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ON COURANT’S NODAL DOMAIN PROPERTY FOR
LINEAR COMBINATIONS OF EIGENFUNCTIONS

PIERRE BÉRARD AND BERNARD HELFFER

Abstract. We revisit Courant’s nodal domain property for linear
combinations of eigenfunctions, and propose new, simple and ex-
plicit counterexamples for domains in R2, S2, T2, and R3, including
convex domains.

1. Introduction

Let Ω ⊂ Rd be a bounded open domain or, more generally, a compact
Riemannian manifold with boundary.
Consider the eigenvalue problem

(1.1)
{ −∆u = λu in Ω ,

B(u) = 0 on ∂Ω ,

where B(u) is some homogeneous boundary condition on ∂Ω, so that
we have a self-adjoint boundary value problem (including the empty
condition if Ω is a closed manifold). For example, we can choose
D(u) = u|∂Ω for the Dirichlet boundary condition, or N(u) = ∂u

∂ν
|∂Ω for

the Neumann boundary condition.
Call H(Ω, B) the associated self-adjoint extension of −∆, and list its
eigenvalues in nondecreasing order, counting multiplicities,
(1.2) 0 ≤ λ1(Ω, B) < λ2(Ω, B) ≤ λ3(Ω, B) ≤ · · ·
For any n ≥ 1, define the number
(1.3) τ(Ω, B, n) = min{k | λk(Ω, B) = λn(Ω, B)}.

Shorthand. We use u ∈ λn(Ω, B) as a shorthand for u is an eigen-
function of H(Ω, B) associated with the eigenvalue λn(Ω, B) i.e.,

H(Ω, B)(u) = λn(Ω, B)u .
Given a real continuous function v on Ω, define its nodal set
(1.4) Z(v) = {x ∈ Ω | v(x) = 0} ,
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and call β0(v) the number of connected components of Ω \ Z(v) i.e.,
the number of nodal domains of v.

Theorem 1.1. [Courant (1923)]
For any nonzero u ∈ λn(Ω, B),
(1.5) β0(u) ≤ τ(Ω, B, n) ≤ n .

Courant’s nodal domain theorem can be found in [10, Chap. V.6]. A
footnote in [10, p. 454] (see also the second footnote in [9, p. 394])
indicates that this theorem also holds for any linear combination of the
n first eigenfunctions, and refers to the PhD thesis of Horst Herrmann
(Göttingen, 1932) [17].
For later reference, we write a precise statement. Given r > 0, de-
note by L(Ω, B, r) the space of linear combinations of eigenfunctions
of H(Ω, B) associated with eigenvalues less than or equal to r,

(1.6) L(Ω, B, r) =

 ∑
λj(Ω,B)≤r

cj uj | cj ∈ R, uj ∈ λj(Ω, B)

 .

Statement 1.2. [Extended Courant Property]
Let v ∈ L (Ω, B, λn(Ω, B)) be any linear combination of eigenfunctions
associated with the n first eigenvalues of the eigenvalue problem (1.1).
Then,
(1.7) β0(v) ≤ τ(Ω, B, n) ≤ n .

The footnote in [10, p. 454] claims that Statement 1.2 is true.
Remarks on the Extended Courant Property.
1. Statement 1.2 is true for Sturm-Liouville equations. This was first
announced by C. Sturm in 1833, [27] and proved in [28]. Other proofs
were later on given by J. Liouville and Lord Rayleigh who both cite
Sturm explicitly, see [7] for more details.
2. Å. Pleijel mentions Statement 1.2 in his well-known paper [26] on
the asymptotic behaviour of the number of nodal domains of a Dirichlet
eigenfunction associated with the n-th eigenvalue for a plane domain.
At the end of the paper, he also considers the Neumann boundary
condition.
“In order to treat, for instance the case of the free three-dimensional
membrane [0, π]3, it would be necessary to use, in a special case, the
theorem quoted in [9], p. 3941. This theorem which generalizes part
of the Liouville-Rayleigh theorem for the string asserts that a linear
combination, with constant coefficients, of the n first eigenfunctions
can have at most n nodal domains. However, as far as I have been able
to find there is no proof of this assertion in the literature.”

1Pleijel refers to the German edition, this is p. 454 in the English edition [10].
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3. Arnold [2], see also [20, 21] and [19], mentions that he actually
discussed the footnote in [10, p. 454] with R. Courant, that the Ex-
tended Courant Property cannot be true in general, and that O. Viro
produced counterexamples for the sphere. More precisely, as early as
1973, V. Arnold [1] pointed out that, when Ω is the round sphere SN ,
the Extended Courant Property is related to Hilbert’s 16th problem.
Indeed, the eigenfunctions of the Laplace-Beltrami operator on SN are
the spherical harmonics i.e., the restrictions to the sphere of the har-
monic homogeneous polynomials, so that the linear combinations of
spherical harmonics of degree less than or equal to n are the restric-
tions to the sphere of the homogeneous polynomials of degree n in
(N + 1) variables. The following citation is taken from [3].
Eigen oscillations of the sphere with the standard metric are described
by spherical functions, i.e., polynomials. Therefore the Courant state-
ment cited above implies the following estimate

dimRH0(RPN − Vn,R) ≤ CN
N+n−2 + 1 (1)

for the number of connected components of the complement to an alge-
braic hypersurface of degree n in the N-dimensional projective space.
For planar curves (N = 2), the estimation (1) is exact (it turns into
equality on a configuration of n lines in general position) and can be
proven independently of the Courant statement. For smooth surfaces of
degree 4 in RP 3 the estimation is also exact and proved (by V.M. Khar-
lamov).
In the general case, the Courant statement is false (a counterexample
can be constructed by a small perturbation of the standard metric on
the sphere). Nonetheless the estimation (1) seems to be plausible: for
proving it one has to verify the Courant statement only for oscillation
of the sphere (or the projective space) with the standard metric.1

1 Translator’s remark: the inequality (1) does not hold true for surfaces
of even degree ≥ 6 in RP 3. Counterexamples to (1) were constructed
in the paper of O. Viro, “Construction of multicomponent real algebraic
surfaces”, Soviet Math. Dokl. 20, No. 5, 991–995 (1979).

4. In [13], Gladwell and Zhu refer to Statement 1.2 as the Courant-
Herrmann conjecture. They claim that this extension of Courant’s
theorem is not stated, let alone proved, in Herrmann’s thesis or subse-
quent publications2. They consider the case in which Ω is a rectangle
in R2, stating that they were not able to find a counterexample to the
Extended Courant Property in this case. They also provide numerical
evidence that there are counterexamples for more complicated (non
convex) domains.

2The only relevant one seems to be [18].
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The purpose of the present paper is to provide simple counterexamples
to the Extended Courant Property for domains in R2, T2, S2, and R3,
including convex domains.
The paper is organized as follows. In Section 2, we recall the ideas
from [13]. In Sections 3, 4 and 5, we construct counterexamples by
introducing cracks (with Neumann boundary condition), respectively
on the rectangle, the rectangular torus, and the round sphere. In Sec-
tion 6, we consider the cube with Dirichlet boundary condition. In
Sections 7 and 8, we consider the equilateral triangle and the regular
hexagon respectively, with either Dirichlet or Neumann boundary con-
ditions. Section 10 contains numerical simulations kindly provided by
V. Bonnaillie-Noël. In AppendixA, we give a summary of the descrip-
tion of the eigenvalues and eigenfunctions of the equilateral triangle
with either Dirichlet or Neumann boundary conditions.
We point out that some of our examples rely on numerical computations
of eigenvalues or nodal patterns of eigenfunctions.
Acknowledgements. The authors are very much indebted to Vir-
ginie Bonnaillie-Noël who performed the simulations and produced the
pictures for Section 10.

2. Rectangular membrane, Dirichlet boundary condition

We summarize the ideas from [13].
Consider the square Sπ =]0, π[2, with Dirichlet boundary condition.
The eigenvalues are given by the numbers

q2(m,n) = m2 + n2 , for m,n ∈ N• .

More precisely, the Dirichlet eigenvalues of the square Sπ are
δ1 [2] < δ2 = δ3 [5] < δ4 [8] < δ5 = δ6 [10] < . . .

< δ7 = δ8 [13] < δ9 = δ10 [17] < δ11 [18] < · · ·
In this list the numbers in brackets are the actual values of the eigen-
values, for example, δ2 = δ3 = 5.
A corresponding complete family of Dirichlet eigenfunctions for the
square Sπ is given by the functions φm,n(x, y) = sin(mx) sin(ny) for
m,n ∈ N•. Using the classical Chebyshev polynomials, we have

φm,n(x, y) = φ1,1(x, y)Um−1(cosx)Un−1(cos y) .

Given some positive r, denote by Lr the set L(Sπ, D, r). A function
Φ ∈ Lr is of the form

Φ(x, y) :=
∑

q2(m,n)≤r
cm,n φm,n(x, y) .
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When looking at the nodal pattern of Φ, we can factor out the non-
vanishing factor φ1,1, and consider instead the nodal pattern of the
function,

Φ1(x, y) =
∑

q2(m,n)≤r
cm,n Um−1(cosx)Un−1(cos y) .

On the other-hand, using the diffeomorphism
F : ]0, π[3 (x, y) 7→ (X, Y ) := (cos x, cos y) ∈]− 1, 1[ ,

we see that the nodal pattern of Φ1 is diffeomorphic to the nodal pattern
of the function,

Ψ(X, Y ) :=
∑

q2(m,n)≤r
cm,n Um−1(X)Un−1(Y ) ,

for (X, Y ) ∈]− 1, 1[2.
Choosing r = δ6 = 10, i.e. linear combinations involving the six first
Dirichlet eigenfunctions of the square, the linear combinations Ψ gen-
erate the subspace of R[X, Y ] spanned by the family

{1, X, Y,X2, XY, Y 2}
i.e., the polynomials in two variables, of degree less than or equal to 2.
An immediate consequence of this analysis is that any d ∈ {1, 2, 3, 4, 5}
is achieved as β0(Φ) for some Φ ∈ L10. Notice that 5 is precisely
Courant’s bound τ(Sπ, D, 6), see Figure 2.1.
Choosing r = δ10 = 17, i.e. linear combinations involving the ten first
eigenvalues, the linear combinations generate the subspace spanned by
the family

{1, X, Y,X2, XY, Y 2, XY 2, X2Y,X3, Y 3} ,
which corresponds to the polynomials of degree less than or equal to 3.
An immediate consequence is that any d ∈ {1, 2, 3, 4, 5, 6, 7, 8} is achie-
ved as β0(Φ) for some Φ ∈ L17. Notice that 8 < 9 = τ(Sπ, D, 10).
Gladwell and Zhu conclude that it does not seem possible to find an
example of Φ ∈ L17 with nine or more nodal domains.
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Figure 2.1. The pictures and computations of
Gladwell-Zhu [13]

3. Rectangle with a crack

Let R be the rectangle ]0, 4π[×]0, 2π[. For 0 < a ≤ 1, let Ca :=
]0, a] × {π} and Ra := R \ Ca. In this section, we only consider the
Neumann boundary condition on Ca, and either the Dirichlet or Neu-
mann boundary condition on ∂R. The setting is the one described in
[12, Section 8].

We call

(3.1)


0 < δ1(0) < δ2(0) ≤ δ3(0) ≤ · · ·
resp.
0 = ν1(0) < ν2(0) ≤ ν3(0) ≤ · · ·

the eigenvalues of −∆ in R, with Dirichlet (resp. Neumann) boundary
condition on ∂R. They are given by the numbers m2

16 + n2

4 , for pairs
(m,n) of positive integers for the Dirichlet problem (resp. for pairs
of non-negative integers for the Neumann problem). Corresponding
eigenfunctions are products of sines (Dirichlet) or cosines (Neumann).
The eigenvalues are arranged in non-decreasing order, counting multi-
plicities.
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Similarly, call

(3.2)


0 < δ1(a) < δ2(a) ≤ δ3(a) ≤ · · ·
resp.
0 = ν1(a) < ν2(a) ≤ ν3(a) ≤ · · ·

the eigenvalues of −∆ inRa, with Dirichlet (resp. Neumann) boundary
condition on ∂R, and Neumann boundary condition on Ca.
The first three Dirichlet (resp. Neumann) eigenvalues for the rectangle
R are as follows.

(3.3)

Eigenvalue Value Pairs Eigenfunctions
δ1(0) 5

16 (1, 1) φ1(x, y) = sin(x4 ) sin(y2)
δ2(0) 1

2 (2, 1) φ2(x, y) = sin(x2 ) sin(y2)
δ3(0) 13

16 (3, 1) φ3(x, y) = sin(3x
4 ) sin(y2)

ν1(0) 0 (0, 0) ψ1(x, y) = 1
ν2(0) 1

16 (1, 0) ψ2(x, y) = cos(x4 )
ν3(0) (0, 1) ψ3(x, y) = cos(y2)
ν4(0) 1

4 (2, 0) ψ4(x, y) = cos(x2 )

We summarize [12], Propositions (8.5), (8.7), (9.5) and (9.9), into the
following theorem.

Theorem 3.1. With the above notation, the following properties hold.
(1) For i ≥ 1, the functions [0, 1] 3 a 7→ δi(a), resp. [0, 1] 3 a 7→

νi(a), are non-increasing.
(2) For i ≥ 1, the functions ]0, 1[3 a 7→ δi(a), resp. ]0, 1[3 a 7→

νi(a), are continuous.
(3) For i ≥ 1, lima→0+ δi(a) = δi(0) and lima→0+ νi(a) = νi(0).

It follows that for a positive, small enough, we have

(3.4)
{ 0 < δ1(a) ≤ δ1(0) < δ2(a) ≤ δ2(0) < δ3(a) ≤ δ3(0) , and

0 = ν1(a) = ν1(0) < ν2(a) ≤ ν2(0) < ν3(a) ≤ ν4(a) ≤ ν3(0) .
Observe that for i = 1 and 2, ∂φi

∂y
(x, π) = 0 and ∂ψi

∂y
(x, y) = 0. It follows

that for a small enough, the functions φ1 and φ2 (resp. the functions ψ1
and ψ2) are the first two eigenfunctions for Ra with the Dirichlet (resp.
Neumann) boundary condition on ∂R, and the Neumann boundary
condition on Ca, with associated eigenvalues 5

16 and 1
2 (resp. 0 and 1

4).
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Figure 3.1. Rectangle with a crack (Neumann condition)

We have
αφ1(x, y) + βφ2(x, y) = sin(x4 ) sin(y2)

(
α + 2β cos(x4 )

)
,

and
αψ1(x, y) + βψ2(x, y) = α + β cos(x4 ).

We can choose the coefficients α, β in such a way that these linear
combinations of the first two eigenfunctions have two (Figure 3.1 left)
or three (Figure 3.1 right) nodal domains in Ra .
This proves that the Extended Courant Property is false in
Ra with either Dirichlet or Neumann condition on ∂R, and
Neumann condition on Ca.
Remark. In the Neumann case, notice that we can introduce sev-
eral cracks {(x, bj) | 0 < x < aj}kj=1 in such a way that for any
d ∈ {2, 3, . . . k + 2} there exists a linear combination of 1 and cos(x4 )
with d nodal domains.
Remark. Numerical simulations, kindly provided by Virginie Bonnail-
lie-Noël, indicate that the Extended Courant Property does not hold for
a rectangle with a crack, with Dirichlet boundary condition on both
the boundary of the rectangle, and the crack, see Section 10. Dirichlet
cracks appear in another context in [14] (see also references therein).
Remark. It is easy to make an analogous construction for the unit
disk (Neumann case) with radial cracks. As computed for example
in [16] (Subsection 3.4), the second radial eigenfunction has labelling
6 (λ6 ≈ 14, 68), and we can introduce six radial cracks to obtain a
combination of the two first radial Neumann eigenfunctions with seven
nodal domains, see Figure 3.2.
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Figure 3.2. Disk with cracks, Neumann condition

4. The rectangular flat torus with cracks

Consider the flat torus T := R2/ (4πZ⊕ 2πZ). Arrange the eigenvalues
in nondecreasing order,

(4.1) λ1(0) < λ2(0) ≤ λ3(0) ≤ · · ·

The eigenvalues are given by the numbers m2

4 + n2 for (m,n) pairs of
integers, with associated complex eigenfunctions

(4.2) exp(imx

2 ) exp(iny)

or equivalently, with real eigenfunctions

(4.3)
cos(mx

2 ) cos(ny), cos(mx
2 ) sin(ny),

sin(mx
2 ) cos(ny), sin(mx

2 ) sin(ny),
where m,n are non-negative integers. Accordingly, the first eigenpairs
of T are as follows.

(4.4)

Eigenvalue Value Pairs Eigenfunctions
λ1(0) 0 (0, 0) ω1(x, y) = 1
λ2(0) ω2(x, y) = cos(x2 )
λ3(0) 1

4 (1, 0) ω2(x, y) = sin(x2 )
λ4(0) ω3(x, y) = cos(y)
λ5(0) 1 (0, 1) ω4(x, y) = sin(y)

A typical linear combination of the first three eigenfunctions is of the
form α + β sin(x2 − θ)

Take the torus T, and perform two (or more) cracks parallel to the x
axis, and with the same length a. Call Ta the torus with cracks, see
Figure 4.1, and choose the Neumann boundary condition on the cracks.
For a small enough, the first three eigenfunctions of the torus T remain
eigenfunctions of the torus with cracks, Ta, with the same τ(Ta, 3) = 2.
We can choose the length a such that the nodal set of α+ β sin(x2 − θ)
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Figure 4.1. Flat torus with two cracks

and the two cracks determine three nodal domains. The proof is the
same as in [12].
This proves that the Extended Courant Property is false on
the flat torus with cracks.

5. Sphere S2 with cracks

On the round sphere S2, we consider the geodesic lines
z 7→ (

√
1− z2 cos θi,

√
1− z2 sin θi, z) through the north pole (0, 0, 1),

with distinct θi ∈ [0, π[. For example, removing the geodesic segments
θ0 = 0 and θ2 = π

2 with 1 − z ≤ a ≤ 1, we obtain a sphere S2
a with

a crack in the form of a cross. We choose the Neumann boundary
condition on the crack.
We can then easily produce a function, in the space generated by the
two first eigenspaces of the sphere with a crack, having five nodal do-
mains.
The first eigenvalue of S2 is λ1(0) = 0, with corresponding eigenspace
of dimension 1, generated by the function 1. The next eigenvalues of S2

are λ2(0) = λ3(0) = λ4(0) = 2 with associated eigenspace of dimension
3, generated by the functions x, y, z. The following eigenvalues of S2

are larger than or equal to 6.
As in [12], the eigenvalues of S2

a (with Neumann condition on the crack)
are non-increasing in a, and continuous to the right at a = 0. More
precisely

(5.1)


0 = λ1(a) < λ2(a) ≤ λ3(a) ≤ λ4(a) ≤ 2 < λ5(a) ≤ 6 ,
lima→0+ λi(a) = 2 for i = 2, 3, 4,
lima→0+ λ5(a) = 6 .

The function z is also an eigenfunction of S2
a with eigenvalue 2. It fol-

lows from (5.1) that for a small enough, λ4(a) = 2, with eigenfunction
z. For 0 < b < a, the linear combination z − b has five nodal domains
in S2

a, see Figure 5.1 in spherical coordinates.
It follows that the Extended Courant Property does not hold
on the sphere with cracks.
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Figure 5.1. Sphere with crack, five nodal domains

Remark 1. Removing more geodesic segments around the north pole,
we can obtain a linear combination z − b with as many nodal domains
as we want.

Remark 2. The sphere with cracks, and Dirichlet condition on the
cracks, has been considered for another purpose in [15].

6. The cube with Dirichlet boundary condition

In this section, we adapt the method used in [13] (summarized in Sec-
tion 2) to the 3D-case.

Consider the cube Cπ =]0, π[3. The eigenvalues are the numbers

q3(k,m, n) = k2 +m2 + n2 , k,m, n ∈ N•.

A corresponding complete set of eigenfunctions is given by the functions

φk,m,n(x, y, z) = sin(kx) sin(my) sin(nz) , k,m, n ∈ N•.

The first Dirichlet eigenvalues of the cube are given by
δ1 [3] < δ2 = δ3 = δ4 [6] < δ5 = δ6 = δ7 [9] < . . .
δ8 = δ9 = δ10 [11] < δ11 · · · .

Using Chebyshev polynomials, for k,m, n ∈ N• we have

φk,m,n(x, y, z) = φ1,1,1(x, y, z)Uk−1(cosx)Um−1(cos y)Un−1(cos z) .

The factor φ1,1,1 does not vanish in the cube Cπ. The map

Cπ 3 (x, y, z) 7→ (X, Y, Z) := (cos(x), cos(y), cos(z)) ∈]− 1, 1[3

is a diffeomorphism from Cπ to the cube ]− 1, 1[3.

Let Lr now denote the set L(Cπ, D, r).

In view of the preceding remarks, in order to count the nodal domains
of a linear combination Φ ∈ Lr,

Φ =
∑

q3(k,m,n)≤r
ck,m,n φk,m,n
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in the cube Cπ, it suffices to count the nodal domains of the correspond-
ing linear combination,

Ψ =
∑

q3(k,m,n)≤r
ck,m,n Uk−1(X)Um−1(Y )Un−1(Z)

in the cube ]− 1, 1[3.
Using the formulas for the Chebyshev polynomials, it is easy to see
that the linear combinations Ψ for k2 +m2 +n2 ≤ 11 = δ10 correspond
to the polynomials of degree less than or equal to 2 in the variables
X, Y and Z.
In particular, the polynomial fa(X, Y, Z) := X2 + Y 2 + Z2 − a can be
represented as such a linear combination Ψ with k2 +m2 + n2 ≤ 11 .
We can consider the corresponding linear combination φa(x, y, z) ∈
L11 = Lδ10 .
When a < 0, the polynomial fa is positive in ]−1, 1[3 and, correspond-
ingly, the function φa ∈ L11 does not vanish in Cπ, so that it has one
nodal domain.
When 0 < a <

√
2, the polynomial fa has two nodal domains in ]−1, 1[3

and, correspondingly, the function φa ∈ L11 has two nodal domains in
Cπ.
When

√
2 < a <

√
3, the polynomial fa has nine nodal domains in

] − 1, 1[3 and, correspondingly, the function φa ∈ L11 has nine nodal
domains in Cπ.
On the other-hand, L11 involves eigenfunctions associated with eigen-
values less than or equal to 11 i.e., the ten first eigenfunctions. Since
11 = δ8 = δ9 = δ10, Courant’s upper bound is 8 = τ(Cπ, D, 10).
It follows that φa,

√
2 < a <

√
3, provides a counterexample to

the Extended Courant Property for the 3D-cube with Dirich-
let boundary condition.
Remark. The same method can be applied to the cube with Neumann
boundary condition, but does apparently not provide counterexamples
in this case.
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Figure 6.1. Cube with Dirichlet boundary condition

7. The equilateral triangle

Let Te denote the equilateral triangle with sides equal to 1, see Fig-
ure 7.1. The eigenvalues and eigenfunctions of Te, with either Dirichlet
or Neumann condition on the boundary ∂Te, can be completely de-
scribed, see [5, 24, 23], or [6]. We provide a summary in Appendix A.

In this section, we show that the equilateral triangle provides a counter-
example to the Extended Courant Property for both the Dirichlet and
the Neumann boundary condition.

Figure 7.1. Equilateral triangle Te = [OAB]
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7.1. Neumann boundary condition. The sequence of Neumann ei-
genvalues of the equilateral triangle Te begins as follows,

(7.1) 0 = λ1(Te, N) < 16π2

9 = λ2(Te, N) = λ3(Te, N) < λ4(Te, N) .

The second eigenspace has dimension 2, and contains one eigenfunc-
tion ϕN2 which is invariant under the mirror symmetry with respect to
the median OM , and another eigenfunction ϕN3 which is anti-invariant
under the same mirror symmetry, see Appendix A.
More precisely, according to (A.21), the function ϕN2 (x, y) can be chosen
to be,

(7.2)
{

ϕN2 (x, y) = cos(4π
3 x) + cos(2π

3 (−x+
√

3y))
+ cos(2π

3 (x+
√

3y)) ,
or, more simply,

(7.3) ϕN2 (x, y) = 2 cos
(2πx

3

)(
cos

(2πx
3

)
+ cos

(
2πy√

3

))
− 1 .

The set {ϕN2 + 1 = 0} consists of the two line segments {x = 3
4} ∩ Te

and {x+
√

3y = 3
2} ∩ Te, which meet at the point (3

4 ,
√

3
4 ) on ∂Te.

The sets {ϕ2 + a = 0}, with a ∈ {0, 1− ε, 1, 1 + ε}, and small positive
ε, are shown in Figure 7.2. When a varies from 1 − ε to 1 + ε, the
number of nodal domains of ϕ2 + a in Te jumps from 2 to 3, with the
jump occurring for a = 1.
It follows that ϕN2 + a = 0, for 1 ≤ a ≤ 1.1, provides a counter-
example to the Extended Courant Property for the equilateral
triangle with Neumann boundary condition.
Figure 7.3 displays the graphs of the function ϕN2 (top left), and of
the functions a + ϕN2 , with a ∈ {0.9, 1, 1.1}. The equilateral triangle
appears in grey, in the plane {z = 0}.
Remark. The eigenfunction ϕN2 restricted to the hemiequilateral tri-
angle is the second Neumann eigenfunction of Th = [OAM ]. The re-
striction of ϕN3 to the hemiequilateral triangle is an eigenfunction of
Th with mixed boundary condition (Dirichlet on OM and Neumann on
the other sides).
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Figure 7.2. Levels sets {ϕN2 + a = 0} for a ∈ {0 ; 0.9 ; 1 ; 1.1}

Figure 7.3. Counterexample for the Extended Courant
Property (Neumann boundary condition)
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7.2. Dirichlet boundary condition. The sequence of Dirichlet ei-
genvalues of the equilateral triangle Te begins as follows,

(7.4) δ1(Te) = 16π2

3 < δ2(Te) = δ3(Te) = 112π2

9 < δ4(Te).

More precisely, according to (A.23), the function ϕD1 (x, y) can be chosen
to be,

(7.5)
ϕD1 (x, y) = 2 sin

(
2π(x+ y√

3)
)
− 2 sin

(
4π y√

3

)
−2 sin

(
2π(x− y√

3)
)
,

or, more simply, by

(7.6)
ϕD1 (x, y) = 4 sin 2πy√

3

(
cos(2πx)− cos 2πy√

3

)
,

= −8 sin 2πy√
3 sin π(x+ y√

3) sin π(x− y√
3) ,

which shows that ϕD1 does not vanish inside Te .

The second eigenvalue has multiplicity 2, with one eigenfunction ϕD2
symmetric with respect to the median OM , and the other ϕD3 anti-
symmetric.

More precisely, according to (A.25), the function ϕD2 can be chosen to
be,

(7.7)
ϕD2 (x, y) = sin

(
2π
3 (5x+

√
3y)

)
− sin

(
2π
3 (5x−

√
3y)

)
+ sin

(
2π
3 (x− 3

√
3y)

)
− sin

(
2π
3 (x+ 3

√
3y)

)
+ sin

(
4π
3 (2x+

√
3y)

)
− sin

(
4π
3 (2x−

√
3y)

)
.

We now consider the linear combination ϕD2 + aϕD1 , with a close to 1.
Figure 7.4 is obtained by numerical computations.

Figure 7.5 displays the graphs of the function ϕD2 (top left), and of the
functions ϕD2 + aϕD1 , with a ∈ {0.8, 1, 1.1}. The equilateral triangle
appears in grey, in the plane {z = 0}.

Figure 7.4 looks very much like Figure 7.2, and we can suspect that
there is a hidden relation between ϕD2 +aϕD1 and ϕN2 +a. This is indeed
the case, as Lemma 7.1 below shows.

It follows that, when 0 < a < 1, the function ϕD2 + aϕD1 has two nodal
domains; when 1 ≤ a < 1.1, it has three nodal domains.

The function ϕD2 + aϕD1 , for 1 ≤ a ≤ 1.1, provides a counter-
example to the Extended Courant Property for the equilateral
triangle with the Dirichlet boundary condition.
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Figure 7.4. Levels sets {ϕD2 + aϕD1 = 0} for a ∈ {0 ; 0.8 ; 1 ; 1.1}

Figure 7.5. Counterexample for the Extended Courant
Property (Dirichlet boundary condition)
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7.3. Relation between ϕD2 and ϕN2 .

Lemma 7.1. With the above notation, the following equality holds,

ϕD2 = ϕD1 ϕ
N
2 .

Proof. We express the above eigenfunctions in terms of X := cos 2π
3 x

and Y := cos 2π√
3y.

First we observe from (7.3) that

ϕN2 (x, y) = 2X(X + Y )− 1 .

Secondly, we have from (7.6)

ϕD1 (x, y) = 2 sin 2πy√
3

(8X3 − 6X − 2Y ) .

Finally, it remains to compute ϕD2 . We start from (7.7), and first
factorize sin 2πy√

3 in each line. More precisely, we write,
(7.8)

sin 2π
3 (5x+

√
3y)− sin 2π

3 (5x−
√

3y) = 2 sin(2πy√
3 ) cos(52πx

3 ) ,
sin 2π

3 (x− 3
√

3y)− sin 2π
3 (x+ 3

√
3y) = −2 sin(32πy√

3 ) cos(2πx
3 ) ,

sin 4π
3 (2x+

√
3y)− sin 4π

3 (2x−
√

3y) = 2 sin(22πy√
3 ) cos(42πx

3 ) .

We now use the classical Chebyshev polynomials Tn, Un, and the rela-
tions cos(nθ) = Tn(cos θ) and sin(n+ 1)θ = sin(θ)Un(cos θ).

This gives,

ϕD2 = 2 sin 2πy√
3

(
T5(X)−XU2(Y ) + T4(X)U1(Y )

)
=: 2 sin 2πy√

3 Q(X, Y ) .

We find that

Q(X, Y ) = 16X5 − 20X3 + 6X + 2Y (8X4 − 8X2 + 1)− 4XY 2 ,

and it turns out that the polynomial Q(X, Y ) can be factorized as

Q(X, Y ) =
(
2X(X + Y )− 1

)
(8X3 − 6X − 2Y ) ,

so that ϕD2 = ϕD1 ϕ
N
2 .

In the above computation, we have used the relations,

T4(X) = 8X4 − 8X2 + 1 , T5(X) = 16X5 − 20X3 + 5X ,

and
U1(Y ) = 2Y , U2(Y ) = 4Y 2 − 1 .

�
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8. The regular hexagon

We are looking for another counterexample for the Extended Courant
Property in a convex domain of R2. We have already mentioned that
this quest was unsuccessful for the square, see Section 2. It is natural
to think of other polygons and, among them, the regular hexagon H .

Call H = [ABCDEF ] the regular hexagon with sides of length 1, Te =
[OAB] the equilateral triangle, and Th = [OAM ] the hemiequilateral
triangle. See Figure 8.1.

In this section, we consider both the Dirichlet, and the Neumann
boundary conditions on ∂H.

8.1. Preliminaries. Only a small portion (asymptotically one-sixth)
of the eigenvalues, and of the eigenfunctions, of the regular hexagon H
are known explicitly, namely those which arise from the equilateral tri-
angle, or from the hemiequilateral triangle (with Dirichlet or Neumann
boundary condition).

Numerical computations of the Dirichlet eigenvalues, and of the nodal
patterns of Dirichlet eigenfunctions, are available in the literature, see
for example [4, 11]. They strongly rely on the symmetries of the
hexagon.

We did not find similar computations for the Neumann eigenvalues
and eigenfunctions of H in the literature. We performed numerical
computations for this case with matlab, making use of the symmetries
as in [11].

Assuming that the computed eigenvalues are close enough to the true
eigenvalues, using symmetries and Courant’s nodal domain theorem, it
is possible to identify the first six Dirichlet or Neumann eigenfunctions
of H, and their nodal patterns.

As a consequence, we obtain numerical evidence that the regular hexa-
gon provides counterexamples for the Extended Courant Property, for
either Dirichlet or Neumann boundary condition.

8.2. Symmetries. Figure 8.2 displays the lines of mirror symmetry of
the regular hexagon.

For simplicity, we use the same notation for a line, and for the mirror
symmetry across that line.

Given σ, τ ∈ {+,−}, we consider the following sets of functions,

(8.1) Sσ,τ := {ϕ | ϕ ◦D1 = σ ϕ, ϕ ◦M2 = τ ϕ } .

Because the mirror symmetries with respect to D1 and M2 commute,
the eigenfunctions of the hexagon can be decomposed according to the
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Figure 8.1. The hexagon

Figure 8.2. The lines of symmetry of the hexagon

four sets Sσ,τ . Eigenfunctions in one of these sets correspond to eigen-
functions of the domain R, see Figure 8.3, with mixed boundary con-
ditions. For example, the Dirichlet eigenfunctions of H which belong
to S+,−, correspond to eigenfunctions of the domain R with Dirichlet
condition on the line [ABQ], Neumann condition on the side [OA], and
Dirichlet condition on the side [OQ]. Similar descriptions can be made
for the other cases.
We also introduce the subsets,
(8.2) Sσ,τ ⊇ S0

σ,τ := {ϕ | ϕ ◦Di = σ ϕ, ϕ ◦Mj = τ ϕ, 1 ≤ i, j ≤ 3} .
The eigenfunctions of H in one of these subsets arise from eigenfunc-
tions of the hemiequilateral triangle Th, with mixed boundary condi-
tions.
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Figure 8.3. The domain R

The Dirichlet and Neumann eigenvalues of Te and Th can be described
explicitly, together with complete sets of eigenfunctions, see [5, 24, 23],
or [6] and Appendix A for a summary. The eigenvalues and eigenfunc-
tions of Th with mixed boundary conditions are, generally speaking,
not known explicitly.
For example, the first Dirichlet eigenfunction u1,D of H arises from the
first eigenfunction for Th, with mixed boundary condition NND (sides
listed in decreasing order of length), i.e., Dirichlet condition on the
smaller side, Neumann on the other sides of Th.
Note that the eigenfunctions of H which belong to S0

+,− or to S0
−,+ have

at least 6 nodal domains. According to Courant’s nodal domain the-
orem, they correspond to eigenvalues with index at least 6. Similarly,
the eigenfunctions of H which belong to S0

−,− have at least 12 nodal
domains, and hence correspond to eigenvalues with index at least 12.
Letting R denote the rotation with center the origin, and angle 2π

3 ,
define the map
(8.3) T (ϕ) = ϕ ◦R− ϕ ◦R2 .

One can show that T maps Sσ,τ into S−σ,−τ , with kernel S0
σ,τ , and that

it is a bijection from the orthogonal of S0
σ,τ in Sσ,τ onto the orthogonal

of S0
−σ,−τ in S−σ,−τ (orthogonality with respect to the L2(H) inner

product).

8.3. Numerical computations. Fix a boundary condition B on ∂H,
either Dirichlet or Neumann. Numerically compute the eigenvalues of
R, with the boundary condition B on ∂R∩∂H, and with mixed bound-
ary conditions on the other sides. Merge the four sets of numerical
eigenvalues, and re-order the result to obtain the numerical eigenvalues
of H, with boundary condition B. In order to identify eigenfunctions
in S0

σ,τ , compute the eigenvalues of Th, with boundary condition B on
∂Th ∩ ∂H, and with mixed boundary conditions on the other sides.
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It turns out that the low lying eigenvalues ofR and Th are simple. It fol-
lows that one can identify the low lying eigenvalues of H corresponding
to eigenfunctions in the classes Sσ,τ and S0

σ,τ , for σ, τ ∈ {+,−}. Using
the map T , one can identify the double eigenvalues of H.

8.4. Dirichlet boundary condition. Figure 8.4, reproduced from
[4], displays the nodal patterns of the twenty-one first Dirichlet eigen-
functions of H. We produced Figure 8.5 with matlab.
The computations indicate that the 6-th eigenvalue is simple, and that
the nodal set of the corresponding Dirichlet eigenfunction u6,D is a
closed simple line. Taking for granted that δ6(H) is simple, using the
symmetries of the hexagon, and making use of Courant’s nodal domain
theorem, one can show that u6,D actually belongs to S0

+,+. It follows
that it arises from the second eigenfunction of Th, with mixed boundary
condition NND (Dirichlet on the smaller side, Neumann on the other
sides).

Figure 8.4. Nodal structure for the Dirichlet Laplacian
in the hexagon [4, Fig. 2]
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Figure 8.5. Eigenpairs for the hexagon with Dirichlet
condition using matlab

The corresponding nodal patterns in Figure 8.4 and Figure 8.5 appear
as slightly different. This is because we have 2-dimensional eigenspaces
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associated with λ2 = λ3 and λ4 = λ5 . The computations in [4] (Fig-
ure 8.4) take the symmetries into account from the beginning. Fig-
ure 8.5 was produced with matlab, directly on the hexagon, the com-
puted eigenfunctions are not always the symmetric ones. This figure is
provided for comparison with the Neumann case below, see Figure 8.6.
Concerning the Extended Courant Property, the natural question is:

Question 1: Does there exist a linear combination of u1,D and u6,D
with at least 7 nodal domains?
Consider Th with mixed boundary condition NND. Call f1 a first eigen-
function, and f2 a second eigenfunction. To answer Question 1, it suf-
fices to prove that a level line of f2/f1 cuts the equilateral triangle into
three parts.
As far as we know, the eigenfunctions f2 and f1 are not known trigonome-
tric polynomials. This is stated in [25, Section 3], without proof.
This question can at least be tackled numerically (the main difficulty
being that both f1 and f2 vanish on one side).
Numerical simulations, kindly provided by Virginie Bonnaillie-Noël,
suggest that the answer to Question 1 is positive. See Section 10.

8.5. Neumann boundary condition. The first eigenpairs for the
hexagonH with Neumann boundary condition, as computed with mat-
lab, are shown in Figure 8.6.
The first Neumann eigenfunction of the hexagon is 0, with associated
eigenfunction u1,N ≡ 1. Figure 8.6 suggests that the 6-th Neumann
eigenvalue of the hexagon has multiplicity 2, and that the nodal set
of one of the associated eigenfunction is a simple closed curve. The
figure also suggests that the corresponding eigenfunction u6,N is in-
variant under all mirror symmetries of the hexagon, and hence that
it is obtained from an eigenfunction of the hemiequilateral triangle Th
with Neumann boundary condition. The computed value ≈ 17.5474
shows that this corresponds to the second Neumann eigenfunction of
the hemiequilateral triangle, associated with the eigenvalue 16π2

9 .
Figure 8.7 displays the results of two matlab computations for ν6(H)
and ν7(H), with different mesh sizes. They indicate that it is not always
easy to identify the eigenfunctions via numerical computations when
the eigenvalue is degenerate (although, in this case, one still sees the
rotational symmetry with angle 2π

3 ). This difficulty can be avoided by
using symmetries from the start, and computing the eigenvalues of the
domain R as explained above.
As far as the Extended Courant Property is concerned, the natural
question is:
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Figure 8.6. Eigenpairs for the hexagon with Neumann
condition using matlab

Question 2: Does there exist a linear combination of u1,N and u6,N
with at least 7 nodal domains?
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Figure 8.7. Two matlab computations for ν6(H) and ν7(H)

In order to identify the eigenspace E associated with the Neumann
eigenvalue ν6(H), we use the numerical computations of the eigenval-
ues of the domain R, with the Neumann boundary condition on the
line [ABQ], and either Dirichlet or Neumann boundary condition on
the sides [OA] and [OQ]. Assume that the numerically computed eigen-
values are close enough to the true eigenvalues. Using the numerical
or exact computations of the eigenvalues arising from the triangle Th,
possibly with mixed boundary conditions, symmetries and Courant’s
theorem, one can infer that E contains an eigenfunction u6,N arising
from the second eigenvalue of Th with Neumann boundary condition,
and an eigenfunction u7,N arising from the first eigenvalue of Th with
mixed boundary condition NDN (with sides ordered by decreasing
length). Both eigenvalues are explicitly known, and are eigenvalues of
the equilateral triangle.
The function u6,N + a of the hexagon H is obtained from the function
ϕN2 + a of the equilateral triangle Te, by reflections with respect to the
diagonals of the hexagon. Using Subsection 7.1, see Figure 7.2, we see
that when a varies from 0 to 1 + ε the number of nodal domains of
u6,N + a in H jumps from 2 to 7, with the jump occurring for a = 1.
It follows that the Extended Courant property does not hold
on the regular hexagon with Neumann boundary condition.
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Figure 8.8. Equilateral triangle: 2nd Neumann eigen-
function (symmetric one)

9. Extensions

In the case of a Euclidean domain Ω ⊂ Rd, with the Dirichlet boundary
condition, another natural upper bound for the number of nodal do-
mains is provided by Pleijel’s method [26] which uses the Faber-Krahn
isoperimetric inequality. Namely, for u ∈ λn(Ω, D) we have

(9.1) β0(u) ≤ |Ω|
(
λn(Ω, D)
λ1(Bd1, D)

) d
2

,

where |Ω| is the Euclidean volume of Ω, and where Bd1 is the Euclidean
ball with volume 1. When n tend to infinity the right-hand side of
(9.1) is asymptotically smaller than or equal to γ(d)n for some positive
constant γ(d) < 1 .

It would be natural to investigate the Extended Courant Property with
Courant’s bound replaced by Pleijel’s bound (9.1).

10. Further numerical simulations

The numerical simulations in this section were kindly performed by
Virginie Bonnaillie-Noël. The eigenvalues and eigenfunctions are com-
puted using a finite element method [22]. Similar simulations are done
in [8] to determine the minimal 3-partition of a square.

Rectangle with a crack, and Dirichlet boundary condition.
Figure 10.1 shows (from top to bottom) the level lines of v1, v2, the
first and second eigenfunctions of the rectangle with a horizontal crack,
with Dirichlet boundary condition on both the crack and the boundary
of the rectangle. In this example, the length of the rectangle is equal
to twice the width. The crack begins on the left side, at half the width;
its length is equal to 1

10 of the length of the rectangle.
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The third picture shows the level lines of the quotient v2
v1
, and suggests

that the linear combination 2v1 − v2 has three nodal domains, two of
them on each side of the crack.
One can therefore conjecture that the Extended Courant Prop-
erty does not hold on a rectangle with a crack and Dirichlet
boundary condition.

Hexagon with Dirichlet boundary condition. Figure 10.2 shows
(from top to bottom) the level lines of f1, f2, the first and second eigen-
functions of the equilateral triangle, with Dirichlet boundary condition
on one side, Neumann condition on the other sides. Here, f1 and f2
are normalized by the conditions supT f1 = 1 and supT f2 = 1.
The third picture shows the level lines of the quotient f2

f1
, and suggests

that the linear combination 3
2f1 + f2 has three nodal domains, two of

them in the neighborhood of the vertices of the side with Dirichlet
boundary condition.
The first and sixth Dirichlet eigenfunctions of the hexagon are obtained
from the functions f1 and f2 by reflection with respect to the diagonals
of the hexagon. Figure 10.3 shows (from top to bottom) the level lines
of u1,D, u6,D, the first and sixth eigenfunctions of the hexagon with
Dirichlet boundary condition. The third picture shows the level lines
of the quotient u6,D

u1,D
.

The pictures suggest that 3
2u1,D + u2,D has seven nodal domains, six

near the vertices of the hexagon and one containing the center O.
One can therefore conjecture that the Courant Extended Prop-
erty does not hold on the regular hexagon with Dirichlet
boundary condition.

Regular polygons. Figure 10.4 shows the nodal lines of the ratio
w6,D

w1,D
where w1,D (resp. w6,D) is the first (resp. sixth) eigenfunction of

a regular polygon with 7 sides and Dirichlet boundary condition.
One can therefore conjecture that the Extended Courant Prop-
erty does not hold for the regular heptagon. When n tends to
infinity, the eigenvalues of the regular polygon with n sides tend to the
eigenvalues of the disk. Observing that the second radial eigenfunction
of the Dirichlet or Neumann problem for the disk have labelling 6.
One maymore generally conjecture that the Extended Courant
Property does not hold for the regular polygon with n ≥ 6
sides, and Dirichlet or Neumann boundary condition.
This method does not seem to yield a counterexample for the regular
pentagon.
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Figure 10.1. Level lines of v1, v2 and v2
v1

in a rectangle
with an horizontal crack coming from the left
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Figure 10.2. Level lines of f1, f2 and f2
f1

for the NND
problem in the equilateral triangle
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Figure 10.3. Level lines of u1,D, u6,D and u6,D

u1,D
for the

Dirichlet problem in the regular hexagon
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Figure 10.4. Level lines of w6,D

w1,D
for the Dirichlet prob-

lem in the regular heptagon
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Appendix A. Eigenvalues of the equilateral triangle

In this appendix, we recall the description of the eigenvalues of the
equilateral triangle. For the reader’s convenience, we retain the nota-
tion of [6, Section 2].

A.1. General formulas. Let E2 be the Euclidean plane with the
canonical orthonormal basis {e1 = (1, 0), e2 = (0, 1)}, scalar product
〈·, ·〉 and associated norm | · |.
Consider the vectors

(A.1) α1 = (1,− 1√
3

), α2 = (0, 2√
3

), α3 = (1, 1√
3

) = α1 + α2 ,

and

(A.2) α∨1 = (3
2 ,−
√

3
2 ), α∨2 = (0,

√
3), α∨3 = (3

2 ,
√

3
2 ) = α∨1 + α∨2 .

Then

(A.3) α∨i = 3
2αi, |αi|

2 = 4
3 , |α

∨
i |2 = 3.

Define the mirror symmetries

(A.4) si(x) = x− 2 〈x, αi〉
〈αi, αi〉

αi = x− 2
3〈x, α

∨
i 〉α∨i ,

whose axes are the lines
(A.5) Li = {x ∈ E2 | 〈x, αi〉 = 0}.
Let W be the group generated by these mirror symmetries. Then,
(A.6) W = {1, s1, s2, s3, s1 ◦ s2, s1 ◦ s1} ,
where s1 ◦ s2 (resp. s2 ◦ s1) is the rotation with center the origin and
angle 2π

3 (resp. −2π
3 ).

Remark. The above vectors are related to the root system A2 and W
is the Weyl group of this root system.
Let
(A.7) Γ = Zα∨1 ⊕ Zα∨2
be the (equilateral) lattice. The set
(A.8) DΓ = {sα∨1 + tα∨2 | 0 ≤ s, t ≤ 1}
is a fundamental domain for the action of Γ on E2. Another fundamen-
tal domain is the closure of the open hexagon (see Figure 8.1)
(A.9) H = [A,B,C,D,E, F ] ,
whose vertices are given by

(A.10)

 A = (1, 0);B = (1
2 ,
√

3
2 ); (−1

2 ,
√

3
2 );

D = (−1, 0);E = (−1
2 ,−

√
3

2 );F = (1
2 ,−

√
3

2 ) .
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Call Te the equilateral triangle
(A.11) Te = [O,A,B] ,
where O = (0, 0).
Let Γ∗ be the dual lattice of the lattice Γ, defined by
(A.12) Γ∗ = {x ∈ E2 | ∀γ ∈ Γ, 〈x, γ〉 ∈ Z} .
Then,

(A.13)

 Γ∗ = Z$1 ⊕ Z$2 ,

where $1 = (2
3 , 0) and $2 = (1

3 ,
1√
3) .

Define the set C (an open Weyl chamber of the root system A2),
(A.14) C = {x$1 + y$2 | x, y > 0} ,
and let Te denote the equilateral torus E2/Γ.
A complete set of orthogonal (not normalized) eigenfunctions of −∆
on Te is given (in complex form) by the exponentials
(A.15) φp(x) = exp(2iπ〈x, p〉) where x ∈ E2 and p ∈ Γ∗ .
Furthermore, for p = m$1 + n$2, with m,n ∈ Z, the multiplicity of
the eigenvalue λ̂(m,n) = 4π2|p|2 = 16π2

9 (m2 +mn+ n2) is equal to the
number of points (k, `) in Z2 such that k2 + k`+ `2 = m2 +mn+ n2.
The closure of the equilateral triangle Te is a fundamental domain of
the action of the semi-direct product Γ oW on E2 or equivalently, a
fundamental domain of the action of W on T2

e.
For the following proposition, we refer to [5].

Proposition A.1. Complete orthogonal (not normalized) sets of ei-
genfunctions of the equilateral triangle Te in complex form are given,
respectively for the Dirichlet (resp. Neumann) boundary condition on
∂Te, as follows.

(1) Dirichlet boundary condition on ∂Te. The family is

(A.16) ΦD
p (x) =

∑
w∈W

det(w)exp(2iπ〈x,w(p)〉)

with p ∈ C ∩ Γ∗. Furthermore, for p = m$1 + n$2, with
m,n positive integers, the multiplicity of the eigenvalue 4π2|p|2
is equal to the number of solutions q ∈ C ∩ Γ∗ of the equation
|q|2 = |p|2.

(2) Neumann boundary condition on ∂Te. The family is

(A.17) ΦN
p (x) =

∑
w∈W

exp(2iπ〈x,w(p)〉)

with p ∈ C ∩ Γ∗. Furthermore, for p = m$1 + n$2, with m,n
non-negative integers, the multiplicity of the eigenvalue 4π2|p|2
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is equal to the number of solutions q ∈ C ∩ Γ∗ of the equation
|q|2 = |p|2.

Remark. To obtain corresponding complete orthogonal sets of real
eigenfunctions, it suffices to consider the functions

Cp = <(Φp) and Sp = =(Φp) .

For p = m$1 + n$2, with m,n ∈ N \ {0} for the Dirichlet boundary
condition (resp. m,n ∈ N for the Neumann boundary condition), we
denote these functions by Cm,n and Sm,n.

In order to give explicit formulas for the first eigenfunctions, we have
to examine the action of the group W on the lattice Γ∗. A sim-
ple calculation yields the following table in which we simply denote
m$1 + n$2 by (m,n).

(A.18)

w (m,n) w(m,n) det(w)
1 (m,n) (m,n) 1
s1 (m,n) (−m,m+ n) −1
s2 (m,n) (m+ n,−n) −1
s3 (m,n) (−n,−m) −1

s1 ◦ s2 (m,n) (−m− n,m) 1
s2 ◦ s1 (m,n) (n,−m− n) 1

Remark. The above table should be compared with [6, Table], in
which there is a slight unimportant error (the lines s1 ◦ s2 and s2 ◦ s1
are interchanged).

Remark. Using the above chart, one can easily prove the following
relations.

(A.19)

 CD
n,m = −CD

m,n and SDn,m = SDm,n ,

CN
n,m = CN

m,n and SNn,m = −SNm,n .

A.2. Neumann boundary condition, first three eigenfunctions.
The first Neumann eigenvalue of Te is 0, corresponding to the point
0 = (0, 0) ∈ Γ∗, with first eigenfunction ϕ1 ≡ 1 up to scaling.

The second Neumann eigenvalue corresponds to the pairs (1, 0) and
(0, 1). According to the preceding remark, it suffices to consider CN

1,0
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and SN1,0. Using Proposition A.1, and the table (A.18), we find that, at
the point [s, t] = sα∨1 + tα∨2 ,

(A.20)

 CN
1,0([s, t]) = 2 (cos(2πs) + cos(2π(−s+ t)) + cos(2πt)) ,

SN1,0([s, t]) = 2 (sin(2πs) + sin(2π(−s+ t))− sin(2πt)) .

Up to a factor 2, this gives the following two independent eigenfunctions
for the Neumann eigenvalue 16π2

9 , in the (x, y) variables, with (x, y) =(
3
2s,−

√
3

2 s+
√

3t
)
or (s, t) =

(
2
3x,

1
3x+ 1√

3y
)
,

(A.21)



ϕN2 (x, y) = cos(4π
3 x) + cos(2π

3 (−x+
√

3y))
+ cos(2π

3 (x+
√

3y)) ,
ϕN3 (x, y) = sin(4π

3 x) + sin(2π
3 (−x+

√
3y))

− sin(2π
3 (x+

√
3y)) .

The first eigenfunction is invariant under the mirror symmetry with
respect to the median OM of the equilateral triangle, see Figure 7.1.
The second eigenfunction is anti-invariant under the mirror symmetry
with respect to this median. Its nodal set is equal to the median itself.

A.3. Dirichlet boundary condition, first three eigenfunctions.
The first Dirichlet eigenvalue of Te is δ1(Te) = 16π2

3 . A first eigenfunc-
tion is given by SD1,1. Using Proposition A.1, and Table A.18, we find
that this eigenfunction is given, at the point [(s, t] = sα∨1 + tα∨2 , by the
formula

(A.22)
{
ϕD1 ([s, t]) = 2 sin 2π(s+ t) + 2 sin 2π(s− 2t)

+2 sin 2π(t− 2s) .
Substituting the expressions of s and t in terms of x and y, one obtains
the formula,

(A.23)
ϕD1 (x, y) = 2 sin

(
2π(x+ y√

3)
)
− 2 sin

(
4π y√

3

)
−2 sin

(
2π(x− y√

3)
)
,

The second Dirichlet eigenvalue has multiplicity 2, δ2(Te) = δ3(Te) =
112π2

9 . The eigenfunctions CD
2,1 and SD2,1 are respectively anti-invariant

and invariant under the mirror symmetry with respect to [OM ], with
values at the point [(s, t)] given by the formulas,

(A.24)



ϕD2 ([s, t]) = sin 2π(2s+ t) + sin 2π(s+ 2t)
+ sin 2π(2s− 3t)− sin 2π(3s− 2t)
+ sin 2π(s− 3t)− sin 2π(3s− t) ,

ϕD3 ([s, t]) = cos 2π(2s+ t)− cos 2π(s+ 2t)
− cos 2π(2s− 3t) + cos 2π(3s− 2t)
+ cos 2π(s− 3t)− cos 2π(3s− t) .
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Substituting the expressions of s and t in terms of x and y, one obtains
the formulas,

(A.25)
ϕD2 (x, y) = sin

(
2π
3 (5x+

√
3y)

)
− sin

(
2π
3 (5x−

√
3y)

)
+ sin

(
2π
3 (x− 3

√
3y)

)
− sin

(
2π
3 (x+ 3

√
3y)

)
+ sin

(
4π
3 (2x+

√
3y)

)
− sin

(
4π
3 (2x−

√
3y)

)
.

and

(A.26)
ϕD3 (x, y) = cos

(
2π
3 (5x+

√
3y)

)
− cos

(
2π
3 (5x−

√
3y)

)
+ cos

(
2π
3 (x− 3

√
3y)

)
− cos

(
2π
3 (x+ 3

√
3y)

)
+ cos

(
4π
3 (2x+

√
3y)

)
− cos

(
4π
3 (2x−

√
3y)

)
.
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