
HAL Id: hal-01519524
https://hal.science/hal-01519524v2

Submitted on 15 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware Automated Datafow Deployment of CNNs
Kamel Abdelouahab, Maxime Pelcat, Jocelyn Sérot, François Berry, Cédric

Bourrasset, Jean-Charles Quinton

To cite this version:
Kamel Abdelouahab, Maxime Pelcat, Jocelyn Sérot, François Berry, Cédric Bourrasset, et al.. Hard-
ware Automated Datafow Deployment of CNNs. [Technical Report] Institut Pascal, Clermont Ferrand.
2017. �hal-01519524�

https://hal.science/hal-01519524v2
https://hal.archives-ouvertes.fr

Hardware Automated Data�ow Deployment of CNNs

Technical Report Haddoc/2016-04TR01

K.Abdelouahab1, M.Pelcat1,2, J.Serot1, F.Berry1, C.Bourrasset3, and J.C.Quinton4

1Institut Pascal,Clermont Ferrand, France
2IETR/INSA, Rennes, France

3CEPP Bull, Montpellier, France
4Laboratoire Jean Kuntzmann, Université Grenoble-Alpes,Grenoble, France

April 2017

Abstract

Deep Convolutional Neural Networks (CNNs) are the state of the art systems for image classi�cation and
scene understating. However, such techniques are computationally intensive and involve highly regular
parallel computation. CNNs can thus bene�t from a signi�cant acceleration in execution time when run-
ning on �ne grain programmable logic devices. As a consequence, several studies have proposed FPGA-
based accelerators for CNNs. However, because of the huge amount of the required hardware resources,
none of these studies directly was based on a direct mapping of the CNN computing elements onto the
FPGA physical resources. In this work, we demonstrate the feasibility of this so-called direct hardware
mapping approach and discuss several associated implementation issues. As a proof of concept, we in-
troduce the haddoc2 open source tool, that is able to automatically transform a CNN description into a
platform independent hardware description for FPGA implementation.

1 Introduction

Convolutional Neural Networks (CNNs) [19] have become a de-facto standard that increased the robust-
ness and accuracy of machine vision systems. It is possible nowadays to build high performance image
classi�cation systems by deploying large-scale, pre-trained CNNs models. However, this accuracy comes
at the price of a high computational cost as state of the art CNNs may require up to 40 GOPs to classify a
single frame [3]. As a result, implementing CNNs with real-time constraints is challenging task. A possible
way to address this challenge is to take advantage of the massive �ne grain parallelism o�ered by FPGA
devices to embody the large amount of intrinsic parallelism exhibited by CNN-based algorithms. In this
case, the problem boils down to �nd an adequate and e�cient mapping between the computation model
of the latter and the execution model supported by the former. Based on our previous experience in the
implementation of real-time vision applications on FPGA-based platforms [23], we advocate the use of a
stream-based data�ow model to solve this mapping problem. In this approach, a CNN-based algorithm is
described as graph of data�ow actors exchanging data through unidirectional channels and this graph is
statically and physically mapped onto the target FPGA using a library of pre-de�ned computing elements
to implement actors.

In the sequel, we demonstrate the feasibility of this so-called Direct Hardware Mapping (DHM) approach
for implementing realistic CNN-based applications onto Field-Programmable Gate Arrays (FPGAs). More-
over, we introduce haddoc2, a software framework providing a fully automated implementation path for
CNNs onto FPGAs using the DHM approach. The haddoc2 tool is compatible with the widely used Ca�e
deep learning framework [16] and generates platform independent synthetizable VHDL code. In other
words, we introduce in this work a tool that automatically maps a Ca�e pre-trained model onto an FPGA
device.

2 CNNs : Computations and parallelism sources

CNNs are a category of feed forward arti�cial neural networks that are bio-inspired by the visual cortex
of the brain. The huge improvement of CNN-based algorithms was made possible by two factors: On one
hand, the availability of massive-sized annotated image data-sets [8] allowed to train robust large scale
feature extractors and accurate classi�ers. On the other hand, the growth of high performance processors
and, especially Graphics Processing Units (GPUs), provided the computational power required to train
deeper and more complex neural networks [5]. A typical CNN structure, as shown in �gure 1, will perform
a succession of convolutions interspersed with sub-sampling layers. The last stages include typically two or
three fully connected neural network for classi�cation tasks. The depth (number of layers) of a CNN ensures
better accuracy and less over-�tting and recent networks are usually very deep with 8 to 19 layers [25].

Figure 1: An example of a CNN topology with 3 convolutional layers (C1,C2,C3)
two subsampling layers and one fully connected stage (FC).

2

2.1 Convolution layers

Convolutional layers are the most computationally intensive and are responsible – in a typical implemen-
tation – for more than 90% of the CNN execution time [7]. Each layer (l) extracts N feature maps from C

input channels by performing N convolutions of size K ×K on each input. This �ltering is followed by the
application of a non-linear activation function act and a bias term bn to each set of features. As shown in
equation 1, N ×C convolutions are required to process a given layer.

∀l = 1 : L (Number of conv layers)

∀n = 1 : N (Number of output feature maps)

∀i =1 : Ix (feature map rows)

∀j = 1 : Iy (feature map columns)

f (l)[n, i, j] = b(l)[n] +
C∑
c=1

K∑
p=1

K∑
q=1

Φ(l)[c, i + p, j + q].w (l)[n, c,p,q] (1)

where

• f (l) is a tensor of output feature maps of layer (l)

• b(l)[n] is the bias term applied to applied to feature n

• Φ(l) is a tensor of input feature maps of layer (l)

• w(l) is tensor of pre-learned �lters

As already pointed out in [20], the computations described in equations 1 exhibit a large amount of
potential parallelism:

• Inter Layer parallelism: CNNs have a feed-forward hierarchical structure consisting of a succes-
sion of data-dependent layers. Layers can therefore that can be executed in a pipelined fashion where
the execution of layer (l) can start before the execution of layer (l − 1) ends.

• Inter neuronparallelism: Each neuron of a layer is independent when processing features. Thereby,
a full data-parallelism can be exploited when computing concurrently each of the N (l) element of
equation 1

• Inter convolution parallelism: All of the convolutions performed by a single neuron can also be
evaluated simultaneously by computing concurrently the C(l) convolutions of equation 1.

• Intra convolution parallelism: 2D image convolution can be implemented in a pipelined fash-
ion [24] allowing the K × K multiplications to be computed concurrently in equation 1

2.2 Subsampling layers

A common operation when conceiving CNNs is to periodically insert subsampling (or pooling) layers in-
between successive convolutional layers. These downsample the inputs by selecting the average, or, more
commonly, the maximum of a given neighborhood of each pixel as described in equation 2

3

∀l = 1 : L (Number of pool layers)

∀n = 1 : N (Number of output feature maps)

∀i =1 : Ix (feature map rows)

∀j = 1 : Iy (feature map columns)

f (l)[n, i, j] = max
p,q∈[1:K]

(
Φ(l)[n, i + p, j + q]

)
(2)

Pooling layers reduce the amount of parameters required to process the next stages of the network,
which controls over�tting in one hand and decrease the computation load on the other.

2.3 Fully connected layers

A Fully Connected (FC) neural network –with usually 3 or 4 hidden layers– terminates CNNs and acts
as a classi�er. In this case, no parameters are shared across the feature-maps (feature maps and learned
parameters have the same dimension). In this case, FC layer activations are computed with the inner
product operation followed by a bias o�set as detailed in equation 3

∀l = 1 : L (Number of FC layers)

∀n = 1 : N (Number of output feature maps)

f (l)[n] = act
b(l)[n] +

C (l)∑
c=1
< ϕ(l)[c],w(l)[n, c] >

 (3)

where <, > denotes the the inner product operator.

3 Direct Hardware Mapping of CNN entities

3.1 Data�ow processing of CNNs

The foundations of data�ow Models of Computation (MoC) were formalized by [9] in order to create an
architecture where multiple fragments of instructions can process simultaneously a stream of data. Pro-
grams respecting data�ow semantics are described as a network (graph) of fundamental processing units
commonly called actors and communicating abstract data messages called tokens on unidirectional First-In
First-Out (FIFO) channels.

In terms of architecture-application matching, the CNN’s layout �ts naturally with a stream-based
model of computation. In other words, the operations involved in feed forward propagation of a CNN
–described in the latter section– can be executed following the stream-based data�ow MoC. In fact, CNN-
based algorithms can be modeled as modeled as data�ow process networks (DPNs) where nodes correspond
to processing actors and edges correspond to communication channels. Each actor follows a purely data-
driven execution model where execution (�ring) is triggered only by the availability of input operands.

The DHM approach consists of physically mapping entirely graph of actors onto the target device. Each
actor becomes a computing unit with its speci�c instance on the FPGA and each edge is mapped to a signal.

4

3.2 DHM of Convolution layers

As stated in section 2.1, convolutional layers are the most computation intensive tasks in a given network.
However, DHM approach fully exploits all the parallelism sources of theses layers. All neurons of a layer are
mapped on the device to take advantage of intra-neuron parallelism (Fig 2-a). In neurons, each convolution
is mapped separately (Fig 2-b) and �nally, within a convolution engine, each multiplier is instantiated
separately (Fig 2-c). As an example, �gure 3 illustrates how a convolution layer C1 (C = 3,N = 5,K = 3)
extracts 5 features from a 3-channel input pixel �ow. In this example, 15 convolution and 5 activation
blocks are mapped onto the FPGA as a result of the layer graph transformation, which corresponds to 135
multiplications, 20 summations and 5 activations.

ϕ0
ϕ1
...
ϕC

η0

η1

...

ηN

f0

f1

fN

(a)

ϕC

...

ϕ1

ϕ0

b0

conv0C

...

conv01
conv00

Σ act

η0

f0

(b)

p00

p01

...

pkk

×

×

...

×

∑

(c)

conv00

Figure 2: The 3 levels of DHM implementation of CNN entities:
(a) in convolution layers, (b) in neurons, (c) in convolution engines

ϕ(C1)
2

ϕ(C1)
1

ϕ(C1)
0

conv42
conv41
conv40

conv32
conv31
conv30

conv22
conv21
conv20

conv12
conv11
conv10

conv02
conv01
conv00

Σ4

Σ3

Σ2

Σ1

Σ0

act4

act3

act2

act1

act0

f (C1)
4

f (C1)
3

f (C1)
2

f (C1)
1

f (C1)
0

Figure 3: Applying the 3 levels of DHM (�g 2) to a dummy convolutional layer C1 (N=5, C=3, K=3):
15 separate convolution engines (135 Multipliers and 15 adders) plus 5 adders and 5 activation blocks

are required to process the layer in a full parallel fashion. (bias omitted)

5

4 Optimizing DHM-based CNN accelerators

Direct Hardware Mapping of CNNs completely removes the need for an external memory to store interme-
diate results or parameters. Moreover, thanks to the fully pipelined execution model, the global throughput
is only limited by the maximum clock frequency. However, these advantages come at the cost of a high
resource consumption since the whole graph has to mapped onto the physical resources of the FPGA. In
certain cases, this could limit the complexity of the CNNs that can be handled by the DHM approach. It is
crucial, therefore, to ensure that the core operations involved in CNN actors can be translated e�ciently
in hardware. The most important issues, by far, are those related to on-chip memory requirements on one
hand, and the implementation of arithmetic operators on the other hand.

4.1 Neighborhood extraction

Data�ow-based processing of convolutions –such in [24]– can be divided into 2 parts: neighborhood ex-
traction (NE) and Multiply-ACCumulation (MAC).

Neighborhood Extraction (NE) relies on bu�ers to grant a full access to the K (l) × K (l) neighbors of
each pixel (as shown in �gure 4). Such an architecture is advantageous since it can directly extract the
neighborhood of streams of pixels each clock-cycle.

Multiply Accumulate (MAC) performs a multiplication of neighborhood pixels with pre-learned kernels
then accumulates the result to output feature maps. As long as the access to full neighborhood pixels is
guaranteed, each of the multiplications of can be performed in a parallel way using K (l) × K (l) multipliers
(as shown in Fig 2-c). Combining NE and parallel MAC strategy fully exploits the intra Kernel parallelism
of CNNs which grants high acceleration to convolutions and, consequently, the feature extraction process.

p02 p01 p00

p12 p11 p10 line bu�er 1

p22 p21 p20 line bu�er 0

Figure 4: Architecture of a 3 × 3 neighborhood extractor : 2 Bu�ers with image length
size are required to perform a 3 × 3 convolution on streams of pixels pi j

4.2 Neighborhood Extraction Factorization (NEF)

When adopting a DHM approach, it is possible to factorize the neighborhood extraction process in order
to optimize the memory print of convolutional layers. In this case, it is possible to rely only on on-chip
memory bu�ers to process a hole convolutional layer.

Thus, since multiple neurons in a given layer have same input features to process (only the convolution
kernels change), the neighborhood extraction entity can be factorized for each input feature map. This will
divide the memory requirements of each layer by a factor N (l) (cf �gure 5). For instance, the �rst layer of
the AlexNet CNN (N=96,C=3,K=11) would require 96×3×11×11 = 34KB of bu�er memory to be processed,
while a factorization of neighborhood extractors leads to 96 times less memory requirements (0.3KB). Full
results of NEF on Alexnet layers are detailed in �gure 6.

6

ϕ(C1)
2

ϕ(C1)
1

ϕ(C1)
0

ne

ne

ne

mac
mac
mac
mac
mac

mac
mac
mac
mac
mac

mac
mac
mac
mac
mac

∑
∑
∑
∑
∑

act

act

act

act

act

f (C1)
4

f (C1)
3

f (C1)
2

f (C1)
1

f (C1)
0

Figure 5: Data-path of a convolutional layer (bias omitted): The factorization of neighborhood extraction
process reduces the memory bu�ers by a factor of 5 when compared to �gure 3

conv1 conv2 conv3 conv4 conv5
10

3

10
4

10
5

10
6

10
7

10
8

R
e

q
u

ir
e

d
 M

e
m

o
ry

 (
B

it
s
)

wo/ nef

w/ nef

Figure 6: Ratio of memory requirements between architectures w/ and wo/ NEF for Alexnet convolutional
layers: 390% less memory is required when factorizing the neighborhood extractors

4.3 Constant multiplication

4.3.1 Fixed-point computing for CNNs

Several studies [13,14] have demonstrated that CNNs, and more generally deep learning applications, usu-
ally tolerate approximate computations with short �xed-point arithmetic. Frameworks such as Ristretto [14],
for example, can perform �ne-tuning of data representation in order to support �xed-point numerical rep-
resentations with variable data lengths. In particular, an 8-bit (resp. 2-bit) precision is su�cient to infer
the AlexNet [17] (resp. LeNet [19]) CNNs with little to no degradation in classi�cation accuracy. The DHM
approach advocated in this paper can indeed take advantage of this to signi�cantly reduce the amount of
required hardware resources by �rst inferring the minimal required precision and then deriving the size of
the hardware resources to exactly match this precision.

7

4.3.2 Multiplications with Logic Elements

Convolutions require many multiplications. If these multiplications are implemented using hardwired Dig-
ital Signal Processing (DSP) blocks within the target FPGA, this dramatically limits the complexity of the
CNN that can be implemented. For instance, the second layer of the LeNet5 network (C = 6,N = 16,K = 5)
requires 2400 multipliers. This number largely exceeds the number of DSP blocks provided by many FPGAs
and, especially by embedded devices. We overcome this problem by systematically forcing the synthesis
tool to implement multiplications with logical elements instead of DSP blocks, leading the resulting imple-
mentations to rely on AND gates and trees of half-adders [2].

In addition, we take advantage of the fact that in the case of CNNs the convolution kernels – and
hence the second operand of most of multiplications – are actually constants (derived from the o�ine
training stage). It is therefore possible to use a specialized version for those multiplier instances. While
this approach limits the �exibility of the system – it requires to re-compile and re-synthesise the VHDL
design whenever parameters values are changed –, it delegates to the synthesis tool the task to perform
low-level area and performance optimizations. More particularly, multiplications by 0 (resp 1) are removed
(resp. replaced by a simple signal connection) and multiplications by a power of 2 are implemented using
shift registers.

Multiplicand
Variable Constant

LE Based
ALM: 380 (0.67 %) ALM : 121 (0.21 %)

DSP : 0 (0 %) DSP : 0 (0 %)

DSP Based
ALM : 71 (0.12 %) ALM : 70 (0.12 %)
DSP : 10 (6.41 %) DSP : 7 (4.48 %)

Table 1: Resource utilization of a random 3 × 3 convolution engine on an Altera Cyclone V device with
di�erent implementations.

.prototxt

.ca�emodel

toplevel.vhd

params.vhd

Ca�e Hardware

Haddoc2

Figure 7: Hardware generation: the CNN layer arrangement is described in the top-level �les while kernel
parameter values and layer speci�cation are written on the con�guration �le.

8

5 The Haddoc2 utility

The Haddoc2 framework is set of tools built upon the principles and optimization techniques described in
the previous section. It is capable of automatically generating a platform independent hardware descrip-
tion of a CNN from a Ca�e model [16]. First, layer speci�cations (Layer type, Number of input channels
C , Number of output features N , kernel size K) are extracted from the Ca�e model and the learned pa-
rameters are read, rounded to a �xed-point representation format and written as generic parameters in a
con�guration �le. Second, a top-level VHDL �le is created by transforming the data�ow graph described
in Ca�e. The top-level instantiates a set of generic layers parametrized according to the Ca�e model speci-
�cations. These layers are described using a small number of basic prede�ned actors. These actors, written
in a structural VHDL, follow the data�ow execution semantics discussed in the latter sections. The output
is a platform independent VHDL code that can be implemented on the FPGA device using the adequate
synthesis tool. The Haddoc2 framework and the library of CNN actors supporting the DHM approach are
open-source and available. online1.

Listing 1: Ca�e description of a conv layer
name: "LeNet"

...

layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1

}
param {
lr_mult: 2

}
convolution_param {
num_output: 50
kernel_size: 3
stride: 1
weight_filler {
type: "xavier"

}
bias_filler {
type: "constant"

}
}

}

...

Listing 2: Generated VHDL code of the layer
...
architecture RTL of lenet is

...

conv2: convLayer
generic map(
PIXEL_SIZE => PIXEL_SIZE,
IMAGE_WIDTH => CONV2_IMAGE_WIDTH,
KERNEL_SIZE => CONV2_KERNEL_SIZE,
NB_IN_FLOWS => CONV2_IN_SIZE,
NB_OUT_FLOWS => CONV2_OUT_SIZE,
KERNEL_VALUE => CONV2_KERNEL_VALUE,
KERNEL_NORM => CONV2_KERNEL_NORM,
BIAS_VALUE => CONV2_BIAS_VALUE

)
port map(
clk => clk,
reset_n => reset_n,
enable => enable,
in_data => pool1_data,
in_dv => pool1_dv,
in_fv => pool1_fv,
out_data => conv2_data,
out_dv => conv2_dv,
out_fv => conv2_fv

);

...

1https://github.com/KamelAbdelouahab/haddoc2

9

6 Experimental Results with Haddoc2

As a proof of concept, we have implemented, using the Haddoc2 framework, FPGA-based accelerators
for three CNN-based applications, listed in Table 2. The �rst one is the Ca�e version of the LeNet5 [19]
CNN that requires 20.78 MOPs to process a frame of size 28x28. The second application is the face detector
used in [12] which requires 622.08 MOPs to process a 320x240 frame. The last one is introduced in [15]
to perform car type classi�cation and requires 268.28 MOPs to process 96x96 frames. The two �rst CNNs
have been trained using Ca�e while the third model has been directly downloaded as a Ca�e pre-trained
model. Table 2 gives parameter values for each CNN convolutional layer. LeNet5 and CarType CNNs have
2 convolutional layers while FaceDetect has 3. The corresponding hardware descriptions of each network
have been automatically generated using Haddoc2 on an Intel i7-4770 CPU and were synthesised on two
FPGA devices using respectively Intel Quartus 16.1 and Xilinx Vivaldo 2016.4.

Table 2: Topology of the convolutional layers of studied CNNs.

LeNet5 [19] FaceDetect [12] CarType [15]
Input size 28 x 28 320 x 240 96 x 96 x3
Layer parameters N C K N C K N C K

conv1+maxpool 20 1 5 6 1 7 32 3 5
conv2+maxpool 50 20 5 10 6 7 32 32 5
conv3 − − − 30 10 3 − − −
Kops/Pixel 26.5 6.3 29.1

Table 3 reports post-�tting results of the LeNet-5 accelerator on an embedded Intel Cyclone V 5CGXFC9E7
device using 3 implementation strategies. In the �rst case, only DSP blocks are used to map the CNN mul-
tiplications. The resulting hardware requires 72× the available resource of the device. The second case
features an implementation of multiplication based on logic elements and requires 3.8× the available logic.
Using tailored multipliers reduces resources by a factor of 8.6×, �tting the CNN accelerator onto an Intel
Cyclone V device.

Table 3: Resource utilization by a DHM LeNet5 CNN with di�erent implementations strategies for
multipliers.

DSP-based LE-based LE-based + const.
Logic Usage (ALM) NA 433500 (381%) 50452 (44%)
DSP Block usage 24480 (7159 %) 0 (0%) 0 (0%)

Table 4 details post �tting results on two embedded FPGA platforms: the Intel Cyclone V 5CGXFC9E7
and the Xilinx Kintex7 XC7Z045FBG. To the best of our knowledge, these numbers are the �rst to demon-
strate the applicability of a DHM-based approach for the implementation of CNNs on embedded FPGAs.
The three hardware accelerators �t onto the embedded devices with no o�-chip memory requirement. The
memory footprint shown in post �tting reports corresponds to line bu�ers used by the data�ow-based con-
volution engine and both synthesis tools instantiate LUT-based memory blocks to implement these bu�ers.
As expected when using DHM, the logic utilization in the FPGA grows with the the topology of the CNN.
However, in all the studied cases, the resources are su�cient to support direct hardware mapping. Finally,
the same table reports timing analysis results of the three generated hardware accelerators. With a peak
frequency of 62.3 MHz for the CarType CNN, DHM grants a maximum computation throughput of 1813

10

GOPs/s. For the face detection neural network, the presence of a third convolutional layer in the pipeline
drops the maximum frequency to 56.7 MHz (i.e 357 GOPs/s) in the Cyclone device, which corresponds to
164 classi�cations/sec on 512x512 images with a 3-multiscale pyramid.

Table 4: Resource Utilization of the Haddoc2-generated convolutional layers of studied CNNs with 5-bit
representation on: a- an Intel Cyclone V FPGA, b- a Xilinx Kintex 7 FPGA.

LeNet5 [19] FaceDetect [12] CarType [15]

a

Logic Elements (ALMs) 50452 (44%) 6158 (5%) 48243 (42%)
DSP Blocks1 0 (0 %) 0 (0%) 0 (0%)
Block Memory Bits 2752 (1%) 41408 (1%) 28320 (1%)
Frequency 69.14 MHz 56.7 MHz 66.0 MHz
Processing capabilities 1832 GOPs/s 357 GOPs/s 1920 GOPs/s

b

Slices 48114 (88%) 6221 (11%) 49082 (89%)
DSP Blocks1 0 (0%) 0 (0%) 0 (0%)
LUTs as Memory 420 (1%) 1458 (2%) 1154 (1%)
Frequency 62.13 MHz 44.41 MHz 62.3 MHz
Processing capabilities 1646 GOPs/s 279 GOPs/s 1813 GOPs/s

7 Related work

Several studies leverage on FPGA computational power and hardware �exibility to implement the feed-
forward propagation of CNNs. A non exhaustive review of these can be found in [18]. In most of ap-
proaches, acceleration of CNN-based applications is provided by mapping a limited subset of processing
elements onto the target device. This is the case for example in [21] where authors describe an accelerator
for the AlexNet CNN [17] implemented on a large Stratix V FPGA which, to the best of our knowledge,
outperforms most state-of-the-art implementations in terms of computational and outperformed most of
state-of-the-art implementations such [4,11,22]. Most of these designs are FPGA based accelerators for con-
volution with a relatively similar architecture of parallel processing elements associated with embedded
hardcore processors running a software layer. Other approaches like [26] relies on analytical design scheme
using the roo�ine model and loop tiling to propose an inference engine where the attainable computation
roof of the FPGA is reached. This loop tilling optimization is performed on a C code then implemented in
�oating point on a Virtex 7 485T using Vivaldo HLS Tool.

As it has been seen in the latter sections, feed forward propagation is an algorithm that intrinsically
suits to data�ow processing. Thus, dedicated stream processors for CNNs have been proposed. The most
notable contribution was neuFlow [10]: A runtime recon�gurable processor for real-time image classi�ca-
tion. In this work, Farabet and al. introduced a grid of processing tiles that were con�gured on runtime
to build a data�ow graph for CNN applications. It was associated to "luaFlow": a data�ow compiler that
transforms a high-level �ow-graph representation of an algorithm (in a Torch environment [6]) into ma-
chine code for neuFlow. Such architecture was implemented on a Virtex 6 VLX240T and provided a 12
fps categorization for 512x375 images. Thus, NeuFlow transformed a CNN graph into a set of data�ow
instructions, where each instruction is described as an hardware con�guration of 2D-processing elements
called Processing tiles (PTs). Execution of the graph is carried out by sequencing the instructions on the
target FPGA. This approach requires an external memory to store intermediate results, which in turn, even

11

with the help of a DMA, limits the �nal speedup.

By contrast, the DHM approach and Haddoc2 tool introduced in the present work performs all pro-
cessing on the �y and does not require an external memory to store intermediate results. Throughput is
therefore not limited by o�-chip memory bandwidth. Previous works in [1] describe a �rst version of Had-
doc that relied on the Caph [23] , a High-Level Synthesis (HLS) tool to provide data�ow-based hardware
accelerators for CNNs on FPGAs. While this implementation operated at very high frame-rates (800 clas-
si�cations/sec on 256 × 256 images), the over-head that comes with the HLS heavily restrained the size of
CNNs to be implemented.

12

Bibliography

[1] Abdelouahab, Bourrasset, Pelcat, Berry, Serot, and Quinton. A Holistic Approach for Optimizing DSP
Block Utilization of a CNN Implementation on FPGA. In ICDSC. ACM, 2016.

[2] Altera. Implementing Multipliers in FPGA Devices, Application Note. Technical report, 2004.

[3] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An Analysis of Deep Neural Network
Models for Practical Applications. Arxiv, 2016.

[4] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi. A Dynamically
Con�gurable Coprocessor for Convolutional Neural Networks. ACM- SIGARCHComput. Archit. News.

[5] Sharan Chetlur, Cli� Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro,
and Evan Shelhamer. cuDNN: E�cient Primitives for Deep Learning. CoRR, abs/1410.0, 2014.

[6] R Collobert. Torch. NIPS Workshop on Machine Learning Open Source Software, 2008.

[7] Jason Cong and Bingjun Xiao. Minimizing computation in convolutional neural networks. In Inter-
national Conference on Arti�cial Neural Networks, pages 281–290. Springer, 2014.

[8] Jia Deng, Wei Dong, Richard Socher, and Liand al. Imagenet: A large-scale hierarchical image
database. In CVPR 2009. IEEE Conference.

[9] Jack B Dennis and David P Misunas. A Preliminary Architecture for a Basic Data-�ow Processor.
ISCA ’75. ACM.

[10] C Farabet, Yann LeCun, Eugenio Culurciello, and B Martini. NeuFlow: A runtime recon�gurable
data�ow processor for vision. In CVPRW’11,IEEE Computer Society Conference.

[11] C Farabet, C Poulet, J Y Han, and Y LeCun. CNP: An FPGA-based processor for Convolutional Net-
works. In FPL International Conference on, 2009.

[12] Clement Farabet, Cyril Poulet, and Yann Lecun. An FPGA-Based Stream Processor for Embedded
Real-Time Vision with CNNs. 2009.

[13] Suyog Gupta, Ankur Agrawal, and al. Deep Learning with Limited Numerical Precision. JMLR Con-
ference Proceedings, 2015.

[14] Philipp Gysel, Mohammad Motamedi, and all. Hardware-oriented Approximation of Convolutional
Neural Networks. Iclr, 2016.

[15] Heikki Huttunen, Fatemeh Shokrollahi Yancheshmeh, and Chen Ke. Car type recognition with Deep
Neural Networks. IEEE Intelligent Vehicles Symposium, Proceedings, 2016-August:1115–1120, feb 2016.

13

[16] Yangqing Jia, Evan Shelhamer, and al. Ca�e: Convolutional Architecture for Fast Feature Embedding.
In ACM International Conference on Multimedia, 2014.

[17] Alex Krizhevsky, Ilya Sutskever, and Hinton Geo�rey E. ImageNet Classi�cation with Deep CNNs.
(NIPS2012).

[18] Gri�n Lacey, Graham WG Taylor, and al. Deep Learning on FPGAs: Past, Present, and Future. Arxiv,
2016.

[19] Y LeCun, L Bottou, Y Bengio, and all. Gradient Based Learning Applied to Document Recognition.
Proceedings of the IEEE, 1998.

[20] Mohammad Motamedi, Philipp Gysel, and Aal. Design space exploration of FPGA-based Deep CNNs.
In 2016 (ASP-DAC).

[21] Kalin Ovtcharov, Olatunji Ruwase, and al. Accelerating Deep Convolutional Neural Networks Using
Specialized Hardware. 2015.

[22] M Peemen, A Setio, B Mesman, and H Corporaal. Memory-centric accelerator design for Convolu-
tional Neural Networks. In ICCD, 2013 IEEE.

[23] J Sérot and F Berry. High-Level Data�ow Programming for Recon�gurable Computing. In Computer
Architecture and High Performance Computing Workshop, 2014.

[24] Richard G Shoup. Parameterized convolution �ltering in a �eld programmable gate array. In Oxford,
United Kingdom: Abingdon EE&CS Books. Citeseer, 1994.

[25] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, pages 1–14, 2014.

[26] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing FPGA-
based Accelerator Design for Deep Convolutional Neural Networks. In Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays - FPGA ’15, FPGA, pages
161–170, 2015.

14

