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ON COURANT’S NODAL DOMAIN PROPERTY FOR
LINEAR COMBINATIONS OF EIGENFUNCTIONS,

PART I

PIERRE BÉRARD AND BERNARD HELFFER

Abstract. According to Courant’s theorem, an eigenfunction as-
sociated with the n-th eigenvalue λn has at most n nodal domains.
A footnote in the book of Courant and Hilbert, states that the
same assertion is true for any linear combination of eigenfunctions
associated with eigenvalues less than or equal to λn. We call this
assertion the Extended Courant Property.

In this paper, we propose new, simple and explicit examples for
which the extended Courant property is false: convex domains in
Rn (hypercube and equilateral triangle), domains with cracks in
R2, on the round sphere S2, and on a flat torus T2. We also give
numerical evidence that the extended Courant property is false for
the equilateral triangle with rounded corners, and for the regular
hexagon.

1. Introduction

Let Ω ⊂ Rd be a bounded open domain or, more generally, a compact
Riemannian manifold with boundary.
Consider the eigenvalue problem

(1.1)
{ −∆u = λu in Ω ,

b(u) = 0 on ∂Ω ,

where b(u) is some homogeneous boundary condition on ∂Ω, so that
we have a self-adjoint boundary value problem (including the empty
condition if Ω is a closed manifold). For example, we can choose
d(u) = u|∂Ω for the Dirichlet boundary condition, or n(u) = ∂u

∂ν
|∂Ω for

the Neumann boundary condition.
Call H(Ω, b) the associated self-adjoint extension of −∆, and list its
eigenvalues in nondecreasing order, counting multiplicities, and starting
with the index 1, as
(1.2) 0 ≤ λ1(Ω, b) < λ2(Ω, b) ≤ λ3(Ω, b) ≤ · · · ,
with an associated orthonormal basis {uj, j ≥ 1}.
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For any eigenvalue λ of (Ω, b), define the index

(1.3) κ(Ω, b, λ) = min{k | λk(Ω, b) = λ}.

Notation. If λ is an eigenvalue of (Ω, b), we denote by E(Ω, b, λ) the
eigenspace associated with the eigenvalue λ.
We skip Ω or b from the notations, whenever the context is clear.
Given a real continuous function v on Ω, define its nodal set

(1.4) Z(v) = {x ∈ Ω | v(x) = 0} ,

and call β0(v) the number of connected components of Ω \ Z(v) i.e.,
the number of nodal domains of v.

Theorem 1.1. [Courant, 1923]
For any nonzero eigenfunction u associated with λn(Ω, b),

(1.5) β0(u) ≤ κ
(
λn(Ω, b)

)
≤ n .

Courant’s nodal domain theorem can be found in [15, Chap. V.6].

A footnote in [15, p. 454] (second footnote in the German original [14,
p. 394]) indicates: Any linear combination of the first n eigenfunctions
divides the domain, by means of its nodes, into no more than n subdo-
mains. See the Göttingen dissertation of H. Herrmann, Beiträge zur
Theorie der Eigenwerte und Eigenfunktionen, 1932.

For later reference, we write a precise statement. Given λ ≥ 0, de-
note by L(Ω, b, λ) the space of linear combinations of eigenfunctions of
H(Ω, b) associated with eigenvalues less than or equal to λ,

(1.6) L(Ω, b, λ) =

 ∑
λj(Ω,b)≤λ

cj uj | cj ∈ R, uj ∈ λj(Ω, b)

 .

Statement 1.2. [Extended Courant Property]
Let v ∈ L (λn(Ω, b)) be any linear combination of eigenfunctions as-
sociated with the n first eigenvalues of the eigenvalue problem (1.1).
Then,

(1.7) β0(v) ≤ κ
(
λn(Ω, b)) ≤ n .

We call both Statement 1.2 and Inequality (1.7) the Extended Courant
Property, and refer to it as the ECP(Ω), or as the ECP(Ω, b) to insist
on the boundary condition b.

The purpose of the present paper is to provide simple counterexamples
to the Extended Courant Property for domains in Rn, T2, and S2, in-
cluding convex domains.
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Some historical remarks. We begin with some historical remarks
on the Extended Courant Property.

1. Statement 1.2 is true for Sturm-Liouville equations. In this context,
an even more precise statement was first announced by C. Sturm in
1833, [32] and proved in [33]. Other proofs were given later on by
J. Liouville and by Lord Rayleigh, who both cite Sturm explicitly, see
[8] for more details.

2. Å. Pleijel mentions Statement 1.2 in his well-known paper [30] on
the asymptotic behaviour of the number of nodal domains of a Dirichlet
eigenfunction associated with the n-th eigenvalue of a plane domain.
At the end of the paper, considering the Neumann boundary condition,
he writes:
“In order to treat, for instance the case of the free three-dimensional
membrane [0, π]3, it would be necessary to use, in a special case, the
theorem quoted in [14], p. 3941. This theorem which generalizes part
of the Liouville-Rayleigh theorem for the string asserts that a linear
combination, with constant coefficients, of the n first eigenfunctions
can have at most n nodal domains. However, as far as I have been able
to find there is no proof of this assertion in the literature.”

3. V. Arnold [2], see also [25], mentions that he actually discussed the
footnote in [15, p. 454] with R. Courant, that the Extended Courant
Property cannot be true in general, and that O. Viro produced coun-
terexamples for the sphere, see [34]. More precisely, as early as 1973,
Arnold [1] pointed out that the Extended Courant Property for the
round sphere SN , is related to Hilbert’s 16th problem. Indeed, the
eigenfunctions of the Laplace-Beltrami operator on SN are the spher-
ical harmonics i.e., the restrictions to the sphere of the harmonic ho-
mogeneous polynomials, so that the linear combinations of spherical
harmonics of degree less than or equal to n are the restrictions to the
sphere of the homogeneous polynomials of degree n in (N+1) variables.
The following citation is taken from [3].

Eigen oscillations of the sphere with the standard metric are described
by spherical functions, i.e., polynomials. Therefore the Courant state-
ment cited above implies the following estimate

dimRH0(RPN − Vn,R) ≤ CN
N+n−2 + 1 (1)

for the number of connected components of the complement to an alge-
braic hypersurface of degree n in the N-dimensional projective space.
For planar curves (N = 2), the estimation (1) is exact (it turns into
equality on a configuration of n lines in general position) and can be

1Pleijel refers to the German edition, this is p. 454 in the English edition [15].
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proven independently of the Courant statement2. For smooth surfaces of
degree 4 in RP 3 the estimation is also exact and proved (by V.M. Khar-
lamov).
In the general case, the Courant statement is false (a counterexample
can be constructed by a small perturbation of the standard metric on
the sphere). Nonetheless the estimation (1) seems to be plausible: for
proving it one has to verify the Courant statement only for oscillation
of the sphere (or the projective space) with the standard metric.(∗)

(∗) Translator’s remark: the inequality (1) does not hold true for sur-
faces of even degree ≥ 6 in RP 3. Counterexamples to (1) were con-
structed in the paper of O. Viro, “Construction of multicomponent real
algebraic surfaces”, Soviet Math. Dokl. 20, No. 5, 991–995 (1979).
4. In [18], Gladwell and Zhu refer to Statement 1.2 as the Courant-
Herrmann conjecture. They claim that this extension of Courant’s
theorem is not stated, let alone proved, in Herrmann’s thesis or subse-
quent publications3. They consider the case in which Ω is a rectangle
in R2, stating that they were not able to find any counterexample to
the Extended Courant Property in this case. They also provide numeri-
cal evidence that there are counterexamples for more complicated (non
convex) domains. They finally conjecture (see [18], p. 276) that the
ECP(Ω) could be true for a convex domain Ω.
5. We are aware of only few papers which study linear combinations
of eigenfunctions, see [24] and its bibliography. There is however a
specific literature on random sums of eigenfunctions; as far as the ECP
is concerned, see [31] and its bibliography. In the Neumann case, the
ECP gives information on the level sets of (sums of) eigenfunctions.
We point out in particular [4], in which the levels sets of a second
Neumann eigenfunction are investigated.

Organization of the paper. The purpose of the present paper is
to provide simple counterexamples to the Extended Courant Property,
including convex domains. In Section 2, we consider the hypercube Cn
in Rn, with either the Dirichlet or the Neumann boundary condition.
Using the strategy of Gladwell-Zhu, which fails in dimension 2, we
prove that the ECP(Cn, d) is false if n ≥ 3, and that the ECP(Cn, n)
is false if n ≥ 4. In Section 3, we prove that ECP(Te, b) is false for the
equilateral triangle, with either the Dirichlet or the Neumann boundary
condition.
In Sections 4, 5 and 6, we construct counterexamples by introducing
cracks (with Neumann boundary condition on the crack), respectively

2We are aware of only one reference for a proof, namely J. Leydold’s thesis [26],
partially published in [27], using real algebraic geometry.

3The only relevant one seems to be [23].
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on the rectangle, the rectangular torus, the Euclidean disk, and the
round sphere.
In Section 7, we investigate the ECP for the equilateral triangle, with
rounded corners, and for the regular hexagon, using numerical com-
putations. In Section 8, we propose some conjectures supported by
numerical simulations. In Appendix A, we give a summary of the
description of the eigenvalues and eigenfunctions of the equilateral tri-
angle, with either the Dirichlet or the Neumann boundary condition.

Acknowledgements. The authors are very much indebted to Vir-
ginie Bonnaillie-Noël who produced some simulations and pictures at
an early stage of their work on this subject.

2. The hypercube

2.1. Preparation. Let Cn(π) :=]0, π[n be the hypercube of dimension
n, with either the Dirichlet or the Neumann boundary condition on
∂Cn(π). A point in Cn(π) is denoted by x = (x1, . . . , xn).
A complete set of eigenfunctions of −∆ for (Cn(π), d) is given by the
functions

(2.1)
n∏
j=1

sin(kj xj) , with eigenvalue
n∑
j=1

k2
j , for kj ∈ N\{0} .

A complete set of eigenfunctions of −∆ for (Cn(π), n) is given by the
functions

(2.2)
n∏
j=1

cos(kj xj) , with eigenvalue
n∑
j=1

k2
j , for kj ∈ N .

2.2. Hypercube with Dirichlet boundary condition. In this sec-
tion, we make use of the classical Chebyshev polynomials Uk(t), k ∈ N,
defined by the relation,

sin ((k + 1)t) = sin(t)Uk (cos(t)) ,
and in particular,

U0(t) = 1, U1(t) = 2t, U2(t) = 4t2 − 1 .
The first Dirichlet eigenvalues of Cn(π) (as points in the spectrum)
are listed in the following table, together with their multiplicities, and
eigenfunctions.
For the above eigenvalues, the index defined in (1.3) is given by,

(2.3) κ(n+ 3) = 2, κ(n+ 6) = n+ 2, κ(n+ 8) = n(n+ 1)
2 + 2 .

In order to study the nodal set of the above eigenfunctions or linear
combinations thereof, we use the diffeomorphism
(2.4) (x1, . . . , xn) 7→ (ξ1 = cos(x1), . . . , ξn = cos(xn)) ,
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Table 2.1. First Dirichlet eigenvalues of Cn(π)

Eigenv. Mult. Eigenfunctions
n 1 φ1(x) := ∏n

j=1 sin(xj)
n+ 3 n φ1(x)U1 (cos(xi)), for 1 ≤ i ≤ n

n+ 6 n(n−1)
2 φ1(x)U1 (cos(xi)) U1 (cos(xj)), for 1 ≤ i < j ≤ n

n+ 8 n φ1(x)U2 (cos(xi)), for 1 ≤ i ≤ n

Figure 2.1. 3-dimensional cube

from ]0, π[n onto ] − 1, 1[n, and factor out the function φ1 which does
not vanish in the open hypercube. We consider the function

Ξa(ξ1, . . . , ξn) = ξ2
1 + · · ·+ ξ2

n − a
which corresponds to a linear combination Φa in

E(Cn(π), d, n)⊕ E(Cn(π), d, n+ 8).
Given some a, with (n − 1) < a < n, the function Φa has 2n + 1
nodal domains, see Figure 2.1 in dimension 3. For n ≥ 3, we have
2n+1 > κ(n+8). The function Φa therefore provides a counterexample
to the ECP for the hypercube of dimension at least 3, with Dirichlet
boundary condition.
Proposition 2.1. For n ≥ 3, the ECP(Cn(π), d) is false.
Remark. An interesting feature of this example is that we get coun-
terexamples to the ECP for linear combinations which involve eigen-
values with higher index when n increases. This is also in contrast with
the fact that, in dimension 3, Courant’s nodal domain theorem is sharp
only for δ1 and δ2, [21].

2.3. Hypercube with Neumann boundary condition. In this sec-
tion, we make use of the classical Chebyshev polynomials Tk(t), k ∈ N,
defined by the relation,

cos(kt) = Tk (cos(t)) ,
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and in particular,
T0(t) = 1 , T1(t) = t , T2(t) = 2t2 − 1 .

The first Neumann eigenvalues (as points in the spectrum) are listed
in the following table, together with their multiplicities, and eigenfunc-
tions.

Table 2.2. First Neumann eigenvalues of Cn(π)

Eigenv. Mult. Eigenfunctions
0 1 ψ1(x) := 1
1 n cos(xi), for 1 ≤ i ≤ n

2 n(n−1)
2 cos(xi) cos(xj), for 1 ≤ i < j ≤ n

3 n(n−1)(n−2)
6 cos(xi) cos(xj) cos(xk), for 1 ≤ i < j < k ≤ n

4 n+
(
n
4

)
T2 (cos(xi)), for 1 ≤ i ≤ n and . . .

For these Neumann eigenvalues, the index defined in (1.3) is given by,

(2.5) κ(2) = n+ 2 , κ(3) = n(n+ 1)
2 + 2 , κ(4) = n(n2 + 5)

6 + 2 .

In order to study the nodal set of the above eigenfunctions or linear
combinations thereof, we again use the diffeomorphism (2.4) and the
function Ξa, which here corresponds to a linear combination Ψa in
E(Cn(π), n, 0) ⊕ E(Cn(π), n, 4). Given some a, with (n − 1) < a <
n, the function Ψa has 2n + 1 nodal domains. For n ≥ 4, we have
2n + 1 > κ(4). The function Ψa therefore provides a counterexample
to the ECP for the hypercube of dimension at least 4, with Neumann
boundary condition.

Proposition 2.2. For n ≥ 4 , the ECP(Cn(π), n) is false.

2.4. A stability result for the cube. According to Subsection 2.2,
the ECP(C3(π), d) is false. Consider the rectangular parallelepiped
Pb :=]0, b1π[×]0, b2π[×]0, b3π[, with b = (b1, b2, b3), bi > 0, and define
the ai by

√
ai bi = 1.

The Dirichlet eigenvalues δi(Pb) are the numbers a1k
2
1 + a2k

2
2 + a3k

2
3,

with associated eigenfunctions

(2.6)
3∏
i=1

sin (ki
√
aixi) , ki ∈ N\{0}.

The eigenvalues are clearly continuous in the parameters ai. For a
generic triple (a1, a2, a3) close enough to (1, 1, 1), the first 12 Dirichlet
eigenvalues δi(Pb) are simple, and correspond to the same type of eigen-
functions as for the ordinary cube (same choices of triples (k1, k2, k3)).
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Table 2.3. Eigenvalues for (C3(π), d) and (Pb, d)

Index Triple δi(C3(π)) δi(Pb)
1 (1, 1, 1) 3 3.016
2 (2, 1, 1) 6 6.016
3 (1, 2, 1) 6 6.037
4 (1, 1, 2) 6 6.042
5 (2, 2, 1) 9 9.037
6 (2, 1, 2) 9 9.042
7 (1, 2, 2) 9 9.063
8 (3, 1, 1) 11 11.016
9 (1, 3, 1) 11 11.072
10 (1, 1, 3) 11 11.085
11 (2, 2, 2) 12 12.063
12 (3, 2, 1) 14 14.037

This is for example the case if we take a1 = 1, a2 = 1 +
√

2/100 and
a3 = 1 +

√
3/100, see the numerical values in Table 2.4, where the

Dirichlet eigenvalues are denoted δi.

One can then repeat the arguments of Subsection 2.2, and conclude
that ECP(Cb, d) is false, so that one has some kind of stability.

Proposition 2.3. For b := (b1, b2, b3) close enough to (1, 1, 1), the
ECP(Pb, d) is false.

Clearly, the same kind of argument can be applied in higher dimension,
or for the Neumann boundary condition.

3. The equilateral triangle

Let Te denote the equilateral triangle with sides equal to 1, see Fig-
ure 3.1. The eigenvalues and eigenfunctions of Te, with either the
Dirichlet or the Neumann condition on the boundary ∂Te, can be com-
pletely described, see [6, 29, 28], or [7]. We provide a summary in
Appendix A.

In this section, we show that the equilateral triangle provides a counter-
example to the Extended Courant Property for both the Dirichlet and
the Neumann boundary conditions.
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Figure 3.1. Equilateral triangle Te = [OAB]

3.1. Neumann boundary condition. The sequence of Neumann ei-
genvalues of the equilateral triangle Te begins as follows,

(3.1) 0 = λ1(Te, n) < 16π2

9 = λ2(Te, n) = λ3(Te, n) < λ4(Te, n) .

The second eigenspace has dimension 2, and contains one eigenfunc-
tion ϕn

2 which is invariant under the mirror symmetry with respect to
the median OM , and another eigenfunction ϕn

3 which is anti-invariant
under the same mirror symmetry, see Appendix A.
More precisely, according to (A.21), the function ϕn

2(x, y) can be chosen
to be,

(3.2)
{

ϕn
2(x, y) = cos(4π

3 x) + cos(2π
3 (−x+

√
3y))

+ cos(2π
3 (x+

√
3y)) ,

or, more simply,

(3.3) ϕn
2(x, y) = 2 cos

(2πx
3

)(
cos

(2πx
3

)
+ cos

(
2πy√

3

))
− 1 .

The set {ϕn
2 + 1 = 0} consists of the two line segments {x = 3

4} ∩ Te
and {x+

√
3y = 3

2} ∩ Te, which meet at the point (3
4 ,
√

3
4 ) on ∂Te.

The sets {ϕn
2 + a = 0}, with a ∈ {0 ; 1− ε ; 1 ; 1 + ε}, and small positive

ε, are shown in Figure 3.2. When a varies from 1 − ε to 1 + ε, the
number of nodal domains of ϕn

2 + a in Te jumps from 2 to 3, with the
jump occurring for a = 1.
It follows that ϕn

2 + a = 0, for 1 ≤ a ≤ 1.1, provides a counter-
example to the Extended Courant Property for the equilateral triangle
with Neumann boundary condition.

Proposition 3.1. The ECP(Te, n) is false.
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Figure 3.2. Level sets {ϕn
2 + a = 0} for

a ∈ {0 ; 0.7 ; 0.8 ; 0.9 ; 1 ; 1.1 ; 1.2 ; 1.3}

Remark. The eigenfunction ϕn
2 restricted to the hemiequilateral tri-

angle is the second Neumann eigenfunction of Th = [OAM ]. The re-
striction of ϕn

3 to the hemiequilateral triangle is an eigenfunction of Th
with mixed boundary condition (Dirichlet on OM and Neumann on
the other sides).

3.2. Dirichlet boundary condition. The sequence of Dirichlet ei-
genvalues of the equilateral triangle Te begins as follows,

(3.4) λ1(Te, d) = 16π2

3 < λ2(Te, d) = λ3(Te, d) = 112π2

9 < λ4(Te, d).

More precisely, according to (A.23), the function ϕd
1(x, y) can be chosen

to be,

(3.5) ϕd
1(x, y) = −8 sin 2πy√

3 sin π(x+ y√
3) sin π(x− y√

3) ,

which shows that ϕd
1 does not vanish inside Te .

The second eigenvalue has multiplicity 2. It admits one eigenfunction,
ϕd

2, which is symmetric with respect to the median OM , and given in
(A.25), and another one, ϕd

3, which is anti-symmetric.

We now consider the linear combination ϕd
2 + aϕd

1, with a close to 1.
The following lemma is the key for reducing the question to the previous
analysis.

Lemma 3.2. With the above notation, the following identity holds,

ϕd
2 = ϕd

1ϕ
n
2 .
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Proof. We express the above eigenfunctions in terms of X := cos 2π
3 x

and Y := cos 2π√
3y.

First we observe from (3.3) that
ϕn

2(x, y) = 2X(X + Y )− 1 .
Secondly, we have from (3.5)

ϕd
1(x, y) = 2 sin 2πy√

3
(8X3 − 6X − 2Y ) .

Finally, it remains to compute ϕd
2. We start from (A.25), and first

factorize sin 2πy√
3 in each line. More precisely, we write,

(3.6)
sin 2π

3 (5x+
√

3y)− sin 2π
3 (5x−

√
3y) = 2 sin(2πy√

3 ) cos(52πx
3 ) ,

sin 2π
3 (x− 3

√
3y)− sin 2π

3 (x+ 3
√

3y) = −2 sin(32πy√
3 ) cos(2πx

3 ) ,
sin 4π

3 (2x+
√

3y)− sin 4π
3 (2x−

√
3y) = 2 sin(22πy√

3 ) cos(42πx
3 ) .

We now use the classical Chebyshev polynomials Tn, Un, and the rela-
tions cos(nθ) = Tn(cos θ) and sin(n+ 1)θ = sin(θ)Un(cos θ).
This gives,

ϕd
2 = 2 sin 2πy√

3

(
T5(X)−XU2(Y ) + T4(X)U1(Y )

)
=: 2 sin 2πy√

3 Q(X, Y ) .

We find that
Q(X, Y ) = 16X5 − 20X3 + 6X + 2Y (8X4 − 8X2 + 1)− 4XY 2 ,

and it turns out that the polynomial Q(X, Y ) can be factorized as

Q(X, Y ) =
(
2X(X + Y )− 1

)
(8X3 − 6X − 2Y ) ,

so that ϕd
2 = ϕd

1ϕ
n
2.

In the above computation, we have used the relations,
T4(X) = 8X4 − 8X2 + 1 , T5(X) = 16X5 − 20X3 + 5X ,

and
U1(Y ) = 2Y , U2(Y ) = 4Y 2 − 1 .

�
Observing that

ϕd
2 + aϕd

1 = ϕd
1(ϕn

2 + a) ,
we deduce immediately from the Neumann result that the function
ϕd

2 + aϕd
1, for 1 ≤ a ≤ 1.1, provides a counterexample to the Extended

Courant Property for the equilateral triangle with the Dirichlet bound-
ary condition.

Proposition 3.3. The ECP(Te, d) is false.
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Remark 3.4. Lemma 3.2 is quite puzzling. However, other such iden-
tities do exist. Indeed, consider the square C2(π). The first eigenfunc-
tion has the form

(x, y) 7→ α0 sin x sin y ,
with α0 6= 0 , and the second eigenfunctions take the form

(x, y) 7→ α sin 2x sin y + β sin 2y sin x ,

with |α|+ |β| 6= 0 . We can then observe that

α sin 2x sin y + β sin 2y sin x = 2 sin x sin y (α cosx+ β cos y) ,

and that α cosx+β cos y is a Neumann eigenfunction of the square. For
C2(π), more general relations between Dirichlet and Neumann eigen-
functions follow from the identity 2Tn = Un−Un−2 between Chebyshev
polynomials.
One can also prove the identity ϕd

2 = aϕd
1 ϕ

n
2 between the eigenfunc-

tions of the right isosceles triangle (for some constant a depending on
the normalization of eigenfunctions).

4. Rectangle with a crack

Let R be the rectangle ]0, 4π[×]0, 2π[. For 0 < a ≤ 1, let Ca :=
]0, a] × {π} and Ra := R \ Ca. In this section, we only consider the
Neumann boundary condition on Ca, and either the Dirichlet or the
Neumann boundary condition on ∂R. The setting is the one described
in [17, Section 8].

We call

(4.1)


0 < δ1(0) < δ2(0) ≤ δ3(0) ≤ · · ·
resp.
0 = ν1(0) < ν2(0) ≤ ν3(0) ≤ · · ·

the eigenvalues of −∆ in R, with the Dirichlet (resp. the Neumann)
boundary condition on ∂R. They are given by the numbers m2

16 + n2

4 ,
for pairs (m,n) of positive integers for the Dirichlet problem (resp.
for pairs of non-negative integers for the Neumann problem). Cor-
responding eigenfunctions are products of sines (Dirichlet) or cosines
(Neumann).
The eigenvalues are arranged in non-decreasing order, counting multi-
plicities.

Similarly, call

(4.2)


0 < δ1(a) < δ2(a) ≤ δ3(a) ≤ · · ·
resp.
0 = ν1(a) < ν2(a) ≤ ν3(a) ≤ · · ·



COURANT NODAL DOMAIN PROPERTY 13

Figure 4.1. Rectangle with a crack (Neumann condition)

the eigenvalues of −∆ in Ra, with the Dirichlet (resp. the Neumann)
boundary condition on ∂R, and the Neumann boundary condition on
Ca.

The first three Dirichlet (resp. Neumann) eigenvalues for the rectangle
R are as follows.

(4.3)

Eigenvalue Value Pairs Dirichlet eigenfunctions
δ1(0) 5

16 (1, 1) φ1(x, y) = sin(x4 ) sin(y2)
δ2(0) 1

2 (2, 1) φ2(x, y) = sin(x2 ) sin(y2)
δ3(0) 13

16 (3, 1) φ3(x, y) = sin(3x
4 ) sin(y2)

(4.4)

Eigenvalue Value Pairs Neumann eigenfunctions
ν1(0) 0 (0, 0) ψ1(x, y) = 1
ν2(0) 1

16 (1, 0) ψ2(x, y) = cos(x4 )
ν3(0) (0, 1) ψ3(x, y) = cos(y2)
ν4(0) 1

4 (2, 0) ψ4(x, y) = cos(x2 )

We summarize [17], Propositions (8.5), (8.7), (9.5) and (9.9), into the
following theorem.

Theorem 4.1 (Dauge-Helffer).
With the above notation, the following properties hold.

(1) For i ≥ 1, the functions [0, 1] 3 a 7→ δi(a), resp. [0, 1] 3 a 7→
νi(a), are non-increasing.

(2) For i ≥ 1, the functions ]0, 1[3 a 7→ δi(a), resp. ]0, 1[3 a 7→
νi(a), are continuous.

(3) For i ≥ 1, lima→0+ δi(a) = δi(0) and lima→0+ νi(a) = νi(0).

It follows that for a positive, small enough, we have

(4.5)
{ 0 < δ1(a) ≤ δ1(0) < δ2(a) ≤ δ2(0) < δ3(a) ≤ δ3(0) , and

0 = ν1(a) = ν1(0) < ν2(a) ≤ ν2(0) < ν3(a) ≤ ν4(a) ≤ ν3(0) .
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Observe that for i = 1 and 2, ∂φi

∂y
(x, π) = 0 and ∂ψi

∂y
(x, y) = 0. It follows

that for a small enough, the functions φ1 and φ2 (resp. the functions ψ1
and ψ2) are the first two eigenfunctions for Ra with the Dirichlet (resp.
Neumann) boundary condition on ∂R, and the Neumann boundary
condition on Ca, with associated eigenvalues 5

16 and 1
2 (resp. 0 and 1

16).

We have

αφ1(x, y) + βφ2(x, y) = sin(x4 ) sin(y2)
(
α + 2β cos(x4 )

)
,

and
αψ1(x, y) + βψ2(x, y) = α + β cos(x4 ).

We can choose the coefficients α, β in such a way that these linear
combinations of the first two eigenfunctions have two (Figure 4.1 left)
or three (Figure 4.1 right) nodal domains in Ra .

Proposition 4.2. The ECP(Ra) is false with the Neumann condition
on Ca, and either the Dirichlet or the Neumann condition on ∂R.

Remark 4.3. In the Neumann case, we can introduce several cracks
{(x, bj) | 0 < x < aj}kj=1 in such a way that for any d ∈ {2, 3, . . . k+ 2}
there exists a linear combination of 1 and cos(x4 ) with d nodal domains.

Remark 4.4. Numerical simulations, kindly provided by Virginie Bon-
naillie-Noël, indicate that the Extended Courant Property does not hold
for a rectangle with a crack, with the Dirichlet boundary condition on
both the boundary of the rectangle, and the crack, [10]. Dirichlet cracks
appear in another context in [19] (see also references therein)

Remark 4.5. It is easy to make an analogous construction for the
unit disk (Neumann case) with radial cracks. As computed for example
in [22] (Subsection 3.4), the second radial eigenfunction has labelling
6 (λ6 ≈ 14, 68), and we can introduce six radial cracks to obtain a
combination of the two first radial Neumann eigenfunctions with seven
nodal domains, see Figure 4.2.

Figure 4.2. Disk with cracks, Neumann condition
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Figure 5.1. Flat torus with two cracks

5. The rectangular flat torus with cracks

Consider the flat torus T := R2/ (4πZ⊕ 2πZ). Arrange the eigenvalues
in nondecreasing order,
(5.1) λ1(0) < λ2(0) ≤ λ3(0) ≤ · · ·

The eigenvalues are given by the numbers m2

4 + n2 for (m,n) pairs of
integers, with associated complex eigenfunctions

(5.2) exp(imx

2 ) exp(iny)

or equivalently, with real eigenfunctions

(5.3)
cos(mx

2 ) cos(ny), cos(mx
2 ) sin(ny),

sin(mx
2 ) cos(ny), sin(mx

2 ) sin(ny),
where m,n are non-negative integers. Accordingly, the first eigenpairs
of T are as follows.

(5.4)

Eigenvalue Value Pairs Eigenfunctions
λ1(0) 0 (0, 0) ω1(x, y) = 1
λ2(0) ω2(x, y) = cos(x2 )
λ3(0) 1

4 (1, 0) ω2(x, y) = sin(x2 )
λ4(0) ω3(x, y) = cos(y)
λ5(0) 1 (0, 1) ω4(x, y) = sin(y)

A typical linear combination of the first three eigenfunctions is of the
form α + β sin(x2 − θ)

Take the torus T, and perform two (or more) cracks parallel to the x
axis, and with the same length a. Call Ta the torus with cracks, see
Figure 5.1, and choose the Neumann boundary condition on the cracks.
For a small enough, the first three eigenfunctions of the torus T remain
eigenfunctions of the torus with cracks, Ta, with the same κ(Ta, 3) = 2.
The proof is the same as in [17]. We can choose the length a such that
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the nodal set of α + β sin(x2 − θ) and the two cracks determine three
nodal domains.

Proposition 5.1. The Extended Courant Property is false for the flat
torus with cracks (Neumann condition on the cracks).

6. Sphere S2 with cracks

On the round sphere S2, we consider the geodesic lines
z 7→ (

√
1− z2 cos θi,

√
1− z2 sin θi, z) through the north pole (0, 0, 1),

with distinct θi ∈ [0, π[. For example, removing the geodesic segments
θ0 = 0 and θ2 = π

2 with 1 − z ≤ a ≤ 1, we obtain a sphere S2
a with

a crack in the form of a cross. We choose the Neumann boundary
condition on the crack.
We can then easily produce a function, in the space generated by the
two first eigenspaces of the sphere with a crack, having five nodal do-
mains.
The first eigenvalue of S2 is λ1(0) = 0, with corresponding eigenspace
of dimension 1, generated by the function 1. The next eigenvalues of S2

are λ2(0) = λ3(0) = λ4(0) = 2 with associated eigenspace of dimension
3, generated by the functions x, y, z. The following eigenvalues of S2

are larger than or equal to 6.
As in [17], the eigenvalues of S2

a (with Neumann condition on the crack)
are non-increasing in a, and continuous to the right at a = 0. More
precisely

(6.1)


0 = λ1(a) < λ2(a) ≤ λ3(a) ≤ λ4(a) ≤ 2 < λ5(a) ≤ 6 ,
lima→0+ λi(a) = 2 for i = 2, 3, 4,
lima→0+ λ5(a) = 6 .

The function z is also an eigenfunction of S2
a with eigenvalue 2. It fol-

lows from (6.1) that for a small enough, λ4(a) = 2, with eigenfunction
z. For 0 < b < a, the linear combination z − b has five nodal domains
in S2

a, see Figure 6.1 in spherical coordinates.

Proposition 6.1. The Extended Courant Property is false for the
round 2-sphere with cracks (Neumann condition on the cracks).

Remark 6.2. (1) Removing more geodesic segments around the north
pole, we can obtain a linear combination z − b with as many nodal
domains as we want.
(2) The sphere with cracks, and Dirichlet condition on the cracks, has
been considered for another purpose in [20].
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Figure 6.1. Sphere with crack, five nodal domains

7. Numerical simulations

7.1. Equilateral triangle with rounded corners. The counterex-
amples which we have presented so far are either domains with a non
smooth boundary, or singular domains (presence of cracks). A natural
question is:
Does there exist a domain Ω, with say C∞ boundary, such that the
ECP(Ω, b) is false?
A natural idea is to start from a known example, and try to smooth
it up. A first step is to consider the equilateral triangle with rounded
corners Te,a (each corner is replaced by a circular sector with center on
the bisector, tangent to the sides, and with radius a, small enough).
The pictures in the first row of Figure 7.1 display the level sets and
nodal domains of a second Neumann eigenfunction φ of the equilateral
triangle with rounded corners, as calculated by matlab. The function
is almost symmetric with respect to one of the axes of symmetry of the
triangle. The pictures in the second row display the nodal sets of the
function a+φ for two values of a. Note that this triangle with rounded
corners is C1, not C2. Smoother approximations of the equilateral
triangle can for example be obtained by considering the super-level
sets of the first Dirichlet eigenfunction of the equilateral triangle.

Claim 7.1. Figure 7.1 gives a numerical evidence that ECP(Te,a, n) is
false.

This numerical simulation motivated us to study the deformation of
Neumann eigenfunctions along a path of C∞ domains with the sym-
metries of the equilateral triangle, and to answer the above question
positively. We refer to [9] for more details.
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Figure 7.1. Level sets of one of the second Neumann
eigenfunctions of the equilateral triangle with rounded
corners

7.2. The regular hexagon. We are looking for another counterexam-
ple to the Extended Courant Property in a convex domain of R2. We
have already mentioned that this quest was unsuccessful for the square,
and successful for the equilateral triangle. It is natural to think of other
polygons and, among them, the regular hexagon H .

7.2.1. Preliminaries. Call H = [ABCDEF ] the regular hexagon with
sides of length 1, Te = [OAB] the equilateral triangle, and Th = [OAM ]
the hemiequilateral triangle. See Figure 7.2.
In this subsection, we consider both the Dirichlet, and the Neumann
boundary conditions on ∂H.

Figure 7.2. The hexagon

Only a small portion (asymptotically one-sixth) of the eigenvalues, and
of the eigenfunctions, of the regular hexagon H are known explicitly,
namely those which arise from the equilateral triangle (with the Dirich-
let or the Neumann boundary condition).
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7.2.2. Numerical computations. Numerical computations of the Dirich-
let eigenvalues, and of the nodal patterns of Dirichlet eigenfunctions,
are available in the literature, see for example [5, 16]. They strongly
rely on the symmetries of the hexagon, Figure 7.3.

Figure 7.3. The lines of symmetry of the hexagon

We did not find similar computations for the Neumann eigenvalues
and eigenfunctions of H in the literature. We performed numerical
computations for this case with matlab, making use of the symmetries
as in [16], and computing the eigenvalues of the fundamental domain
R for the action of the symmetries D1 and M2, see Figure 7.4.

Figure 7.4. The domain R

More precisely, the strategy is as follows. Fix a boundary condition b
on ∂H, either the Dirichlet or the Neumann boundary condition. Nu-
merically compute the eigenvalues of R, with the boundary condition
b on ∂R ∩ ∂H = [ABQ], and with mixed boundary conditions, d or n
on the other sides, [OA] and [OQ]. Merge the four sets of numerical
eigenvalues, and re-order the result to obtain the numerical eigenvalues
of H, with boundary condition b. In order to identify eigenfunctions
invariant or anti-invariant under all the symmetries with respect to the
lines Mi and Dj, compute the eigenvalues of Th, with boundary condi-
tion b on ∂Th ∩ ∂H, and with mixed boundary conditions on the other
sides.
It turns out that the low lying eigenvalues of R and Th are simple. It
follows that one can identify the low lying eigenvalues of H correspond-
ing to the symmetries of the eigenfunctions. Using the rotation with
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center O and angle 2π
3 , one can also identify certain double eigenvalues

of H.
Assuming that the computed eigenvalues are close enough to the true
eigenvalues, using symmetries, and Courant’s nodal domain theorem, it
is possible to identify the first six Dirichlet or Neumann eigenfunctions
of H, and their nodal patterns.

7.2.3. Dirichlet boundary condition. Figure 7.5 displays the nodal pat-
terns of the first six Dirichlet eigenfunctions of H (see the figure in [5,
p. 512]).
The computations indicate that the 6th eigenvalue is simple, and that
the nodal set of the corresponding Dirichlet eigenfunction ud6 is a simple
closed curve. Taking for granted that δ6(H) is simple, using the sym-
metries of the hexagon, and making use of Courant’s nodal domain
theorem, one can show that ud6 is invariant under all the symmetries
with respect to Di,Mj. It follows that ud6 arises from the second eigen-
function of Th, with mixed boundary condition nnd (Dirichlet on the
smaller side of Th, Neumann on the other sides).

Figure 7.5. Nodal structure for the six first eigenfunc-
tions of the Dirichlet Laplacian in the hexagon

Plotting the nodal set of the linear combination ud6 + a ud1 for several
values of a, one finds some values of a for which this function has 7
nodal domains, see Figure 7.6.

Claim 7.2. Figure 7.6 provides a numerical evidence that the
ECP(H, d) is false.

Remark 7.3. Figure 7.6 also suggests that the ECP(Te, nnd) is false
(equilateral triangle with the Dirichlet boundary condition on one side,
and the Neumann boundary condition on the other sides).
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Figure 7.6. Nodal set of ud6 + a ud1 for a ∈ {0 ; 2 ; 2.113 ; 2.2}

7.2.4. Neumann boundary condition. The first Neumann eigenvalue of
the hexagon, ν1(H), is 0, with associated eigenfunction un1 ≡ 1. Fig-
ure 7.7 displays the (computed) eigenvalues, and corresponding nodal
patterns, for the next six eigenvalues νi(H), 2 ≤ i ≤ 7. It turns out that
the 8th Neumann eigenvalue of the hexagon satisfies ν8(H) ≈ 24.8989.

Figure 7.7. Eigenpairs 2–7 for the hexagon with Neu-
mann condition using matlab
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Figure 7.7 shows that the (numerical) eigenvalues νi(H), 2 ≤ i ≤ 7
come in pairs. The common value for ν6(H) and ν7(H) is ≈ 17.5461.
This suggests that these eigenvalues are equal to ν2(Te) = ν2(Th) =
16π2

9 ≈ 17.545963. Where do the eigenfunctions associated to ν6 and ν7
come from?
To better understand the situation, we have to go back to the domain
R, and look at its eigenvalues with mixed boundary conditions. For this
purpose, we decompose the boundary ∂R into three pieces, Γ1 = [OQ],
Γ2 = [OA], and Γ3 = [ABQ]. We consider the eigenvalue problem for
R, with mixed boundary conditions abn, i.e., with boundary condition
a on Γ1, b on Γ2, and n on Γ3, with a, b ∈ {d, n}.

Table 7.1. First Neumann eigenvalues of H

Eigenvalue of H Approximation Eigenvalue of R
ν2(H) ≈ 4.0432 µ1(R, dnn)
ν3(H) ≈ 4.0432 µ1(R, ndn)
ν4(H) ≈ 10.8715 µ1(R, ddn)
ν5(H) ≈ 10.8715 µ2(R, nnn)
ν6(H) ≈ 17.5461 µ2(R, dnn)
ν7(H) ≈ 17.5461 µ3(R, nnn)

Figure 7.8. Nodal pattern for µ3(R, nnn)

Figure 7.8 displays the nodal pattern and the level lines of a third
eigenfunction of (R, nnn). By reflection with respect to the lines D1
and M2, one obtains a Neumann eigenfunction uH of H, associated
with ν6(H) = ν7(H), whose nodal set is a closed simple curve around
O, and whose level lines are displayed in Figure 7.9; some level lines of
uH have six connected components, one component near each vertex of
the hexagon.
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Figure 7.9. Level lines of uH

Claim 7.4. Figures 7.8 and 7.9 provide a numerical evidence that the
ECP(H, n) is false.

Remark 7.5. The above counterexample actually arises from the coun-
terexample to ECP(Te, n) given in Section 3.

8. Conjectures

Conjectures 8.1. Numerical simulations performed by Virginie Bon-
naillie-Noël [13] suggest,

(1) The Extended Courant Property does not hold on a rectangle
with a crack, and Dirichlet boundary condition on both the crack
and the boundary of the rectangle, [10, Figure 9.1].

(2) The Extended Courant Property does not hold for the regu-
lar heptagon, with the Dirichlet boundary condition, [10, Fig-
ure 9.4].

(3) The Extended Courant Property does not hold for the regular
polygon with n sides, n ≥ 6, with the Dirichlet or the Neumann
boundary condition.

Conjectures 8.2. The numerical computations in Section 7 suggest,
(1) The Courant Extended Property does not hold for the regu-

lar hexagon with either the Dirichlet boundary or the Neumann
boundary conditions.

(2) The Courant Extended Property does not hold for the equilat-
eral triangle, with the Dirichlet boundary condition on one side,
and the Neumann condition on the other sides.

Appendix A. Eigenvalues of the equilateral triangle

In this appendix, we recall the description of the eigenvalues of the
equilateral triangle. For the reader’s convenience, we retain the nota-
tion of [7, Section 2].
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A.1. General formulas. Let E2 be the Euclidean plane with the
canonical orthonormal basis {e1 = (1, 0), e2 = (0, 1)}, scalar product
〈·, ·〉 and associated norm | · |.
Consider the vectors

(A.1) α1 = (1,− 1√
3

), α2 = (0, 2√
3

), α3 = (1, 1√
3

) = α1 + α2 ,

and

(A.2) α∨1 = (3
2 ,−
√

3
2 ), α∨2 = (0,

√
3), α∨3 = (3

2 ,
√

3
2 ) = α∨1 + α∨2 .

Then

(A.3) α∨i = 3
2αi, |αi|

2 = 4
3 , |α

∨
i |2 = 3.

Define the mirror symmetries

(A.4) si(x) = x− 2 〈x, αi〉
〈αi, αi〉

αi = x− 2
3〈x, α

∨
i 〉α∨i ,

whose axes are the lines
(A.5) Li = {x ∈ E2 | 〈x, αi〉 = 0}.
Let W be the group generated by these mirror symmetries. Then,
(A.6) W = {1, s1, s2, s3, s1 ◦ s2, s1 ◦ s1} ,
where s1 ◦ s2 (resp. s2 ◦ s1) is the rotation with center the origin and
angle 2π

3 (resp. −2π
3 ).

Remark. The above vectors are related to the root system A2 and W
is the Weyl group of this root system.
Let
(A.7) Γ = Zα∨1 ⊕ Zα∨2
be the (equilateral) lattice. The set
(A.8) DΓ = {sα∨1 + tα∨2 | 0 ≤ s, t ≤ 1}
is a fundamental domain for the action of Γ on E2. Another fundamen-
tal domain is the closure of the open hexagon (see Figure 7.2)
(A.9) H = [A,B,C,D,E, F ] ,
whose vertices are given by

(A.10)

 A = (1, 0);B = (1
2 ,
√

3
2 ); (−1

2 ,
√

3
2 );

D = (−1, 0);E = (−1
2 ,−

√
3

2 );F = (1
2 ,−

√
3

2 ) .
Call Te the equilateral triangle
(A.11) Te = [O,A,B] ,
where O = (0, 0).



COURANT NODAL DOMAIN PROPERTY 25

Let Γ∗ be the dual lattice of the lattice Γ, defined by

(A.12) Γ∗ = {x ∈ E2 | ∀γ ∈ Γ, 〈x, γ〉 ∈ Z} .

Then,

(A.13)

 Γ∗ = Z$1 ⊕ Z$2 ,

where $1 = (2
3 , 0) and $2 = (1

3 ,
1√
3) .

Define the set C (an open Weyl chamber of the root system A2),

(A.14) C = {x$1 + y$2 | x, y > 0} ,

and let Te denote the equilateral torus E2/Γ.

A complete set of orthogonal (not normalized) eigenfunctions of −∆
on Te is given (in complex form) by the exponentials

(A.15) φp(x) = exp(2iπ〈x, p〉) where x ∈ E2 and p ∈ Γ∗ .

Furthermore, for p = m$1 + n$2, with m,n ∈ Z, the multiplicity of
the eigenvalue λ̂(m,n) = 4π2|p|2 = 16π2

9 (m2 +mn+ n2) is equal to the
number of points (k, `) in Z2 such that k2 + k`+ `2 = m2 +mn+ n2.

The closure of the equilateral triangle Te is a fundamental domain of
the action of the semi-direct product Γ oW on E2 or equivalently, a
fundamental domain of the action of W on T2

e.

For the following proposition, we refer to [6].

Proposition A.1. Complete orthogonal (not normalized) sets of ei-
genfunctions of the equilateral triangle Te in complex form are given,
respectively for the Dirichlet (resp. Neumann) boundary condition on
∂Te, as follows.

(1) Dirichlet boundary condition on ∂Te. The family is

(A.16) Φd
p(x) =

∑
w∈W

det(w)exp(2iπ〈x,w(p)〉)

with p ∈ C ∩ Γ∗. Furthermore, for p = m$1 + n$2, with
m,n positive integers, the multiplicity of the eigenvalue 4π2|p|2
is equal to the number of solutions q ∈ C ∩ Γ∗ of the equation
|q|2 = |p|2.

(2) Neumann boundary condition on ∂Te. The family is

(A.17) Φn
p(x) =

∑
w∈W

exp(2iπ〈x,w(p)〉)

with p ∈ C ∩ Γ∗. Furthermore, for p = m$1 + n$2, with m,n
non-negative integers, the multiplicity of the eigenvalue 4π2|p|2
is equal to the number of solutions q ∈ C ∩ Γ∗ of the equation
|q|2 = |p|2.
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Remark. To obtain corresponding complete orthogonal sets of real
eigenfunctions, it suffices to consider the functions

Cp = <(Φp) and Sp = =(Φp) .
For p = m$1 + n$2, with m,n ∈ N \ {0} for the Dirichlet boundary
condition (resp. m,n ∈ N for the Neumann boundary condition), we
denote these functions by Cm,n and Sm,n.
In order to give explicit formulas for the first eigenfunctions, we have
to examine the action of the group W on the lattice Γ∗. A sim-
ple calculation yields the following table in which we simply denote
m$1 + n$2 by (m,n).

(A.18)

w (m,n) w(m,n) det(w)
1 (m,n) (m,n) 1
s1 (m,n) (−m,m+ n) −1
s2 (m,n) (m+ n,−n) −1
s3 (m,n) (−n,−m) −1

s1 ◦ s2 (m,n) (−m− n,m) 1
s2 ◦ s1 (m,n) (n,−m− n) 1

Remark. The above table should be compared with [7, Table], in
which there is a slight unimportant error (the lines s1 ◦ s2 and s2 ◦ s1
are interchanged).
Remark. Using the above chart, one can easily prove the following
relations.

(A.19)

 Cd
n,m = −Cd

m,n and Sd
n,m = Sd

m,n ,

Cn
n,m = Cn

m,n and Sn
n,m = −Sn

m,n .

A.2. Neumann boundary condition, first three eigenfunctions.
The first Neumann eigenvalue of Te is 0, corresponding to the point
0 = (0, 0) ∈ Γ∗, with first eigenfunction ϕ1 ≡ 1 up to scaling.
The second Neumann eigenvalue corresponds to the pairs (1, 0) and
(0, 1). According to the preceding remark, it suffices to consider Cn

1,0
and Sn

1,0. Using Proposition A.1, and the table (A.18), we find that, at
the point [s, t] = sα∨1 + tα∨2 ,

(A.20)

 Cn
1,0([s, t]) = 2 (cos(2πs) + cos(2π(−s+ t)) + cos(2πt)) ,

Sn
1,0([s, t]) = 2 (sin(2πs) + sin(2π(−s+ t))− sin(2πt)) .
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Up to a factor 2, this gives the following two independent eigenfunctions
for the Neumann eigenvalue 16π2

9 , in the (x, y) variables, with (x, y) =(
3
2s,−

√
3

2 s+
√

3t
)
or (s, t) =

(
2
3x,

1
3x+ 1√

3y
)
,

(A.21)



ϕn
2(x, y) = cos(4π

3 x) + cos(2π
3 (−x+

√
3y))

+ cos(2π
3 (x+

√
3y)) ,

ϕn
3(x, y) = sin(4π

3 x) + sin(2π
3 (−x+

√
3y))

− sin(2π
3 (x+

√
3y)) .

The first eigenfunction is invariant under the mirror symmetry with
respect to the median OM of the equilateral triangle, see Figure 3.1.
The second eigenfunction is anti-invariant under the mirror symmetry
with respect to this median. Its nodal set is equal to the median itself.

A.3. Dirichlet boundary condition, first three eigenfunctions.
The first Dirichlet eigenvalue of Te is δ1(Te) = 16π2

3 . A first eigenfunc-
tion is given by Sd

1,1. Using Proposition A.1 and Table A.18, we find
that this eigenfunction is given, at the point [s, t] = sα∨1 + tα∨2 , by the
formula

(A.22)
{
ϕd

1([s, t]) = 2 sin 2π(s+ t) + 2 sin 2π(s− 2t)
+2 sin 2π(t− 2s) .

Substituting the expressions of s and t in terms of x and y, one obtains
the formula,

(A.23)
ϕd

1(x, y) = 2 sin
(
2π(x+ y√

3)
)
− 2 sin

(
4π y√

3

)
−2 sin

(
2π(x− y√

3)
)
,

The second Dirichlet eigenvalue has multiplicity 2,

δ2(Te) = δ3(Te) = 112π2

9 .

The eigenfunctions Cd
2,1 and Sd

2,1 are respectively anti-invariant and
invariant under the mirror symmetry with respect to [OM ], with values
at the point [(s, t)] given by the formulas,

(A.24)



ϕd
2([s, t]) = sin 2π(2s+ t) + sin 2π(s+ 2t)

+ sin 2π(2s− 3t)− sin 2π(3s− 2t)
+ sin 2π(s− 3t)− sin 2π(3s− t) ,

ϕd
3([s, t]) = cos 2π(2s+ t)− cos 2π(s+ 2t)

− cos 2π(2s− 3t) + cos 2π(3s− 2t)
+ cos 2π(s− 3t)− cos 2π(3s− t) .

Substituting the expressions of s and t in terms of x and y, one obtains
the formulas,
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(A.25)
ϕd

2(x, y) = sin
(

2π
3 (5x+

√
3y)

)
− sin

(
2π
3 (5x−

√
3y)

)
+ sin

(
2π
3 (x− 3

√
3y)

)
− sin

(
2π
3 (x+ 3

√
3y)

)
+ sin

(
4π
3 (2x+

√
3y)

)
− sin

(
4π
3 (2x−

√
3y)

)
.

and

(A.26)
ϕd

3(x, y) = cos
(

2π
3 (5x+

√
3y)

)
− cos

(
2π
3 (5x−

√
3y)

)
+ cos

(
2π
3 (x− 3

√
3y)

)
− cos

(
2π
3 (x+ 3

√
3y)

)
+ cos

(
4π
3 (2x+

√
3y)

)
− cos

(
4π
3 (2x−

√
3y)

)
.
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