HAL
open science

Influence of design parameters on the singularities and workspace of a 3-RPS parallel robot

Ranjan Jha, Damien Chablat, Luc Baron

- To cite this version:

Ranjan Jha, Damien Chablat, Luc Baron. Influence of design parameters on the singularities and workspace of a 3-RPS parallel robot. CCToMM Symposium on Mechanisms, Machines, and Mechatronics, May 2017, Montréal, Canada. hal-01519620

HAL Id: hal-01519620

https://hal.science/hal-01519620

Submitted on 8 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INFLUENCE OF DESIGN PARAMETERS ON THE SINGULARITIES AND WORKSPACE OF A 3-RPS PARALLEL ROBOT

Ranjan Jha ${ }^{1}$, Damien Chablat ${ }^{2}$, Luc Baron ${ }^{1}$
${ }^{1}$ Department of Mechanical Engineering, École Polytéchnique de Montréal, H3C A37 Québec, Canada
${ }^{2}$ Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004, Nantes, France.
Email: Ranjan.Jha@polymtl.ca;damien.chablat@cnrs.fr; Luc.Baron@polymtl.ca

Abstract

This paper presents the variations in the workspace, singularities and joint space with respect to the design parameter k of the 3-R-PS parallel manipulator. Also the influence on the parasitic motions due to the design parameters is studied, which plays an important role in the selection of the manipulator for a desired task. The cylindrical algebraic decomposition method and Gröbner based computations are used to model the workspace and joint space with the parallel singularities in 2R1T and 3T projection spaces, where the orientation of the mobile platform is represented by using quaternions. These computations are useful to select the optimum value for the design parameter such that the parasitic motions can be limited to specific values. Depending on the design parameter k, three different configurations of the 3-RPS parallel robot are analyzed.

Keywords: Parallel Robot; Singularities; 3-RPS; Workspace; Kinematics.

INFLUENCE DES PARAMÈTRES DE CONCEPTION SUR LES SINGULARITÉS ET L'ESPACE DE TRAVAIL D'UN 3-RPS ROBOT PARALLÈLE

RÉSUMÉ

Cet article présente les variations de l'espace de travail, des singularités et de l'espace articulaire en fonction d'un paramètre de conception k qui est le ratio entre les dimensions de la plate-forme mobile et les dimensions de la base du manipulateur parallèle 3-RPS. On étudie également l'influence de ce paramètre de conception sur les mouvements parasites, qui joue un rôle important dans la sélection du robot pour une tâche souhaitée. La méthode de décomposition algébrique cylindrique et les bases de Gröbner sont utilis'es pour modéliser l'espace de travail et l'espace articulaire ainsi que les singularités parallèles dans les espaces de projection 2R1T and 3T, où l'orientation de la plate-forme mobile est représentée en utilisant des quaternions. Ces calculs sont utiles pour sélectionner la valeur optimale pour le paramètre de conception de telle sorte que les mouvements parasites puissent être limités à des valeurs spécifiques. En fonction du paramètre k, trois configurations différentes du robot parallèle 3-RPS sont analysées.

Mots-clés : Robot parallèle ; Singularité ; 3-RES ; Espace de travail ; Cinématique.

1. INTRODUCTION

The study of workspace, joint space and singularities together assists the engineers and researchers in the efficient task planning and the selection of the particular configuration of the manipulator for a desired task. The accurate computation of the workspace and joint space for 3-RPS parallel robotic manipulator is a highly addressed research work across the world. It is well a known feature that this robot admits two operation modes. As there exists parasitic motions for 3RPS parallel robot, a complete workspace analysis of this mechanism is possible, only when the analysis is done in both 2R1T and projection spaces for both the operation modes.

For the parallel robots with several inverse and direct kinematic solutions, the aspects are defined as the maximal singularity-free sets in the workspace or the cross-product of the joint space by the workspace. An assembly mode is associated with a solution for the Direct Kinematic Problem (DKP) and a working mode for the Inverse Kinematic Problem (IKP). The notion of aspect, previously defined in [1] for serial robots and in [2] for parallel robot with one operation mode, and in [3, 4] extended for a parallel robot with several operation modes. There are different techniques based on geometric [5, 6], discretization [7-9], and algebraic methods [4, 10-13] which can be used to compute the workspace of parallel robot. Practically, a change of assembly mode may occur during the execution of a trajectory between two configurations in the workspace which is shown in $[4,14]$ for the 3-RPS parallel robot with similar base and mobile platforms.

This paper presents the results which are obtained by applying algebraic methods for the workspace, singularities and joint space analysis of the reconfigurable 3RPS parallel robot with changeable size ratio of moving and base platform. The CAD algorithm is used to study the workspace and joint space, and a Gröbner based elimination method is used to compute the parallel singularities. The outline of this paper is as follows. Section 2 describes the architecture and kinematic equations of the manipulator. Section 3 discusses the influence of design parameter on parallel singularities. Section 4 and 5 presents the workspace and joint space analysis of the manipulator. Section 6 finally concludes the paper.

2. MECHANISM UNDER STUDY

The robot under study is the 3-RPS parallel robot with three degrees of freedom and has been studied by many researchers [15-18]. It is the assembly of two equilateral triangles (the base and the moving platform) by three identical R-S legs where R is a revolute passive joint, $\underline{\mathrm{P}}$ an actuated prismatic joint and S a passive spherical joint. Thus, the revolute joint is connected to the fixed base and the spherical joint to the mobile platform.

Considering the 3-RPS parallel manipulator, as shown in Fig. 1, the fixed base consists of an equilateral triangle with vertices A_{1}, A_{2} and A_{3}, and circumradius g. The moving platform is another equilateral triangle with vertices B_{1}, B_{2} and B_{3} and varying circumradius h, and circumcenter P. The two design parameters g and h are positive numbers. Connecting each of the vertices' pairs $A_{i}, B_{i}(i=1,2,3)$ by a limb, a rotational joint lies at A_{i} and a spherical joint lies at B_{i}. ρ_{i} denotes the length of each limb and the motion control is done through an actuated prismatic joint. Thus, there are five parameters, namely g, h, ρ_{1}, ρ_{2} and ρ_{3}. The g and h parameters ($h / g=k$) determine the design of the manipulator (shown in fig. 2) whereas the joint parameters ρ_{1}, ρ_{2} and ρ_{3} determine the motion of the robot. Spatial rotations in three dimensions can be parametrized using Euler angles [19], unit quaternions [20] or dual quaternions [15]. The quaternion representation is used for modeling the orientation as quaternions do not suffer from singularities as Euler angles do. Moreover, to transform the trigonometric equations to algebraic equations, we may either introduce the singularity of the transformation $t=\tan (\alpha / 2)$ or replace the angle α by two parameters $\cos _{\alpha}$ and $\sin _{\alpha}$ with $\cos _{\alpha}^{2}+\sin _{\alpha}^{2}-1$. In

Fig. 1. 3-RPS parallel robot
addition, it is easier to represent workspace sections with the quaternions than the dual quaternions because the position is simply defined the Cartesian coordinates.

A quaternion \mathbf{q} is defined by

$$
\begin{equation*}
\mathbf{q}=q_{1}+q_{2} \mathbf{i}+q_{3} \mathbf{j}+q_{4} \mathbf{k} \tag{1}
\end{equation*}
$$

The quaternion rotation matrix is then

$$
\mathbf{Q}=\left[\begin{array}{ccc}
2 q_{1}^{2}+2 q_{2}^{2}-1 & -2 q_{1} q_{4}+2 q_{2} q_{3} & 2 q_{1} q_{3}+2 q_{2} q_{4} \tag{2}\\
2 q_{1} q_{4}+2 q_{2} q_{3} & 2 q_{1}^{2}+2 q_{3}^{2}-1 & -2 q_{1} q_{2}+2 q_{3} q_{4} \\
-2 q_{1} q_{3}+2 q_{2} q_{4} & 2 q_{1} q_{2}+2 q_{3} q_{4} & 2 q_{1}^{2}+2 q_{4}^{2}-1
\end{array}\right]
$$

with $q_{1}^{2}+q_{2}^{2}+q_{3}^{2}+q_{4}^{2}=1$. The transformation from the moving frame to the fixed frame can be described by a position vector $O P$ and a 3×3 rotation matrix \mathbf{R}. Let \mathbf{u}, \mathbf{v} and \mathbf{w} be the three unit vectors defined along the axes of the moving frame, then the rotation matrix can be expressed in terms of the coordinates of \mathbf{u}, \mathbf{v} and \mathbf{w} as:

$$
\mathbf{R}=\left[\begin{array}{lll}
u_{x} & v_{x} & w_{x} \tag{3}\\
u_{y} & v_{y} & w_{y} \\
u_{z} & v_{z} & w_{z}
\end{array}\right]
$$

The vertices of the base triangle and mobile platform triangle are

$$
\mathbf{A}_{1}=\left[\begin{array}{l}
g \tag{4}\\
0 \\
0
\end{array}\right] \quad \mathbf{A}_{2}=\left[\begin{array}{c}
-g / 2 \\
g \sqrt{3} / 2 \\
0
\end{array}\right] \quad \mathbf{A}_{3}=\left[\begin{array}{c}
-g / 2 \\
-g \sqrt{3} / 2 \\
0
\end{array}\right]
$$

Fig. 2. Virtual model of 3-RPS parallel manipulator with different design parameter $k, k=0.5$ (a), $k=1$ (b), $k=1.5$ (c)

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
h \tag{5}\\
0 \\
0
\end{array}\right] \quad \mathbf{b}_{2}=\left[\begin{array}{c}
-h / 2 \\
h \sqrt{3} / 2 \\
0
\end{array}\right] \quad \mathbf{b}_{3}=\left[\begin{array}{c}
-h / 2 \\
-h \sqrt{3} / 2 \\
0
\end{array}\right]
$$

The coordinates of \mathbf{b}_{i} with respect to fixed frame reference are obtained by $\mathbf{B}_{i}=\mathbf{P}+\mathbf{R} \mathbf{b}_{i}$ for $i=1,2,3$. Also the coordinates of the center of the mobile platform in the fixed reference is $\mathbf{P}=[x y z]^{T}$. The distance constraints yields:

$$
\begin{equation*}
\left\|\mathbf{A}_{i}-\mathbf{B}_{i}\right\|=\rho_{i}^{2} \quad \text { for } \quad i=1,2,3 \tag{6}
\end{equation*}
$$

As A_{i} are revolute joints, the motion of the B_{i} are constrained in planes. This leads to the three constraint equations:

$$
\begin{array}{r}
u_{y} h+y=0 \\
y-u_{y} h / 2+\sqrt{3} v_{y} h / 2+\sqrt{3} x-\sqrt{3} u_{x} h / 2+3 v_{x} h / 2=0 \\
y-u_{y} h / 2-\sqrt{3} v_{y} h / 2-\sqrt{3} x+\sqrt{3} u_{x} h / 2+3 v_{x} h / 2=0 \tag{9}
\end{array}
$$

Solving with respect to x and y we get:

$$
\begin{align*}
& y=-h u_{y} \tag{10}\\
& x=h\left(\sqrt{3} u_{x}-\sqrt{3} v_{y}-3 u_{y}+3 v_{x}\right) \sqrt{3} / 6 \tag{11}
\end{align*}
$$

In Eqs. ($6,8,9$), we substitute x, y using Eqs. (10) and (11), and $\mathbf{u}, \mathbf{v}, \mathbf{w}$ by quaternion expressions using Eq. (2). Then Eqs. (8) and (9) become $q_{1} q_{4}=0$. Thus, we have either $q_{1}=0$ or $q_{4}=0$. This property is associated with the notion of operation mode. Let $O M_{1}$ be the operation mode for $q_{1}=0$ and $O M_{2}$ for $q_{4}=0$. To obtain the algebraic equations, we replace $\sqrt{3}$ by the variable s_{3} and add the equation $s_{3}^{2}-3=0$ and the constraint $s_{3}>0$.

3. INFLUENCE OF DESIGN PARAMETER ON PARALLEL SINGULARITIES

Differentiating the constraints equations with respect to time leads to the velocity model:

$$
\begin{equation*}
\mathbf{A t}+\mathbf{B} \dot{\mathbf{q}}=0 \tag{12}
\end{equation*}
$$

where \mathbf{A} and \mathbf{B} are the parallel and serial Jacobian matrices, respectively, \mathbf{t} is the velocity of P and $\dot{\mathbf{q}}$ the joint velocities. The parallel singularities occur whenever $\operatorname{det}(\mathbf{A})=0$.

As there exist parasitic motions for 3RPS parallel robot, it is possible to analyze the singularities in two different projection spaces, $\left[p_{z} q_{2} q_{3}\right]$ and $\left[p_{x} p_{y} p_{z}\right]$. Figures 3 and 4 represent the projection of parallel singularities in projection space $\left[p_{x} p_{y} p_{z}\right]$ for $O M^{1}$ and $O M^{2}$, respectively. The variations in the parallel singularities surface for different design parameter k are shown in Figures 3 and 4. Also the top view of these singularity surfaces is presented to analyze the change in the singularities surface boundaries with the change in the value of k. As the value of k increases the connectivity in the workspace region decreases, can be seen in Figures 3(e-h) and 4(e-h).

4. WORKSPACE ANALYSIS OF THE 3-RPS PARALLEL ROBOT

The 3-RES parallel robot is three degrees of freedom parallel robot with two rotational [2R] and one translational [1T] motions, but still there exist two other translational motions in the x and y direction. These motions are termed as parasitic motions as they depend on other existing rotational motions. A complete

Fig. 3. Projection of parallel singularities in projection space $\left[p_{x} p_{y} p_{z}\right]$ for $O M^{1}$. Variation in the parallel singularities surface for different design parameter k $=0.5(\mathrm{a}), k=1(\mathrm{~b}), k=2(\mathrm{c})$ and $k=3(\mathrm{~d})$, top view of the parallel singularities surface, $k=0.5(\mathrm{e}), k=1(\mathrm{f}), k=2(\mathrm{~g})$ and $k=3(\mathrm{~h})$.

Fig. 4. Projection of parallel singularities in projection space $\left[p_{x}, p_{y}, p_{z}\right]$ for $O M^{2}$. Variation in the parallel singularities surface for different design parameter k $=0.5(\mathrm{a}), k=1(\mathrm{~b}), k=2(\mathrm{c})$ and $k=3(\mathrm{~d})$, top view of the parallel singularities surface, $k=0.5(\mathrm{e}), k=1(\mathrm{f}), k=2(\mathrm{~g})$ and $k=3(\mathrm{~h})$.
workspace analysis of this mechanism is possible, only when the analysis is done in both $2 \mathrm{R} 1 \mathrm{~T}\left[p_{z}, q_{2}, q_{3}\right.$] and $3 \mathrm{~T}\left[p_{x}, p_{y}, p_{z}\right]$ projection spaces for $O M_{1}$ and $O M_{2}$.

The workspace (resp. Joint space) analysis classifies the number of solutions of the parametric system associated with the Inverse (resp. Direct) Kinematic Problem (IKP). This method was introduced for parallel robots in [12]. The three main steps involved in the analysis are (i) Computation of a subset of the joint space (resp. workspace) where the number of solutions changes: the Discriminant Variety [12], (ii) Description of the complementary of the discriminant variety in connected cells: the Generic Cylindrical Algebraic Decomposition. and (iii) Connecting the cells belonging to the same connected component in the counterpart of the discriminant variety: interval comparisons. Discriminant varieties can be computed using basic and well known tools from computer algebra such as Gröbner bases [21] and a full package computing such objects in a general framework is available in Maple software through the RootFinding[Parametric] package. The CAD implemented in the SIROPA library has been used to compute the aspects into a set of cells where algebraic equations define its boundaries and a sample point in each one [12] for the 2 $\underline{P R R}-\mathrm{RPR}$ parallel robot. For example, the CAD can provide a formal decomposition of the joint space in cells where the polynomials (A) and $\operatorname{det}(\mathbf{B})$ have a constant sign and the number for the DKP is constant [22].

The workspace of the robot is a cylinder in the projection space $\left[z, q_{2}, q_{3}\right]$ if there are no joint limits on the actuated joints, a is presented in [3]. The workspace analysis can be done by dividing it into a set of aspects. In other words, an aspect is the largest connected region without any singularity of the corresponding operation mode. As there are several solutions for the DKP in the same aspect, non-singular assembly mode trajectories are possible, which is shown in [4, 15] for 3RPS parallel robot. The variation in the workspace boundaries due to the design parameter k for both the operation modes is shown in Fig. 5. Blue and red regions corresponds to the four number of solutions for the IKP for $\operatorname{det}(\mathbf{A})>0$ and $\operatorname{det}(\mathbf{A})<0$, respectively. These analyses can be useful for the researchers or engineers to select the optimum value for the design parameter such that the parasitic motions can be limited to specific values. From Fig. 5, it can be depicted that as the value of k increases, singularity becomes more complex and there exists a larger area (aspects) without singularities for larger values of k.

5. JOINT SPACE ANALYSIS OF THE 3RPS PARALLEL ROBOT

The joint space analysis allows the characterization of the regions where the number of real solutions for the direct kinematic model is constant. Using CAD, we can do this study on sections of the joint space. The calculation for the full joint space is possible, but the number of cells obtained is too large for the display capabilities of Maple. Without taking into account the notion of operation mode, Figure 7 depicts the regions with $4,8,12$ or 16 solutions for the DKP. The maximum number for the DKP for each operation mode is 8 .

Cuspidal configurations are associated with second-order degeneracies that appear for triply coalesced configurations. These configurations play an important role in the path planning because they are directly linked to the non-singular assembly mode changing trajectories [23-26]. A state of the art for the computation of the cusp points is given in [27]. The variation in the joint space boundaries due to the design parameter k is shown in Figure 6. The slice of joint space is computed for the three different values of ρ_{1} and k. For $\rho_{1}=2$, as the value of k increases the cusp points corresponding to the region with 16 numbers of solution for DKP disappears (in Fig. 6(d), 6(e) and 6(f)). The increase in the area of the joint space with an increase in the value of k, shows the more feasible actuation sets compared with the configuration with lesser value of k.

Fig. 5. Slice of workspace for $O M^{1}$ with different design parameter and $p_{z}=2, k=0.5$ (a), $k=1$ (b), $k=2$ (c) and $k=3$ (d) for $O M^{2} k=0.5$ (e), $k=1$ (f), $k=2$ (g) and $k=3(\mathrm{~h})$. Blue and red regions corresponds to the four number of solutions for the IKP for $\operatorname{det}(\mathbf{A})>0$ and $\operatorname{det}(\mathbf{A})<0$, respectively.

Fig. 6. Slice of the joint space for $\rho_{1}=1, k=0.5$ (a), $\rho_{1}=1, k=1$ (b), $\rho_{1}=1, k=1.5$ (c), $\rho_{1}=2, k=0.5$ (d), $\rho_{1}=2, k=1$ (e), $\rho_{1}=2, k=1.5$ (f), $\rho_{1}=3, k=0.5$ (g), $\rho_{1}=3, k=1$ (h) $\rho_{1}=3, k=1.5$ (i), where the DKP admits four, eight, twelve and sixteen real solutions in the blue, red, yellow and pink region, respectively.

Fig. 7. Slice of the joint space for $\rho_{1}=3$ and the number of solution for DKP for $k=1$

6. CONCLUSIONS

This work reports the variations in the workspace and the joint space with respect to the design parameter k of the 3-RPS parallel manipulator. The cylindrical algebraic decomposition method and Gröbner based computations are used to model the workspace and joint space with the parallel singularities in 3T and 2R1T projection spaces, where the orientation of the mobile platform is represented using quaternions. Depending on the design parameter k, three different configurations of the 3-RPS parallel manipulator are analyzed. A comparative study on the workspace and joint space for different design parameter k, plays an important role in the selection of the manipulator for the specific task or for the trajectory planning.

REFERENCES

1. Borrel P. "A study of manipulator inverse kinematic solutions with application to trajectory planning and workspace determination." Proc. IEEE Int. Conf on Rob. And Aut., pp. 1180-1185, 1986.
2. Wenger, P., Chablat D. "Definition Sets for the Direct Kinematics of Parallel Manipulators." 8th International Conference in Advanced Robotics, pp. 859-864, 1997.
3. Chablat, D. and Jha, R. and Rouillier, F. and Moroz, G. "Workspace and joint space analysis of the 3-RPS parallel robot." In: Proceedings of ASME 2014 International Design Engineering Technical Conferences, Buffalo, 2014.
4. Chablat, D. and Jha, R. and Rouillier, F. and Moroz, G. "Non-singular assembly mode changing trajectories in the workspace for the 3-RPS parallel robot." 14th International Symposium on Advances in Robot Kinematics, Ljubljana, Slovenia, pp. 149-159, 2014.
5. Gosselin, C. "Determination of the workspace of 6-DOF parallel manipulators." ASME J. Mech. Des., vol. 112, pp. 331-336, 1990.
6. Merlet, J. P. "Geometrical determination of the workspace of a constrained parallel manipulator." In: Proceedings of 3rd Int. Symp. on Advances in Robot Kinematics, pp. 326-329, 1992.
7. Castelli, G. and Ottaviano, E. and Ceccarelli, M. "A fairly general algorithm to evaluate workspace characteristics of serial and parallel manipulators." Mech. Based Des. Struct. Mach., vol. 36/1, pp. 14-33, 2008.
8. Bonev, I. A. and Ryu, J. "A new approach to orientation workspace analysis of 6-DOF parallel manipulators." Mechanism and Machine Theory, Vol 36/1, pp. 15-28, 2001.
9. Chablat, D., Wenger, P., Majou, F. and Merlet, J.P. "An Interval Analysis Based Study for the Design and the Comparison of 3-DOF Parallel Kinematic Machines." International Journal of Robotics Research, Vol. 23/6, pp. 615-624, 2004.
10. Zein, M. and Wenger, P. and Chablat, D. "An exhaustive study of the workspace topologies of all 3R orthogonal manipulators with geometric simplifications." Mechanism and Machine Theory, Vol. 41/8, pp. 971-986, 2006.
11. Ottaviano, E. and Husty, M. and Ceccarelli, M. "Identification of the workspace boundary of a general 3-R
manipulator." ASME J. Mech. Des., Vol. 128/1, pp. 236-242, 2006.
12. Chablat, D. and Moroz, G. and Wenger, P. "Uniqueness domains and non singular assembly mode changing trajectories." In: Proc. IEEE Int. Conf. Rob. and Automation, 2011.
13. Jha, R., Chablat, D., Rouillier, F. and Moroz, G. "Workspace and Singularity analysis of a Delta like family robot." In Robotics and Mechatronics, pringer International Publishing, pp. 121-130, 2006.
14. Jha, R., "Contributions to the Performance Analysis of Parallel Robots." Ph.D. Thesis, École Centrale de Nantes, 2016.
15. Husty, M., Schadlbauer, J., Caro, S., Wenger, P. "Non-Singular Assembly Mode Change of 3-RPS Manipulators." Proceedings of CK2013, International Workshop on Computational Kinematics, Barcelone, 2013.
16. Babu, S. R., Raju, V. R. and Ramji, k. "Design for optimal performance of 3-RPS parallel manipulator using evolutionary algorithms." Transactions of the Canadian Society for Mechanical Engineering, Vol. 37, No. 2, 2013.
17. Schadlbauer, J., Walter, D.R. and Husty, M.L. "The 3-RPS parallel manipulator from an algebraic viewpoint." Mechanism and Machine Theory, Vol. 75, pp. 161-176, 2014.
18. Lian, B., Sun, T., Song, Y., and Wang, X. "Passive and active gravity compensation of horizontally-mounted 3-RPS parallel kinematic machine." Mechanism and Machine Theory, Vol. 104, pp. 190-201, 2016.
19. Gallardo, J., Orozco, H., Rico, J., Aguilar, C., and Perez L. "Acceleration analysis of 3-RPS parallel manipulators by means of screw theory in Parallel Manipulators." New Developments (J.-H. Ryu, ed.), I-Tech Education and Publishing, 2008.
20. Zhou, W.-Y., Chen, W.-Y., Han, X.-G. and Zou, F. "The Kinematics Algorithm of 3RPS Mechanism with Compound Sphere Joint." Journal of Harbin Institute Of Technology(New Seriers), Vol. 20, No. 6, pp. 91-96, 2013.
21. Cox, D.A. and Little, J. and O'Shea, D. "Using Algebraic Geometry." 2nd edition, Graduate Texts in Mathematics. Springer, 2004.
22. Collins, GE. "Quantifier elimination for real closed fields by cylindrical algebraic decompostion." InAutomata Theory and Formal Languages 2nd GI Conference Kaiserslautern, Springer Berlin Heidelberg, pp. 134-183, 1975.
23. McAree, P.R., Daniel, R.W. "An explanation of never-special assembly changing motions for 3-3 parallel manipulators." International Journal of Robotic Research, Vol. 18 No. 6, pp. 556-574., 1999.
24. Zein, M., Wenger, P. and Chablat, D. "Non-Singular Assembly-mode Changing Motions for 3-RPR Parallel Manipulators." Mechanism and Machine Theory, Vol 43, No. 4, pp. 480-490, 2008.
25. Macho, E., Altuzarra, O., Pinto, C., Hernandez, A. "Transitions between multiple solutions of the direct kinematic problem." In: Advances in Robot Kinematics: Analysis and Design, pp. 301-310. Springer, 2008.
26. Caro, S., Wenger, P., Chablat, D. "Non-Singular Assembly Mode Changing Trajectories of a 6-DOF Parallel Robot." Proceedings of the ASME 2012 International Design Engineering Technical Conferences \& Computers and Information in Engineering Conference IDETC/CIE 2012, Chicago, Illinois, USA, August 12-15, 2012.
27. Moroz, G., Rouillier F., Chablat D., Wenger P. "On the determination of cusp points of 3-RPR parallel manipulators." Mechanism and Machine Theory, Vol. 45, No. 11, 2010.
