Adrien Chan-Hon-Tong

Video hacked datasets for image convolutionnal neural networks

Using successive images of a high framerate video to train image convolutionnal neural networks can seem useless: successive images are so closes that they seem to contain almost the same information.

However, first, annotating video can be done much more easily than annotating set of images. So using all images does not need more human annotation time.

And especially, our contribution is to show that using all successive images provides a significant increase of performance compare to use only spaced images on several datasets. In addition, on the selected datasets, no increase is observed by using data augmentation technics on the spaced images highlighting that the increase is only du to the use of all images and not to any possible size bias.

Thus, we argue that using all images of video to train image convolutionnal neural networks should be considered.

Introduction 1.Video hacked dataset

Perfect datasets should cover the variability of expected new data. Thus, perfect dataset should have both large size and large variance. However, manually annotating large datasets require large human time.

Crow engineering tries to solve this problem using large number of human but this is not always possible, for example if data are hard to share or should not be diffused.

Semi-automatic annotation tries to increase human productivity. But, there is few chance to provide a real productivity gap if data have large variances as tools designed on a piece of the dataset may not perform well on the other part.

Thus, there is an interest for algorithms which could be able to learn from less data, or (this is the purpose of this paper), from correlated data i.e. large size but low variance dataset.

(a) a remote sensing images (b) a semantic mask

Each color in the semantic mask is expected to correspond to a kind of object in the image. For example, boats are pink in the semantic mask while cars are yellow. Indeed, in image context, such dataset can be easily created by using video trick: using temporal consistency on high frame rate video allows to propagate freely expensive human annotation from one image to the next while increasing quickly the size of the dataset. Such video dataset are needed to train neural network taking video as input. But, now, one can wonder about there relevancy to train neural network taking only image as input because two successive images from a video seem to contain nearly the same information. However, in this paper, we show that, contrary to what might have been thought, using such video hacked dataset is relevant to train image convolutionnal neural networks (CNN).

This contribution is not that trivial seeing that some of the most important datasets of the state of the art have been pruned to keep only spaced images probably just because successive images were thought useless.

Selected use case

To provide quantitative evaluation, we fix a use case. We focus on the relevancy of such video hacked datasets to learn CNN for binary semantic segmentation.

Semantic segmentation (see figure 1) is the goal of producing semantic mask of an image. Or, in other words, the goal of deciding a semantic label for each pixel of an image. In our experiment, we will perform such segmentation task but only with two classes. Again, the pipeline is designed to process images (not video): each mask is completely estimated using the current image only. In this context, we focus on the relevancy of using video hacked datasets to increase performances of CNN pipeline.

However, we think that the question tackled by this paper is not re-stricted to binary semantic segmentation: this question is about using video hacked dataset for many CNN tasks like image classification, detection on single image, image multiclass segmentation...

Design of the experiments

The contribution of this paper is to present an experimental protocol to evaluate the relevancy of video hacked datasets.

For this purpose, we select (or create) several datasets consisting of very different annotated videos. Then, we perform several kinds of experiments (see figure 6) to measure the performance of CNN trained with different training datasets extracted from the video, e.g. we mesure the performance of segmentation pipelines while increasing the number of successive images used from each video. This example of experiment should have a clear output: no performance augmentation while increasing the number of images would argue that using video hacked dataset is not relevant.

However, there is a lot of possible pitfalls, and, our main concern in the following is to try to avoid these.

The first one is that if the performance is too low independently of the number of images, one can wonder if the problem is no just too hard independently from the setting. Same ambiguity appears if it is too high.

Then, here we aim to compare a common learning pipeline trained with different data (and tested on common ones). This raises an issue about at what point two runs can be considered as implementing a common pipeline. When the learning algorithm is kind of global/convex, comparison of is less ambiguous. But, global/convex learning pipelines would have to be very scalable to process datasets whose sizes vary from 1 to 400. And, degrading the training parameter (to increase speed) as the size augment may lead to situations where we do not know if there is no performance increase because additional images are not interesting or because we degrade the training parameter. Inversely, when training is non deterministic like stochastic gradient descent, we first lost reproducibility, and, we may introduce tuning bias: solver parameters will (more of less consciously) be tuned on the smallest dataset and may artificially bias performances.

To strengthen the output of our experiment, we chose to use different datasets and state of the art deep learning to handle dataset ambiguity. Then, we chose to perform both convex based experiment (pre trained deep learning being used like feature extractor) and fine-tuning experiment (straightforward deep learning training) to handle ambiguity concerning tuning bias in training.

To keep sufficiently low total training time, not all experiment will be realized with all modality, but we have tried to maintain a global consistency in all the experiments.

The structure of this paper is the following. In next section, we describe related works. Then, sections 3 and 4 describe experiments about the performance of segmentation, section 3 for convex based experiments and section 4 for fine-tuning ones, before the conclusion and perspectives in section 5.

Finally, this work has been done by a team, all author will be listed in final version.

2 Related works

Semantic segmentation

Semantic segmentation is a growing paradigm [START_REF] Badrinarayanan | Segnet a deep convolutional encoder decoder architecture for robust semantic pixelwise labelling[END_REF][START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF]. Ones of the most important datasets of semantic segmentation are designed for autonomous car issues: CITYSCAPE [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] and SYNTHIA [START_REF] Ros | The SYNTHIA Dataset: A large collection of synthetic images for semantic segmentation of urban scenes[END_REF].

For aerial images, most works related to convolutional neural network for semantic labelling use 3 channels networks designed for RGB, fine tuned from a model trained on the IMAGENET dataset [START_REF] Paisitkriangkrai | Effective semantic pixel labelling with convolutional networks and conditional random fields[END_REF][START_REF] Marmanis | Semantic segmentation of aerial images with an ensemble of cnss[END_REF][START_REF] Marmanis | Deep learning earth observation classification using imagenet pretrained networks[END_REF].

However, the situation is very different between autonomous car contexts with very large datasets (e.g. CITYSCAPE and SYNTHIA), and, aerial contexts especially for small object. For example, the 2015 IEEE data fusion contest contains less than 400 car instances which limits the stability of algorithm evaluation (e.g. [START_REF] Lagrange | Benchmarking classification of earthobservation data: from learning explicit features to convolutional networks[END_REF]).

Even if there is a complete field of research to use unsupervised algorithms to take advantage of the very large available data (huge Sentinel2 data for example can be freely downloaded), we could bet that performance will not largely increase until sufficient coherent and annotated dataset will be published.

But, annotating large annotated datasets is a very expensive human process. For applications which may generate huge economic feedback like autonomous car, large consortium can be formed to pay the annotation.

Semi automatic annotation

One possible cheap answer to this lack of annotation is semi automatic annotation where human annotator is helped by computer vision algorithm.

It includes active learning where computer vision proposes best next thing to annotate (e.g. [START_REF] Yao | Interactive object detection[END_REF]). It includes crow engineering [START_REF] Bryan C Russell | Labelme: a database and web-based tool for image annotation[END_REF][START_REF] Vondrick | Efficiently scaling up crowdsourced video annotation[END_REF]. It also includes optimization of human time [START_REF] Russakovsky | Best of both worlds: human-machine collaboration for object annotation[END_REF].

However, crow engineering is not possible for secret data (like military images) or when annotating requires expert knowledge. Optimization of the human time and active learning are relevant when sufficiently good algorithms are already available. In [START_REF] Russakovsky | Best of both worlds: human-machine collaboration for object annotation[END_REF], the idea is just to move from a sparse annotation to a dense annotation by using deep network learnt on the same kind of datasets.

Also, as learning algorithm are more and more complex, it is not trivial to perform an efficient online interactive semi automatic annotation system. To our knowledge, there is no widely used system whose efficiency has been successfully evaluated.

One other possible cheap answer is the use of temporal consistency when annotating a video. The interest of video is that information can be propagated (by tracking [START_REF] Yilmaz | Object tracking: A survey[END_REF] or optical flow [START_REF] Sevilla-Lara | Optical flow with semantic segmentation and localized layers[END_REF]) from one frame to the next allowing to save costly human annotation when the propagation behaves correctly. This propagation only uses low level clue, which would not be sufficient if not helped by the temporal consistency.

For the purpose of experiments, we develop a tracking based annotation tool. This tool is very close to [START_REF] Bryan C Russell | Labelme: a database and web-based tool for image annotation[END_REF] but use off the shelf computer vision tracker (opencv implementation of dsst tracker [START_REF] Danelljan | Accurate scale estimation for robust visual tracking[END_REF]) to propagation bounding boxes from one frame to the other. Human correction is only needed when tracker fails to be sufficiently accurate.

This last answer is sufficiently mature to help annotation. However, it raises the question focused by this paper: does this video trick increase the performance or just the dataset size ? Or in other words, is it relevant to learn from highly correlated data ? Does video hacked dataset perform better than the classical add Gaussian noise data augmentation method ? (We do not review data augmentation methods as we implement this noise only.)

Scalability issues in SVM

As explained in section 1, to strengthen the conclusion of our experiments, we perform both deep network training and convex training. In this convex training, deep networks are used with pre trained weight as feature extractors.

The interest of convex training is strong reproducibility and possibility to use off the shelf parameters.

However, deep learning is much more scalable than convex learning (under the assumption of the availability of specific hardward). Even using liblinear [START_REF] Fan | LIBLINEAR: A library for large linear classification[END_REF] which is recognized as a one of the fastest and most reliable svm implementation, we quickly hit the solver limit.

Currently, forwarding a few VGA images into a segnet like network [START_REF] Badrinarayanan | Segnet a deep convolutional encoder decoder architecture for robust semantic pixelwise labelling[END_REF] and saving the resulting features mask in liblinear format yet leads to a very large file. Worse, processing these files with liblinear requires too large RAM resource (even server cannot meet such requirement). In order to perform our experiment, we have no choice but to rely on liblinear-block [START_REF] Yu | Large linear classification when data cannot fit in memory[END_REF] or liblinear + average (like in [START_REF] Yu | Large linear classification when data cannot fit in memory[END_REF]) when training files becomes bigger than 1To.

We acknowledge that, in [START_REF] Yu | Large linear classification when data cannot fit in memory[END_REF] experiments, liblinear-block is used to process datasets 20 times larger than memory, whereas in our experiments, the expected dataset size is close to 400 times the memory available in a standard computer. However, we do not find better implementation (which meets both our scalability and reproducibility requirements).

CNN+SVM on video hacked datasets 3.1 Datasets

There is a lot of semantic segmentation datasets. But most of them (MSCOCO [START_REF] Lin | Microsoft COCO: common objects in context[END_REF], IEEE data fusion contest [START_REF] Lagrange | Benchmarking classification of earthobservation data: from learning explicit features to convolutional networks[END_REF], ...) are images datasets. They are thus irrelevant to focus on video hacked datasets.

One of the most important video datasets of the field is CITYSCAPE. It is composed of 25000 HD frames pixelwise annotated into 30 semantic classes. Images are taken from a car and the dataset is designed for autonomous car research. However, this dataset has been purged to keep only spaced image. So it can not be used to peform a successive vs spaced comparison.

Independently, we want to stress that this major dataset of the state of the art has been built with the hidden assumption that successive images are useless (compared to their computational costs), showing that the idea of using all images is not that trivial.

SYNTHIA is a dataset very close to CITYSCAPE (except that images are synthetic) and can not be used for the same reason.

Thus, to tackle this paper issues, we rely on MOT 2016 (MOT16) [START_REF] Milan | MOT16: A benchmark for multi-object tracking[END_REF], VIRAT aerial dataset [START_REF] Oh | A large-scale benchmark dataset for event recognition in surveillance video[END_REF] (not video surveillance data -we use only the aerial videos). As no annotation has been released, we annotate it ourselves using our tool (annotations are planned to be released).

MOT16 (https://motchallenge.net) is a multi objects tracking dataset: detection are provided, the goal is to keep temporal id on the detection. Here, we use this dataset only to learn to produce a semantic mask corresponding to the detections (we only keep person detection). We convert the detection ground truth into a semantic segmentation ground truth by considering that all pixels in a detection are from class 1 and all pixels outside detections are from class -1. The training part of MOT16 is composed of 6 HD videos taken from a pedestrian or car or surveillance camera (see figure 2).

For MOT16, we will use accuracy, gscore and iou score to evaluate all algorithms. Accuracy is the stablest measure, gscore is the product of precision per recall and iou score is the same as for the CITYSCAPE leaderboard (this is not related to the IoU of 2 boxes in detection to know if a matching is possible, this is a score computable from the confusion matrix that aim to give the same weight on positive and negative while acknowledging both two types of error).

The VIRAT aerial dataset is a set of videos which are low resolution and contain camera motions, highly textured background and very small object. As no public annotation has been released for this dataset, we annotated a subset of the frames in a person detection setting. We convert the ground truth in the same way than for MOT16. In order to provide a diversity of situations, we chose to annotate about thirty sub videos of 400 frames containing at least one person distributed over the dataset (but discarded infrared images). Figure 3 shows examples of images from this sub dataset.

For VIRAT, we will use only gscore and IoU score to evaluate all algorithms. Accuracy is not relevant as 99,2% of the pixel are background pixel.

Global pipeline

In this section, we use a trained CNN to extract feature map for each training image. Then, we train SVM for semantic segmentation (see figure 4).

We rely on VGG16 in a FCN fashion: we forward each image into VGG16 (pretrained on imagenet), extract several layers (conv12, conv22, conv33, conv43 and pool5). The network is described in figure 5. We resize all extracted layers to the ground truth size, obtaining a feature map in which each pixel is described per a vector. We learn a svm with each pixel of the feature map being a training point.

We allow the ground truth to be eventually smaller than the original image when spatial accuracy of the human annotation is not relevant enough.

We learn a svm with liblinear or liblinear block when we reach the RAM limit (8Go).

We also learn a svm with a simple stochastic gradient descent (sgd): we loss reproducibility but it is much more faster and useful for some of the experiments.

Sanity-check:

In order to ensure that we use a sufficiently state of the art pipeline, we partially evaluate our pipeline on CITYSCAPE and reaches comparable results than [START_REF] Badrinarayanan | Segnet a deep convolutional encoder decoder architecture for robust semantic pixelwise labelling[END_REF] (around 80% of IoU category but on the validation set).

This sanity check shows that our pipeline is sufficiently close to the state of this art to ensure, in our opinion, the validity of the following experiments.

Different types of experiments

We perform 4 kind of experiments to evaluate the impact of video hacked datasets

• we compare the performance of a CNN trained with 1 image per video with the same CNN trained with 20 successive images per video

• we also compare the performance of a CNN trained with the images {0, 20, 40, ..., 380} of each videos with the same CNN trained with 400 successive images per video (notice that one can concatenate experiment 1 and 2 to get the evolution of the performance from 1 image per video to 400)

• we compare the performance of a CNN trained with 20 successive images per video with the same CNN trained with 20 randomly noised images computed from the image 1 -so the number of image is the same but in one hand it is real successive images and on the other hand randomly generated one This experiment corresponds to the (a)-cell in figure 6. Setting name is formed by frame setting and pipeline name. Score are given in percentage.

Table 1: Results 1 vs 20 for svm on MOT16.

• Finally, we do the same with images 1 to 400 versus 20 images generated from each image {0, 20, 40, ..., 380} Figure 6 gives an overview of this 4 types of experiments. In all experiment, the name of the setting is formed by the frame setting (see figure 6 or the text just before) and the pipeline (e.g. liblinear or sgd).

performances vs frames per video

Performance of cnn+svm experiments of type (a) or (b) (see figure 6) are reported in tables 1, 2,3 and 4.

These results are interesting especially on MOT because performances are in the correct range (not too low, not too high). Thus, we can state that using video hacked dataset significantly (even if not largely) increases performances from 1 to 20 and from 1 by 20 to 400.

Performances on VIRAT are low especially the gscore. In this condition, the relevancy of adding successive frames is less clear. However, The only layers with weight are the convolutions which are initialized with VGG-on-imagenet weights. Each W × H × 3 image leads to several layers whose dimensions are typically

W × H × K1, W 2 × H 2 × K2, W 4 × H 4 × K3, W 8 × H 8 × K4.
All these blobs are resized to W × H and concatenated, leading to a W × H × (K1 + K2 + K3 + K4) blob. Each pixel is classified independently using the corresponding K1 + K2 + K3 + K4 values leading to a W × H mask. This experiment corresponds to the (b)-cell in figure 6. Setting name is formed by frame setting and pipeline name. Score are given in percentage.

Table 2: Results 1by20 vs 400 for svm on MOT16. In 1 vs 20 (a), we evaluate the performance of a CNN trained with image 1 from each video versus the same CNN trained with images 1 to 20 from each video. In 1by20 vs 400 (b), we evaluate the performance of the CNN trained with images 1,21,41,...,400 versus images 1 to 400 (from each video). In 20 noise vs 20 (c), for each image 1 of each video, we generated 20 images (by adding a Gaussian noise), we evaluate the performance of a CNN trained with this dataset versus the same trained with images 1 to 20 from each video. The gaussian noise has the same variance than the set of images 1 to 20. In 400 noise vs 400 (d), we do the same experiment than in (c) but with image 1,21,41,... of each video for the random part versus images 1 to 400. This experiment corresponds to the (b)-cell in figure 6. Setting name is formed by frame setting and pipeline name. Score are given in percentage. Accuracy is not relevant for VIRAT (99 for all).

Table 4: Results 1by20 vs 400 for svm on VIRAT.

scores still largely increases between 1 to 400.

These experiments shows that, contrary to what could have been thought, video hacked dataset can increase performance of deep learning pipeline (for example for binary segmentation).

Successive images versus data augmentation

The global idea of experiments of type (c) and (d) (see figure 6) is to remove any possible size bias: both training data contain the same number of images. But, in one side, there are images generated from a small set by adding different Gaussian noise and on the other side this is just 20 successive images.

More precisely, we generated images by adding Gaussian noise to a real images. The variance of the noise is the same that the variance measured in the set of real images. Images generated are converted into 8 bits images to enter the CNN.

As we want to make multiple runs of the training to average random noise effect, we perform this type of experiment with sgd only (and not with liblinear), because, the great advantage of sgd is that the image can be generated on the fly. However, we have see that sgd globally behaves like liblinear in tables 1, 2,3 and 4.

The results of these experiment is very clear: we observe no increase of performance (in average) using these Gaussian noised images.

We acknowledge that other types of noise (or a noise not converted into 8 bits) could have been better, but still the result of this experiment show that the increase of performance observed in tables 1, 2,3 and 4 is clearly du to the use of successive images and is not trivial to obtain by an other way.

CNN on video hacked datasets 4.1 Global pipeline

In this section, we did a second time some of the experiments described in section 3 but in a straightforward deep learning fashion (see figure 7).

Network is trained on random crop extracted from the training images (size of crops is 256x256 if not detailed). Network directly outputs a layer with same shape than ground truth. The loss is the average on all the pixels of the cross entropy. Learning is done by stochastic gradient descent on a standard forward backward scheme.

Training is done with NVIDIA DIGITS tools. This training fashion is expected to be more efficient than svm adaptation both in performance and time (but much less reproducible)

The networks are designed to directly produce an output with same shape as the ground truth (we work on random crop of size 256x256). Back propagation is directly performed by computing the gradient corresponding to the loss between the ground truth and the network output.

We evaluated different state of the art networks: fcn like (the same as the svm experiment), UNET [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF], and a deeper UNET (we add a level to the UNET structure). All tested networks are based on VGG and are finetuned from VGG initialisation.

See original publications for the details about these networks, we reproduce figure 8 from [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] only for the sake of reading.

Results

Finetuning experiments are much faster than svm one but these experiments lock expensive (and thus shared) GPU hardware. So, it was not easy for us to replicate all the slow (but requiring only always-available-CPU) svm experiments. Notice that one may need more than 8Go of GPU memory to reproduce our experiments (e.g. a NVIDIA Titan P).

So, we only evaluate the increase of performances while increasing the number of successive images between 1, 20 and 400 which correspond to a partial mix of experiments (a) and (b) in figure 6.

Available results are presented in tables 5 for MOT16 and 6 for VIRAT.

These results are globaly similar to the ones of tables 1, 2,3 and 4. Finetuning reaches better equal or better performance than cut+svm in This figure is copied from [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] for the sake of the reading -see the original paper for details. This experiment corresponds to a mix of (a) and (b) cells in figure 6. Setting name is formed by frame setting and pipeline name. Score are given in percentage. This experiment corresponds to a mix of (a) and (b) cells in figure 6. Setting name is formed by frame setting and pipeline name. Score are given in percentage. Accuracy is not relevant for VIRAT (99 for all).

Table 6: Finetuning results on VIRAT.

the 400 images setting but not on all setting despite that cut+svm corresponds to a finetuning of the last layer only. However, the most important point, in our opinion, is that these experiments confirm the trend observed in svm ones: performance tends to largely increase when increasing the number of successive images used from the videos. This is especially clear for UNET 1 to UNET 400 on VIRAT with a gscore who jumps from 9% to 21%. This is also especially clear for deep UNET on MOT who jumps from 0% to 30% of gscore when using 400 images instead of 1 per video.

Conclusion

This paper focuses on video hacked datasets for image semantic segmentation. The question is about the relevancy of using video on which temporal information can be used to help human annotation to train purely image semantic segmentation pipeline (especially deep learning pipelines).

In our experiments, using this video trick increases performance of the pipelines whereas using data augmentation (to form a dataset with the exact same size) does not. Of course, using uncorrelated images would be more efficient, but as using video is still useful, this trick should be considered when data are naturally collected especially because annotating video can be done very efficiently, and thus provide a nearly free increase (free for human annotation time not for computation time off course).

Seeing our contribution, we hope that people who plan to form datasets from video compatible devices will, at least, consider the possibility to keep all available data. This paper should be continued to investigate if learning from video hacked datasets provides some specific features, for example about robustness to aliasing (which has currently not been observed but is still a good candidate to explain the increase of the performances).

Figure 1 :

 1 Figure 1: Example of semantic segmentation of an image.

Figure 2 :

 2 Figure 2: Illustration of the MOT 16 dataset.

Figure 3 :

 3 Figure 3: Illustration of the subset of VIRAT (plus annotation).

 All feature maps are resized to the ground truth (spatial) size. If we have n training images then the svm learn from n × w × h points: e.g. for n = 100, w = 320 and h = 240 there are yet 7680000 points for the svm.

Figure 4 :

 4 Figure 4: Global pipeline for svm experiments.

Figure 5 :

 5 Figure 5: Illustration of the network used for the svm experiment.

(a) 1

 1 vs 20 experiment (b) 1by20 vs 400 experiment (c) 20 noise vs 20 experiment (d) 400 noise vs 400 experiment Tables 1 and 3 correspond to (a). Tables 2 and 4 correspond to (b). Section 3.5 corresponds (c) and (d). Tables 5 and 6 correspond to a mix of (a) and (b).

Figure 6 :

 6 Figure 6: Overview of the 4 types of experiments performed.

Figure 7 :

 7 Figure 7: Global pipeline for finetuning experiments.

Figure 8

 8 Figure 8: illustration of unet.

Table 5 :

 5 Finetuning results on MOT16.

	setting	iou gscore
	1 fcn	0	0
	20 fcn	0	0
	1 unet	11	9
	400 unet 22	21

This experiment corresponds to the (a)-cell in figure6. Setting name is formed by frame setting and pipeline name. Score are given in percentage. Accuracy is not relevant for VIRAT (99 for all).Table3: Results 1 vs 20 of svm on VIRAT.