme-
diate states, one can derive the Q2B parameters from the subset ~Oρπ of the form-factor
coefficients:

Ci =
U−i
U+
i

, S i =
2I i

U+
i

, A± =
±(U+

- − U+
+ )− (U -

- + U -
+)

±(U -
+ − U -

- ) + (U+
- + U+

+ )
, Aρπ =

U+
+ − U+

-

U+
+ + U+

-

. (100)
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Figure 34: Two-dimensional constraints on the B0→ ρ±π∓ CP -violating parameters (Cρπ,Sρπ)
and CP -conserving parameters (∆Cρπ,∆Sρπ) (top) and one-dimensional constraints on the
flavour-integrated charge asymmetry Aρπ and the relative B0 → ρ0π0 branching fraction f00

(bottom). In each case, the corresponding experimental value derived from the related U or I
coefficients, not included in each individual fit, is indicated either by a shaded area or an interval
with a dot.

Finally, we can introduce the relative contribution of the colour-suppressed B0→ ρ0π0

mode to the overall B0→ (ρπ)0 branching fraction:

f 00 =
U+

0

U+
0 + U+

− + U+
+

. (101)

We can then reparametrise the B0 → π+π−π0 amplitude system in terms of a selected
set of U , I and Q2B observables: on hand, ~Ointerf , ~Oρ0π0 = {C0, S0, f 00} and on the other

hand, either the theoretically motivated set ~Oρ±π∓ = {C±, S±, A} or the experimentally

convenient choice ~Oρ±π∓ = {C, S,∆C,∆S,A} (where A stands for A+, A− or Aρπ). The
world averages of the Q2B parameters derived from the measured U and I coefficients
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are listed in Tab. 17 in App. B, together with their corresponding prediction in the SU(2)
isospin framework. These results are also shown in Figs. 33 and 34.

A reasonable agreement is observed for the parameters related to the B0 → ρ0π0

mode. The SU(2) isospin fit favours large values for both direct and mixing-induced CP
asymmetry parameters in the B0 → ρ±π∓ decays, in contrast with experimental data.
The overall 3 σ discrepancy is mostly reflected by the correlated flavour-independent
CP asymmetries, A±, or equivalently the charge asymmetry, Aρπ. While the predicted
CP -violating asymmetry averages, C and S, are in a reasonable agreement with the
experimental data, the CP -conserving terms, ∆C and ∆S, deviate by more than 2.5 σ.

6.3.2 Role of the strong phases in the B0 → (ρπ)0 analysis

In order to understand this discrepancy in more detail, the effective weak angles associated
with the B0 → ρ+π− and B0 → ρ−π+ decays,

2α+ = Arg

[
q

p

A(B̄0 → ρ−π+)

A(B0 → ρ+π−)

]
and 2α− = Arg

[
q

p

A(B̄0 → ρ+π−)

A(B0 → ρ−π+)

]
, (102)

constitute further interesting quantities as they both reduce to α in the limit of a vanishing
penguin contribution. The time-independent Q2B observables in the B0 → ρ±π∓ decays
do not lead to a determination of each effective mixing angle: only the average αeff =
(α+ +α−)/2 can be measured up to a fourfold ambiguity in the [0, 90]◦ range [61]. Indeed,
the Q2B observables can be combined to measure the two shifted phases:

2α± ± 2δ = Arg

[
q

p

A(B̄0 → ρ±π∓)

A(B0 → ρ±π∓)

]
= arcsin

[
S ∓∆S√

1− (C ∓∆C)2

]
, (103)

where the phase shift:

2δ = Arg

[
A(B0 → ρ+π−)

A(B0 → ρ−π+)

]
(104)

cannot be determined from the Q2B data alone but cancels in the average αeff . A bound
on the deviation ∆α between the effective angle αeff and the weak phase α can be derived
[6, 85, 86] from the penguin relation Eq. (14):

|∆α| = |α− αeff | ≤
1

2
arccos

[
1√

1− A2
ρπ

(
1− 4

B00

B±∓

)]
, (105)

where B00 and B±∓ denote the branching fractions of the B0 → ρ0π0 and B0 → ρ±π∓

decays, respectively. This relation originates with the fact that the sum of the penguin
amplitudes (P+− + P−+) = −P 00 is bounded by the branching fraction of the colour-
suppressed mode while the difference (P+− − P−+) vanishes in relation with the charge-
integrated CP asymmetry Aρπ (see also the discussion of the Q2B analysis of the charmless
B0 → a±1 π

∓ decay in Appendix C).
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Figure 35: One-dimensional scan of ∆α = (α − αeff) from the isospin analysis of B0 → (ρπ)0

Dalitz data. The dashed curve includes the indirect determination αind as additional constraint.

The constraint on ∆α given in Fig. 35 features a solution consistent with 0:

|∆α|min = (8.8+7.4

−9.9)
◦ , (106)

and a mirror solution around 100◦. Including the indirect determination αind, Eq. (2),
as an additional input, a tighter constraint is obtained, |∆α|min =(3.5+2.4

−2.6)
◦ , and a new

mirror solution, disfavoured by the B0 → (ρπ)0 data, emerges around 45◦. As shown in
Fig. 36, when using only the Q2B data set {U ij , Ij}i,j=(+,−), four solutions are found for αeff

around 0◦, 45◦ and 90◦ (the peak near 45◦ combines two quasi-degenerate solutions). The
solution close to 90◦ is consistent with the indirect determination of α Eq. (2). However,
only the solution for αeff near 45◦ remains once the Q2B observables and the interference-
related constraints for B0 → ρ±π∓ are considered altogether. The solutions close to 0◦

and 90◦ are disfavoured at 2.5σ. The rejection of these solutions is slightly reinforced with
the addition of the observables related to B0 → ρ0π0.

As can be expected, the interference observables provide further constraints on the
relative phases of the decay amplitudes. In particular, one can easily show from Eq. (41)
that the phase shift 2δ, which vanishes in the absence of the penguin contribution, can
be determined from the interference-related coefficients U±Im(Re)

+− :

tan[2δ] =
U+Im

+- + U -Im
+-

U+Re
+- + U -Re

+-

. (107)

Simultaneously, the related phase between the conjugate modes:

2δ̄ = 2δ + (α+ − α−) = Arg

[
A(B̄0 → ρ−π+)

A(B̄0 → ρ+π−)

]
(108)
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Figure 36: On the left: one-dimensional scan of the effective angle average αeff using B0 →
(ρπ)0 Dalitz data. The dot-dashed curve is obtained when using only the B0 → ρ±π∓ quasi-two-
body observables, {U+

− ,U−− ,U+
+ ,U−+ , I+, I−}. The dashed curve includes also the interference-

related observables, {U±Re(Im)
+− , IRe(Im)

+− }. On the right: two-dimensional constraint in the
(αeff ,∆α) plane obtained using the whole U and I observables. Contrary to other similar figures
in this article (where the excluded region is above 2 σ or 95% CL), the excluded region corre-
sponds here to a confidence level above 3σ (99% CL) in order to show the suppressed solution
around (90◦, 0◦).

can be extracted from the same coefficients:

tan[2δ̄] = −
U+Im

+- − U -Im
+-

U+Re
+- − U -Re

+-

, (109)

meaning that the phase average δeff = (δ̄ + δ)/2 can be extracted independently using
either the Q2B coefficients or the interference-related coefficients for B0 → ρ±π∓:

4δeff = arctan

[
U+Im

+- + U -Im
+-

U+Re
+- + U -Re

+-

]
− arctan

[
U+Im

+- − U -Im
+-

U+Re
+- − U -Re

+-

]
= arcsin

[
2I-√
U+

-
2 − U -

-
2

]
− arcsin

[
2I+√
U+

+
2 − U -

+
2

]
. (110)

The Q2B coefficients provide also a constraint on the average mixing angle αeff :

4αeff = arcsin

[
2I-√
U+

-
2 − U -

-
2

]
+ arcsin

[
2I+√
U+

+
2 − U -

+
2

]
. (111)

Fig. 37 compares the two-dimensional constraints in the (αeff ,δeff) plane using either subset
of observables. Clearly, only the solutions for αeff near 45◦ are favoured by both subsets.
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Figure 37: Two-dimensional constraint in the (αeff ,δeff) plane. The coloured area is obtained

from the interference-related coefficients U±Im(Re)
+− only. The black ellipses come from the Q2B

coefficients {U ij , Ij}i,j=(+,−). The shaded ellipses result from considering the whole U and I data

set for B0 → (ρπ)0.

As discussed previously, the two observables U+Re(Im)
+− play an important role in the

discrepancy between the B0 → (ρπ)0 Dalitz data and the isospin hypothesis. It is in-
teresting to show how removing these two observables impacts the analysis: the αeff

solutions near 0◦ and 90◦ get favoured, and the direct determination of α agrees much
better with the indirect value, as illustrated in Fig. 38. From the experimental side, the
observables U±Re (Im)

+- and IRe (Im)
± are the coefficients of the mixed form-factors bilinear

(f+f−
∗
). Therefore, they are the only observables sensitive to a possible phase between

the functionals describing the line-shape of the ρ-mesons of opposite charge. It would be
very interesting to study the role played by the isobar approximation and to determine
the possible re-interpretations of the experimental data, but this lies clearly beyond the
scope of the isospin analysis presented here, and we will refrain from drawing further
conclusions on this discrepancy.

6.3.3 B→ ρπ pentagonal analysis

The absolute scale of the neutral B0 → π−π+π0 amplitudes can be determined by adding
the measured branching fractions for the two charged modes B+ → ρ0π+ and B+ → ρ+π0,
related to the neutral modes via the pentagonal relation Eq. (13). Once the data listed
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Figure 38: On the left: one-dimensional scan of the angle α using the B0 → (ρπ)0 Dalitz
data except the two coefficients U+Re

+− and U+Im
+− that measure the real and imaginary parts of

(A+A−
∗

+ Ā+Ā−
∗
) (left). The interval with a dot indicates the indirect determination of α

introduced in Eq. (2). On the right: two-dimensional constraint in the (αeff ,∆α) plane. As
for other similar figures in this article, the excluded region corresponds to CLs above 2σ. The
standard solution around (90◦, 0◦) is favoured with this set of observables.

in Tab. 8 is added to the fit, individual B → ρπ branching fractions and direct CP
asymmetries in the charged modes can be determined. The corresponding pulls are given
in Tab. 18 in App. B.

While the predicted branching fraction for the neutral B0 → ρ0π0 mode is in very
good agreement and competitive with the experimental measurement, a discrepancy is
observed in the balance of branching fractions for the charged modes and the mixed
B0 → ρ±π∓ decays. The branching fraction of both charged modes are predicted to be
larger than their measured value, which is compensated by a lower B0 → ρ±π∓ branching
ratio. Figs. 39 and 40 display the SU(2) isospin constraints for the neutral and charged
modes, respectively.

7 Prospective study

In this section, we discuss how improved measurements of someB → ππ, B → ρρ, B → ρπ
observables can affect the accuracy on the CKM angle α. So far, the experimental data is
statistically limited for all the B → hh charmless modes considered here. Our prospective
study aims at identifying the specific decay channels worth measuring more accurately to
improve the resolution on α significantly.

For simplicity, we adopt a systematic approach rather than relying on the expected
performance of current or forthcoming flavour experiments such as LHCb or Belle II. We
consider the subset of observables related to a specific B → hihj decay, and we determine
how much the accuracy on α is improved if we reduce the uncertainties for this subset
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Figure 39: Constraint on the branching fraction of the neutral B0→ ρ0π0 mode (top, left) and
the mixed B0→ ρ±π∓ mode (top, right). The direct measurement, not included in the fit, is
indicated by an interval with a dot. The bottom figure displays the prediction for the branching
fractions for B0→ ρ±π∓ in the (B0→ ρ+π−, B0→ ρ−π+) plane.

of observables by the (arbitrary) factor
√

2, or if we take the radical limit of setting
these uncertainties to zero. The central value of the current world-average measurements
and correlation coefficients are kept unchanged. For the neutral modes B0 → h+h− and
B0 → h0h0, we distinguish the case of a counting analysis (C) that gives access to the
branching ratio only (e.g., the LHCb measurement of B0 → ρ0ρ0 [49]), and the case of
flavour-tagged analyses: indeed, a time-integrated (TI) analysis extracts only the direct
CP asymmetry whereas a time-dependent (TD) analysis yields both the direct and the
mixing-induced CP -asymmetry parameters (e.g., the LHCb contribution to the study of
B0 → π+π− [33]).

The global combination of the decay-specific determinations of α is so far dominated
by the B → ρρ data that provides a constraint on α with a relative uncertainty at the
level of 5%, i.e., αρρ =(92.1+4.6

−4.9)
◦ for the solution near 90◦ given in Eq. (37). As shown
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Figure 40: Constraint on the branching fraction and the direct CP asymmetry of the charged
B+ → ρ+π0 mode (top, left) and B+ → ρ0π+ mode (top, right). For each observable, the
direct measurement, not included in the fit, is indicated by an interval with a dot. The bottom
figure displays the prediction for the branching fractions for B+→ (ρπ)+ in the (B+→ ρ0π+,
B+→ ρ+π0) plane compared to the experimental measurement indicated by the shaded area.

in Tab. 12, if all other observables remain unchanged, improving the accuracy of the
branching ratio of the charged mode B+ → ρ+ρ0 would improve the resolution on α only
marginally, even in the case of a vanishing resolution (indicating that this observable
has only a limited impact on the accuracy for α). Improving the measurements for the
neutral modes, in particular the colour-suppressed B0 → ρ0ρ0 decay, has a larger impact,
essentially driven by the CP -asymmetries parameters. Improving the time-dependent
asymmetries in the B0 → ρ0ρ0 is also worth investigating, e.g., in the second run of LHCb
data taking. Reducing by

√
2 all the B → ρρ uncertainties would reduce the 68% CL

interval for α by more than 1 degree.
The subleading contribution to the combined α determination is provided by the

B → ππ system, αππ = (93.0 ± 14.0)◦, see Eq. (35). As shown on Tab. 13, any sizable
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Decay Analysis Improved data σO → σWA
O /
√

2 σO → 0

B0→ ρ+ρ− C + TD B+−, f+−
L , C+−,S+− 91.8+4.4

−4.0 (-12%) 92.2± 3.5 (-26%)

C B+−, f+−
L 91.8+4.9

−4.5 (-1%) 92.1+4.6
−4.7 (-2%)

TD C+−, S+− 92.1+4.1
−4.3 (-12%) 92.1+3.5

−3.7 (-24%)

B0→ ρ0ρ0 C + TD B00, f00
L , C00,S00 91.8+4.1

−4.0 (-15%) 91.7± 3.1 (-35%)

C B00, f00
L 91.8+4.9

−4.5 (-1%) 92.1+4.6
−4.7 (-2%)

C + TD C00,S00 91.8+4.1
−4.0 (-15%) 91.6± 3.1 (-35%)

B+→ ρ+ρ0 C B+0 92.2+4.6
−4.7 (-2%) 92.5+4.3

−4.7 (-5%)

B±,0→ (ρρ)±,0 C + TI Bij , f ijL , Cij ,Sij 92.0+3.3
−3.4 (-29%) -

Table 12: 68% CL interval for α from the SU(2) isospin analysis of the B → ρρ data in the
case that the uncertainty of some observables is reduced by a factor

√
2 (third column) or set to

zero (fourth column). The relative gain in resolution with respect to the current measurement is
indicated within brackets. Only the preferred solution for α close to 90◦ is reported.

Decay Analysis Improved data σO → σWA
O /
√

2 σO → 0

B0→ π+π− C + TD B+−, C+−,S+− 93.0± 14.0 (0%) 93.0± 14.0 (0%)

C B+− 93.0± 14.0 (0%) 93.0± 14.0 (0%)

TD C+−, S+− 93.0± 14.0 (0%) 93.0± 14.0 (0%)

B0→ π0π0 C + TI B00, C00 92.6± 13.0 (-8%) 84.1+4.5
−3.5 (-70%)

C B00 93.0± 14.0 (0%) 93.5± 13.5 (-3.6%)

TI C00 92.0± 13.0 (-8%) 84.1+6.4
−5.6 (-57%)

B+→ π+π0 C B+0 93.0± 14.0 (0%) 93.0± 14.0 (0%)

B±,0→ (ππ)±,0 C + TD or TI Bij , C+−,S+−, C00 92.5± 12.5 (-11%) -

Table 13: 68% CL interval for α from the SU(2) isospin analysis of the B → ππ data in case the
uncertainty of some observables is reduced by a factor

√
2 (third column) or set to zero (fourth

column). The relative gain in resolution with respect to the current measurement is indicated
within brackets. Only the preferred solution for α close to 90◦ is reported.

improvement on α is driven by the increased accuracy in the measurement of the direct
CP asymmetry in the colour-suppressed decay B0 → π0π0. A reduction by

√
2 of the

uncertainty of this single observable would reduce the 68% CL range for α by 1◦. A
similar improvement of all the measured B → ππ observables would reduce by about 1.5◦

the uncertainty on α.
No time-dependent analysis has become available so far for the colour-suppressed mode

due to the dominant di-photon decay of the neutral pions that hinders the measurement
of the decay time, so that S00

ππ is not measured yet. However, the low branching fraction of
the Dalitz decay π0 → γe+e− or the photon conversion in the detector material may allow
one to measure the B0 decay time in the future high-statistics flavour experiments (LHCb
upgrade, Belle II). Fig. 41 shows the p-value for α when adding the S00

ππ observable under
different hypotheses concerning the experimental resolution, and setting the central value
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Figure 41: Expected impact of the measurement of the time-dependent asymmetry S00 on the
α determination from the isospin analysis of the B → ππ system. The central value for S00

corresponds to the best prediction from the SU(2) isospin analysis.

as predicted in Eq. (93). In addition to a significant improvement on α, the measurement
of S00

ππ would reduce the number of mirror solutions in the B → ππ isospin analysis (see
the discussion around Eq. (32)).

The same prospective exercise is more delicate for the B0 → π+π−π0 system due to the
discrepancy between the direct measurement αρπ=(54.1+7.7

−10.3)
◦ ∪ (141.8+4.8

−5.4)
◦ (Eq. (43))

and the indirect determination from the global CKM fit (Eq. (2)). New measurements
of this decay would certainly aim first at a better understanding of this discrepancy,
rather than improving the accuracy on α extracted from this channel. Assuming the
central values given by the individual predictions for each U and I coefficient, as listed in
Tab. 16, and keeping unchanged the current experimental resolution and correlations, we
obtain a mild constraint on α, consistent with αind, namely αfit U ,I

ρπ =(82−33
−48)

◦ . In this case,

the reduction of the observable uncertainty by
√

2 results in a reduction by approximately
9◦ for the 68% CL interval for α. On the other hand, keeping the current world-average
central values and reducing the uncertainty on all the U and I observables by a factor

√
2

leads to a more stringent 68% CL interval ασ/
√

2
ρπ =(54.1+5.6

−6.9)
◦ ∪ (141.0+1.9

−1.9)
◦ , which remains

difficult to interpret due to the discrepancies already discussed between the current data
and our theoretical framework based on isospin symmetry. Additional measurements
should hopefully provide a clearer and more consistent picture for the B → ρπ sector
before discussing any improvement in the extraction of α from these modes.
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8 Conclusion

Quark flavour transitions provide particularly stringent tests of the Standard Model, both
through rare decays and CP-violating processes. An accurate knowledge of the Cabibbo–
Kobayashi–Maskawa matrix is essential for these studies and it requires the combination
of many precise constraints. We have focussed on the determination of the α angle,
which can be extracted with a high accuracy from two-body charmless B-meson decays
extensively studied at B-factories and LHCb.

We recalled that this extraction can be done from B → ππ, B → ρπ and B → ρρ
decays but it is affected by the presence of penguin contributions. We explained how SU(2)
isospin symmetry can be used to constrain the structure of hadronic penguin and tree
amplitudes, enabling the extraction of α from branching ratios and CP asymmetries. We
gave details on the analyses of B → ππ, B → ρπ and B → ρρ systems separately, before
combining these results to reach an accuracy around 4◦ on the direct determination of α.
The B → ππ and B → ρρ systems dominate the combination and they favour solutions
in good agreement with the indirect determination of α from a global CKM fit analysis,
Eq. (2), it is not the case for the B → ρπ system which favours different ranges of values
for α with a discrepancy at the level of 3 σ compared to the indirect determination.
The combination of the three channels is dominated by B → ρρ, and to a lesser extent
B → ππ, resulting in the 68% CL confidence intervals given in Eq. (1).

We have then studied several uncertainties that may affect this extraction. We
have tested the hypotheses underlying the SU(2) isospin analysis: setting the ∆I = 3/2
electroweak penguins to zero, neglecting the difference of light-quark masses generating
π0 − η − η′ mixing, setting the ρ width to zero to cancel ∆I = 1 contributions thanks
to Bose–Einstein symmetry. These effects may shift the central value of αdir by around
2◦, while keeping the uncertainty around 4◦ to 5◦, thus remaining within the statistical
uncertainty quoted in Eq. (1). In addition, we have discussed a few aspects concerning
the statistical treatment used in order to extract the p-value, comparing two statistical
approaches to test the impact of hadronic nuisance parameters on coverage. The approach
based on Wilks’ theorem and mainly used here proves to be more conservative than the
bootstrap method for B → ππ and B → ρρ, but less conservative in the case of B → ρπ.
The comparison of the coverage properties of the two approaches leads to a further uncer-
tainty of around 1◦. We stress that this uncertainty is only attached to the combination
of the three direct determinations of α with the current data: it is likely to be reduced
if one combines the direct determination of α with other observables, leading to a more
accurate determination of α (which is in particular the typical case of global CKM fits).

Assuming the validity of the Standard Model and taking as an input the indirect
determination of α from the global CKM fit, we used the observables in B → ππ, B → ρπ
and B → ρρ decays to extract information on ratios of hadronic amplitudes (penguin-to-
tree and colour-suppressed), finding results in broad agreement with expectations from
QCD factorisation, apart from the ratio of the colour-suppressed to colour-allowed tree
ππ contributions: indeed both the phase and the modulus of this ratio do not agree well
with theoretical expectations. It would be interesting to widen this discussion and see
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how various theoretical approaches to non-leptonic two-body decays can reproduce the
patterns of hadronic amplitudes that we have extracted from the data.

Under the same hypotheses, we have also performed the indirect determinations of
observables of interest (using all the other measurements available), comparing the pulls
for those already observed and predicting the values of the remaining ones. The com-
patibility between direct measurements and indirect determinations is very good for the
observables in the B → ππ and B → ρρ systems, whereas we could identify a subset of
B → ρπ observables likely to be responsible for the discrepancies observed with respect
to the Standard Model expectations in these modes. Among many other quantities, we
have predicted the yet-to-be-measured mixing-induced CP asymmetry in the B0→ π0π0

decay; see Eq. (32).
Finally, we have performed a prospective study to analyse how improved measurements

for some subsets of observables can improve the uncertainty of α. In particular, we have
noticed that an improved accuracy for the time-dependent asymmetries in B0 → ρ0ρ0

and the measurement of S00
ππ would reduce the uncertainty on α in a noticeable way.

We have seen that the extraction of α is now possible to a high accuracy, using many
different channels and experimental sources. It would be very interesting to measure the
remaining observables that we can accurately predict using the data already available.
The current accuracy reached by α makes it a particularly useful constraint both for the
Standard Model and for searches of New Physics, although the theoretical computations
for these transitions remain challenging. Some of these channels will be improved by the
LHCb experiment. In addition, the advent of the Belle-II experiment will certainly lead to
new and improved measurements for a large set of branching ratios and CP asymmetries,
providing an opportunity to understand better the results obtained for the B → ρπ
system and allowing us to extract hadronic parameters with a higher accuracy. Both
avenues should be highly beneficial for the upcoming studies of flavour physics in the
quark sector.
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A Results from the BaBar and Belle experiments

Both BaBar and Belle experiments have measured the relevant observables for an extrac-
tion of the weak phase α in each of the three charmless decay systems. We have provided
an analysis of their average in Sec. 3, and we briefly discuss the separate results from each
B-factory in this appendix.

A.1 B → ππ and B → ρρ analyses

The individual measurements of the B → ππ and B → ρρ observables are shown in
Figs. 42 and 43, and Figs. 44 and 45, respectively. For each observable, a good agreement
is observed between the different sources of experimental data (BaBar, Belle, and when
available, other experiments).
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Figure 42: Measurements of the B → ππ branching fractions from BaBar (blue curve) and
Belle (red curve). When available, other experimental contributions are shown: LHCb (orange),
CDF (purple) and CLEO (black). The green shaded area represents the world average.

The individual determinations of α based on the BaBar and Belle data separately are
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Figure 43: Measurements of the B → ππ CP asymmetries from BaBar (blue curve) and Belle
(red curve). When available, other experimental contributions are shown: LHCb (orange), CDF
(purple) and CLEO (black). The green shaded area represents the world average.

shown in Fig. 46. The corresponding 68% CL intervals are:

αππ (BaBar) : (77.1+32.1

−6.6 )◦ ∪ (135.0± 19.0)◦ ∪ (169.3+40.3

−8.4 )◦ , (112)

(Belle) : (134.8± 53.8)◦ , (113)

αρρ (BaBar) : (92.5+6.3

−6.5)
◦ ∪ (177.6+6.6

−6.3)
◦ , (114)

(Belle) : (93.7+9.9

−9.8)
◦ ∪ (176.3+9.8

−9.9)
◦ . (115)

A.2 B → ρπ analysis

Both B-factories have performed a full Dalitz analysis of the B0 → π+π−π0 decay using
the same U and I observables. The measurements of the Q2B- and interference-related
coefficients are summarised in Fig. 48 and Fig. 47, respectively. Good agreement between
the two experiments is observed. The correlated average gives χ2/ndof = 18.1/26.

The individual determinations of αρπ based on BaBar and Belle data separately are
shown in Fig. 49 (left panel). The corresponding 68% intervals are

αρπ (BaBar) : (55.3+4.7

−5.8)
◦ ∪ (128.9+9.5

−7.1)
◦ , (116)

(Belle) : (82.3+5.2

−5.7)
◦ ∪ (115.7+9.8

−8.0)
◦ ∪ (170.5+8.3

−11.2)
◦ . (117)

The B0 → π+π−π0 data from Belle and BaBar are consistent with the indirect determina-
tion αind at the level of 1.3 and 2.6 standard deviations, respectively. Being the projection

70



+­
Lf

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

)
­6

 (
1
0

ρ
ρ+

­
B

0

10

20

30

40

excluded area has CL > 0.95

Alpha 2017

CKM
f i t t e r

+0
L

f

0.5 0.6 0.7 0.8 0.9 1.0

)
­6

 (
1
0

ρ
ρ+

0
B

0

5

10

15

20

25

30

35

40

excluded area has CL > 0.95

Alpha 2017

CKM
f i t t e r

00
L

f

0.0 0.2 0.4 0.6 0.8 1.0

)
­6

 (
1
0

ρ
ρ0

0
B

0.0

0.5

1.0

1.5

2.0

2.5

excluded area has CL > 0.95

Alpha 2017

CKM
f i t t e r

Figure 44: Measurements of the B → ρρ branching fractions from BaBar (blue area) and Belle
(red area). The LHCb contribution to the B → ρ0ρ0 branching fraction is indicated by the orange
area. The green shaded area represents the world average.

of the combination of constraints in a multi-dimensional parameter space, the constraint
on α that results from the averaged data cannot be interpreted as the direct combination
of the one-dimensional constraints. A more explicit picture is obtained when representing
the constraint in the (αeff ,δeff) plane, as shown in Fig. 49 (right panel). The preferred
α solution near 50◦ clearly appears as the solution favoured by both Belle and BaBar
experiments.
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Figure 45: Measurements of the B → ρρ CP asymmetries from BaBar (blue area) and Belle
(red area). The LHCb contribution to the B → ρ0ρ0 branching fraction is indicated by the orange
area. The green shaded area represents the world average.
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Figure 46: Constraint on α from the isospin analysis of the B → ππ (left) and B → ρρ
system (right) using BaBar data (blue curve) and Belle data (red curve). The green shaded area
represents the determination based on the world average for these observables. The interval with
a dot indicates the indirect determination introduced in Eq. (2).
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Figure 47: Experimental measurements of the interference-related U and I parameters from
BaBar (blue area) and Belle (red area). The green shaded area represents the world average.

A.3 Combined analysis

The combined constraints on α using BaBar and Belle data separately are shown in
Fig. 50. The corresponding 68% CL intervals are

αdir (BaBar) : (86.6+5.9

−8.3)
◦ ∪ (174.8+3.6

−3.8)
◦ , (118)

(Belle) : (172.7+6.5

−6.1)
◦ . (119)

The agreement with the indirect αind determination is 0.9σ and 1.5σ for BaBar and Belle
data, respectively. One can also notice that BaBar and Belle data do not favour the same
peak around 0◦ or 90◦, even though both intervals in α are acceptable at 95% CL.
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Figure 48: Experimental measurements of the Q2B-related U and I parameters from BaBar
(blue curve) and Belle (red curve). The green shaded area represents the world average.
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Figure 49: Constraint on α from the SU(2) isospin analysis of the B0 → (ρπ)0 system (left)
using BaBar data (blue curve) and Belle data (red curve). The green shaded area represents
the determination based on the world average. The interval with a dot indicates the indirect α
determination introduced in Eq. (2). The right panel represents the two-dimensional constraint
in the (αeff ,δeff) plane with the same color code.
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Figure 50: Combined constraint on α from the SU(2) isospin analysis of B → ππ, B → ρρ
and B0 → (ρπ)0 systems using BaBar data (blue curve) and Belle data (red curve). The green
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interval with a dot indicates the indirect determination introduced in Eq. (2).
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B Numerical tables for the prediction of observables

In the following tables, we present the results for the indirect determination of various
observables discussed in Sec. 6. For each quantity, we present the world average of the
available measurements, the indirect determination from the SU(2) isospin analysis with-
out including this observable, and the compatibility pull between the two determinations,
obtained by comparing the minimum value of the χ2 function with and without the ex-
perimental measurement of this quantity, see Eq. (92) (Tabs. 14, 15, 16, 17, 18).

Observable Experimental value SU(2) constraint (dir. measurement not in fit) Pull
(world average) 68% CL 95% CL

B+-
ππ (×106) 5.10± 0.19 5.9+2.2

−1.3 ∪ 15.4+1.7
−2.2 15.4+3.8

−12.0 0.
C+-
ππ −0.304± 0.047 −0.2+0.3

−0.2 ∪ 0.5± 0.1 −0.2+0.8
−0.3 0.

S+-
ππ −0.662± 0.062 −0.6+0.3

−0.2 ∪ 0.5+0.2
−0.3 −0.6+0.5

−0.3 ∪ 0.5+0.3
−0.5 0.

B+0
ππ (×106) 5.48± 0.34 5.0+0.7

−0.9 ∪ 0.4+0.3
−0.1 5.0+1.3

−4.9 0.

B00
ππ (×106) 1.59± 0.18 1.3+1.0

−0.3 ∪ 9.9+4.7
−6.8 > 0.7 0.

C00
ππ −0.34± 0.22 −0.49+0.12

−0.08 ∪ 0.82+0.05
−0.06 −0.49+0.34

−0.16 ∪ 0.82+0.10
−0.18 0.

Table 14: Indirect SU(2) isospin determination of B→ ππ observables compared to their exper-
imental measurement (world average).

Observable Experimental value SU(2) constraint (dir. measurement not in fit) Pull
(world average) 68% CL 95% CL

B+-
ρρ (×106) 27.76± 1.84 29.7+31.7

−4.1 29.7+37.9
−7.2 0.39

f+-

L 0.990± 0.020 > 0.91 > 0.79 0.22
C+-
ρLρL

−0.00± 0.09 −0.03+0.19
−0.17 −0.03+0.35

−0.31 0.14

S+-
ρLρL

−0.15± 0.13 −0.14± 0.15 −0.14+0.30
−0.33 0.00

B+0
ρρ (×106) 24.9± 1.9 21.4+2.0

−13.0 21.4+3.6
−14.2 0.39

f+0

L 0.950± 0.016 > 0.34 > 0.29 0.39

B00
ρρ (×106) 0.93± 0.14 > 0.6 > 0.2 0.37

f 00
L 0.71± 0.06 > 0.48 > 0.20 0.37
C00
ρLρL

0.2± 0.9 0.02± 0.46 0.02+0.79
−0.81 0.18

S00
ρLρL

0.3± 0.7 0.21+0.48
−0.55 0.21+0.76

−1.10 0.10

Table 15: Indirect SU(2) isospin determination of the B→ ρρ observables compared to their
experimental measurement (world average).
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Obs. Experimental value SU(2) constraint (dir. measurement not in fit) Pull
(world average) 68% CL 95% CL

U -
+ 0.24± 0.09 0.98+0.04

−0.15 0.98+0.06
−0.60 2.1

I+ 0.04± 0.06 0.48+0.03
−0.10 0.48+0.06

−1.00 1.6
U -

- −0.37± 0.09 −1.04+0.32
−0.16 −1.04+2.35

−0.24 1.8
U+

- 1.19± 0.07 0.38+0.24
−0.14 0.38+0.62

−0.25 2.2
I- 0.03± 0.06 −0.38+0.18

−0.16 −0.38+0.34
−0.24 2.3

U+
0 0.22± 0.03 0.09+0.09

−0.07 ∪ 0.310.04
−0.05 0.09+0.32

−0.11 1.3
U -

0 0.04± 0.06 −0.13+0.11
−0.08 −0.13+0.24

−0.14 ∪ 0.210.01
0.02 1.4

I0 −0.03± 0.04 −0.07± 0.03 −0.07+0.22
−0.07 1.0

U+Re
+0 0.08± 0.23 −0.49± 0.04 −0.49± 0.08 ∪ 0.43+0.02

−0.04 2.4
U+Im

+0 0.27± 0.21 −0.40+0.19
−0.08 −0.40+0.88

−0.13 1.7
U -Re

+0 −0.06± 0.47 −0.18± 0.25 ∪ 0.01+0.06
−0.02 −0.18± 0.10 ∪ 0.01+0.22

−0.05 0.3
U -Im

+0 −0.12± 0.47 0.18+0.06
−0.12 0.18+0.12

−0.22 1.0
IRe+0 0.48± 0.78 0.06+0.10

−0.06 0.06+0.19
−0.55 0.8

IIm+0 0.01± 0.53 −0.10+0.19
−0.04 −0.10+0.63

−0.10 0.6
U+Re

-0 0.07± 0.22 −0.50± 0.05 −0.50± 0.09 ∪ 0.36+0.05
−0.03 2.3

U+Im
-0 −0.61± 0.28 0.36+0.12

−0.34 0.36+0.82
−0.80 ∪ −0.46± 0.14 1.9

U -Re
-0 0.33± 0.47 −0.13+0.23

−0.18 −0.13+0.48
−0.42 0.8

U -Im
-0 0.69± 0.60 0.17± 0.06 ∪ 0.51± 0.05 0.17+0.11

−0.17 ∪ 0.51+0.09
−0.21 0.8

IRe-0 −0.46± 0.76 −0.15+0.40
−0.07 −0.15+0.55

−0.13 0.8
IIm-0 −0.57± 0.57 0.09+0.06

−0.07 0.09+0.11
−0.23 ∪ 0.43± 0.08 1.3

U+Re
+- 0.08± 0.37 −1.03+0.10

−0.05 −1.03+0.32
−0.10 3.3

U+Im
+- 0.17± 0.34 1.04+0.04

−0.08 1.04+0.09
−0.29 ∪ −1.00+0.14

−0.06 2.9
U -Re

+- −0.43± 0.81 0.44+0.35
−0.54 0.44+0.57

−1.47 0.8
U -Im

+- 0.68± 0.84 −0.03± 0.07 −0.03± 0.14 ∪ 0.97+0.10
−0.35 1.5

IRe+- −0.34± 1.06 −0.28+0.11
−0.08 ∪ 0.330.35

−0.42 −0.28+1.42
−0.36 0.4

IIm+- −0.66± 1.05 1.04+0.07
−0.17 1.04+0.11

−0.46 ∪ −0.02+0.44
−0.25 1.8

Table 16: Indirect SU(2) isospin determination of the U and I coefficients compared to their
experimental measurement (world average).
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Observable Experimental value SU(2) constraint (dir. measurement not in fit) Pull
(world average) 68% CL 95% CL

C+ 0.24± 0.10 −0.86+0.28
−0.13 −0.86+0.70

−0.14 ∪ 0.87+0.12
−0.24 2.4

S+ 0.07± 0.12 0.95+0.04
−0.29 [−1.,+1] 1.4

C− −0.31± 0.08 −0.99+0.25
−0.01 −0.99+1.10

−0.01 1.8
S− 0.04± 0.10 −0.68+0.32

−0.25 −0.85+0.77
−0.15 2.2

C0 0.19± 0.25 −0.62+0.44
−0.25 −0.62+0.98

−0.36 1.4
S0 −0.28± 0.36 −0.70+0.96

−0.16 [−1.,+1] 0.4
f 00 0.09± 0.03 0.13+0.03

−0.03 0.13+0.07
−0.13 0.7

A+ 0.11± 0.06 −0.93+0.35
−0.07 −0.93+0.74

−0.07 2.8
A− −0.04± 0.09 0.94+0.06

−0.33 0.94+0.06
−0.70 2.8

C −0.04± 0.06 0.36+0.13
−0.16 0.36+0.49

−1.12 1.2
∆C 0.28± 0.07 0.96+0.04

−0.15 0.96+0.04
−0.42 ∪ −0.96+0.10

−0.04 2.6
S 0.06± 0.08 0.34+0.23

−0.23 −0.34+1.30
−0.46 1.6

∆S 0.01± 0.08 0.82+0.13
−0.23 0.82+0.18

−0.52 2.7
Aρπ −0.09± 0.04 0.93+0.07

−0.33 −0.93+0.07
−0.72 2.8

Table 17: Indirect SU(2) isospin determination of the B0 → π+π−π0 parameters derived from
the combined U and I coefficients, compared to their experimental measurement (world average).

Observable Experimental value SU(2) constraint (dir. measurement not in fit) Pull
(world average) 68% CL 95% CL

B±∓ρπ (×106) 23.0± 2.3 15.5+3.4
−3.1 15.5+12.5

−6.1 1.6

B00
ρπ (×106) 2.0± 0.51 2.3+0.4

−0.5 2.3± 0.9 0.5

B0+
ρπ (×106) 8.31.2

−1.3 22.3+67.6
−8.5 < 99.0 1.9

B+0
ρπ (×106) 10.91.3

−1.5 55.0+31.0
−36.0 55+47

−44 2.0

C0+
ρπ −0.180.17

0.09 0.09+0.10
−0.13 ∪ −0.13+0.02

−0.04 0.09+0.22
−0.56 ∪ 0.80+0.26

−0.16 0.8

C+0
ρπ −0.02± 0.11 −0.17+0.10

−0.08 −0.17+0.08
−0.18 ∪ −0.95+0.14

−0.05 1.0

Table 18: Indirect SU(2) isospin determination of the branching fractions of the charged and
neutral B → ρπ decays and direct CP asymmetries for the charged modes compared to their
experimental measurement (world average).
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Figure 51: Two-dimensional constraint in the (αeff ,δeff) plane from the Q2B analysis of the
B0 → a±1 π

∓ decay (left) and one-dimensional projection for αeff (right).

C Quasi-two-body analysis of B0 → a±1 π
∓

As discussed in Sec. 6.3.2, the quasi-two-body (Q2B) analysis of the neutral B0 → ρ±π∓

decay provides enough information to extract both the average mixing angle αeff , which
coincides with the CKM angle α in the limit of a vanishing penguin contribution, and the
phase shift δeff , corresponding to the phase between ρ+π− and ρ−π+ decay amplitudes.
A similar analysis can be performed in the case of the charmless B0 → a±1 π

∓ decay.
Fig. 51 displays the two-dimensional constraint in the (αeff ,δeff) plane (left panel) and
the corresponding one-dimensional projection on αeff (right panel) when using the world-
average B0 → a±1 π

∓ Q2B parameters collected in Ref. [68]. The 68% CL intervals on αeff

are:

αeff(B0 → a±1 π
∓) = (6.8+4.7

−4.3)
◦ ∪ (38.2+4.0

−4.4)
◦ ∪ (51.8+4.4

−4.0)
◦ ∪ (83.2+4.3

−4.7)
◦ . (120)

The two mirror solutions close to 0◦ and 90◦ are consistent with a vanishing average phase
shift δeff .

The current experimental limit [68] on the branching fraction of the colour-suppressed
mode, B(B0 → a0

1π
0) < 1.1× 10−3 at 90% CL, does not allow us to derive a SU(2) bound

on the difference ∆α = α−αeff . Considering the flavour-related modes B → a1K, a bound
based on the SU(3) symmetry can, however, be defined [87]. Such an analysis, performed
by the BaBar collaboration [88], leads to the constraint |∆α| = |α − αeff(a1π)| < 13◦ at
90% CL, consistent with the value from Eq. (106) obtained for the B0 → (ρπ)0 decay.
Assuming for simplicity that the latter deviation (∆α)ρπ has the same value in the case
of the B → a1π decay, the constraint on α illustrated by Fig. 52 gives :

αa1π : (9.0+16.0

−18.0)
◦ ∪ (60.6+8.5

−24.3)
◦ ∪ (92.0+8.7

−10.8)
◦ (68% CL) (121)
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Figure 52: One-dimensional constraint on α derived from the Q2B B0 → a±1 π
∓ analysis,

assuming that ∆α = (α − αeff) has the same value as in the case of the B0 → (ρπ)0 Dalitz
analysis. The interval with a dot indicates the indirect determination introduced in Eq. (2).

The solution near 90◦ is consistent with the indirect α determination given by Eq. (2).
However, this constraint is based on a hypothesis with a poor theoretical motivation, and
it will not be included in our combination of direct α determinations (whereas we include
information from the ππ, ρρ and ρπ modes).
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