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Convergence of the Chern-Moser-Beloshapka normal forms

In this article, we give a normal form for real-analytic, Levi-nondegenerate submanifolds of C N of codimension d ≥ 1 under the action of formal biholomorphisms. We find a very general sufficient condition on the formal normal form that ensures that the normalizing transformation to this normal form is holomorphic. In the case d = 1 our methods in particular allow us to obtain a new and direct proof of the convergence of the Chern-Moser normal form.

Introduction

In this paper, we study normal forms for real-analytic, Levi-nondegenerate manifolds of C N . A real submanifold M ⊂ C N (of real codimension d) is given, locally at a point p ∈ M , in suitable coordinates (z, w) ∈ C n × C d = C N , by a defining function of the form Im w = ϕ(z, z, Re w), where ϕ : C n × R d → R d is a germ of a real analytic map satisfying ϕ(0, 0, 0) = 0, and ∇ϕ(0, 0, 0) = 0. Its natural second order invariant is its Levi form L p : This is a natural Hermitian vector-valued form, defined on V p = CT p M ∩ CT (0,1) p

C N as L p (X p , Y p ) = [X p , Ȳp ] mod V p ⊕ Vp ∈ CT p M V p ⊕ Vp .
We say that M is Levi-nondegenerate (at p) if the Levi-form L p is a nondegenerate, vectorvalued Hermitian form, and is of full rank. Let us recall that L p is nondegenerate if L p (X p , Y p ) = 0 for all Y p ∈ V p implies X p = 0 and that L p is of full rank if θ(L p (X p , Y p )) = 0 for all X p , Y p ∈ V p and for θ ∈ T 0 p M = V ⊥ p ∩ V⊥ p (where V ⊥ p ⊂ CT * M is the holomorphic cotangent bundle) implies θ = 0.

The typical model for this situation is a hyperquadric, that is, a manifold of the form

Im w = Q(z, z) =    Q 1 (z, z) . . . Q d (z, z)    =    zt J 1 z . . . zt J d z    ,
where each J k is a Hermitian n × n matrix. In this model case, the conditions of nondegeneracy and full rank are expressed by

d k=1 ker J k = {0}, d k=1 λ k J k = 0 ⇒ λ k = 0, k = 1, . . . , d. (1) 
The defining equation of the hyperquadric becomes of degree 1 if we endow z with the weight 1 and w with the weight 2, which we shall do from now on. A Levi-nondegenerate manifold can thus, at each point, be thought of as a "higher order deformation" of a hyperquadric, that is, their defining functions Im w = ϕ(z, z, Re w) can be rewritten as

Im w = Q(z, z) + Φ ≥3 (z, z, Re w),
where Φ ≥3 only contains homogeneous terms of order at least 3. We are going to classify germs of such real analytic manifolds under the action of the group of germs of biholomorphisms of C N . The classification problem for Levi-nondegenerate manifolds has a long history, especially in the particular case of hypersurfaces (d = 1). The case of higher codimension d > 1 faces challenges, to be outlined below, which are absent in the case d = 1. Therefore, the case of higher codimension has long remained open, and to the best of our knowledge the results obtained in the present paper are the first without special assumptions on the codimension. The methods we introduce in order to study this normal form problem are completely different to the ones used previously in the literature. They are very flexible and powerful, and therefore we do expect that they will be useful in the study of other normal form problems in CR geometry.

Let us review a bit of the history before we state our results. The equivalence problem was first studied (and solved) for hypersurfaces in C 2 by Elie Cartan in a series of papers [START_REF] Cartan | Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes[END_REF][START_REF] Cartan | Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes II[END_REF] in the early 1930s, using his theory of moving frames. Later on, Tanaka [START_REF] Tanaka | On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables[END_REF] and Chern and Moser [START_REF] Chern | Real hypersurfaces in complex manifolds[END_REF] solved the problem for Levi-nondegenerate hypersurfaces in C n . They used differential-geometric approaches, but also, in the case of Chern-Moser an approach coming from the theory of dynamical systems: finding a normal form for the defining function, or equivalently, finding a special coordinate system for the manifold. We refer to the papers by Vitushkin [START_REF] Vitushkin | Real-analytic hypersurfaces of complex manifolds[END_REF][START_REF] Vitushkin | Holomorphic mappings and the geometry of surfaces[END_REF], the book by Jacobowitz [START_REF] Jacobowitz | An introduction to CR structures[END_REF], the survey by Huang [START_REF] Huang | Local equivalence problems for real submanifolds in complex spaces[END_REF] and the survey by Beals, Fefferman, and Grossman [START_REF] Beals | Strictly pseudoconvex domains in C n[END_REF] in which the geometric and analytic significance of the Chern-Moser normal form are discussed.

We are able to give a formal normal form for Levi-nondegenerate real analytic manifolds together with a rather simple condition (see (2)) which implies its convergence. Recent advances in normal forms for real submanifolds of complex spaces with respect to holomorphic transformations have been significant: We would like to cite in this context the recent works of Huang and Yin [HY09, HY16, HY17], the second author and Gong [START_REF] Gong | Real submanifolds of maximum complex tangent space at a CR singular point[END_REF], and Gong and Lebl [START_REF] Gong | Normal forms for CR singular codimension-two Levi-flat submanifolds[END_REF].

We will discuss our construction and the difficulties involved with it by contrasting it to the Chern-Moser case. Before we describe the Chern-Moser normal form, let us comment shortly on why the differential geometric approach taken by Tanaka and Chern-Moser works in the case of hypersurfaces. The reason for this is that actually locally, the geometric information induced by the (now scalar-valued!) Levi-form can be reduced to its signature and therefore stays, in a certain sense "constant". One can therefore study the structure using tools which are nowadays formalized under the umbrella of parabolic geometry-for further information, we refer the reader to the book of Cap and Slovak [ ČS09]. In particular, every Levi-nondegenerate hypersurface can be endowed with a structure bundle carrying a Cartan connection and an associated intrinsic curvature. However, in the case of Levinondegenerate manifolds of higher codimension, our basic second order invariant, the vectorvalued Levi form L p , has more invariants than just the simple integer-valued signature of a scalar-valued form, and its behaviour thus can (and in general will) change dramatically with p. Of course, if it is nondegenerate at the given point 0, it stays so in neighbourhood of it. There have thus been rather few circumstances in which the geometric approach has been successfully applied to Levi-nondegenerate manifolds of higher codimension, such as in the work of Schmalz, Ezhov, Cap, and others (see [START_REF] Schmalz | Explicit construction of a Chern-Moser connection for CR manifolds of codimension two[END_REF] and references therein).

In our paper, we take the different (dynamical systems inspired) approach taken by Chern-Moser, who introduced a convergent normal form for Levi-nondegenerate hypersurfaces. They prescribe a space of normal forms N CM ⊂ C z, z, s such that for each element of the infinitesimal automorphism algebra of the model hyperquadric Im w = zt Jz, one obtains a unique formal choice (z, w) of coordinates in C N = C n × C in which the defining equation takes the form Im w = zt Jz + Φ(z, z, Re w), with Φ ∈ N CM . It turns out (after the fact) that the coordinates are actually holomorphic coordinates, not only formal ones, which is the reason why we say that the Chern-Moser normal form is convergent. Let us shortly note that the dependence on the infinitesimal automorphism algebra is actually necessary; after all, some of the hypersurfaces studied have a normal form which still carries some symmetries (in particular, the normal form of the model quadric will be the model quadric itself).

The normal form space of Chern and Moser is described as follows. One needs to introduce the trace operator

T = ∂ ∂ z t J ∂ ∂z
and the homogeneous parts in z and z of a series Φ(z, z, u) = j,k Φ j,k (z, z, u), where Φ j,k (tz, sz, u) = t j s k Φ j,k (z, z, u); Φ j,k is said to be of type (j, k).

We then say that Φ ∈ N CM if it satisfies the following (Chern-Moser) normal form conditions:

Φ j,0 = Φ 0,j = 0, j ≥ 0;

Φ j,1 = Φ 1,j = 0, j ≥ 1; T Φ 2,2 = T 2 Φ 2,3 = T 3 Φ 3,3 = 0.
There are a number of aspects particular to the case d = 1 which allow Chern and Moser to construct, based on these conditions (which arise rather naturally from a linearization of the problem with respect to the ordering by type), a convergent choice of coordinates.

In particular, Chern and Moser are able to restate much of their problem in terms of ODEs, which comes from the fact that there is only one transverse variable when d = 1; in particular, existence and regularity of solutions is guaranteed. In higher codimension, this changes dramatically as this ODE is replaced by some systems holomorphic PDEs to which one has to find an holomorphic solution vanishing at the origin. This is much more complicated and delicate to handle. A very special example of such PDE is of the form

L(y) = z 1 ∂y ∂z 1 -z 2 ∂y ∂z 2 = F (z 1 , z 2 , y)
This equation cannot be solved in general. For instance, z 1 ∂y ∂z 1 -z 2 ∂y ∂z 2 = z 1 z 2 won't have any holomorphic solution with zero value at zero. There is no classical theorem to obtain an a priori holomorphic solution to this kind of problem because one has to take care of the range of the linear operator L (as well as its kernel). It's the purpose of the "Big denominator theorem" [START_REF] Stolovitch | Big demonimators and analytic normal forms. with an appendix of M. Zhitomirskii[END_REF], to take charge of this. Our normal form has to take this into account.

Another aspect of the problem, which also accounts for the difference of the case d = 1 to d > 1, is the second line of the normal form conditions above: We cannot impose that Φ 1,j = Φ j,1 = 0 for j ≥ 1, as those terms -it turns out -actually carry invariant information. We shall however present a rather simple normal form, defined by equations which one can write down.

We should note at this point that some parts of the problem associated to a formal normal form have already been studied by Beloshapka [START_REF] Beloshapka | Construction of the normal form of the equation of a surface of high codimension[END_REF]. In there, a linearization of the problem is given, and a formal normal form construction (with a completely arbitrary normal form space) is discussed. However, for applications, a choice of a normal form space which actually gives rise to a convergent normal form is of paramount importance, and only in very special circumstances (codimension 2 in C 4 , see Ezhov and Schmalz [START_REF] Ežov | Normal form and two-dimensional chains of an elliptic CR manifold in C 4[END_REF][START_REF] Ežov | Special normal form of a hyperbolic CRmanifold in C 4[END_REF]) there have been resolutions to this problem.

The failure of a simple normalization of the terms of type (1, j) and (j, 1) in the higher codimension case has more and subtle consequences which destroy much of the structure which allows one to succeed in the case d = 1. We are able to overcome some of these problems by using a new technique from dynamical systems introduced by the second author [START_REF] Stolovitch | Big demonimators and analytic normal forms. with an appendix of M. Zhitomirskii[END_REF].

Our first theorem states that, given a Levi-nondegenerate hyperquadric Im w = Q(z, z), for perturbations of the form

Im w = Q(z, z) + Φ ≥3 (z, z, Re w),
one can find a formal normal form. Our first main result can therefore be thought of as a concrete realization of Beloshapka's construction of an abstract normal form in this setting:

Theorem 1. Fix a nondegenerate form of full rank Q(z, z) on C n with values in C d , i.e. a map of the form Q(z, z) = (z t J 1 z, . . . , zt J d z) with the J k satisfying (1). Then there exists a subspace Nf ⊂ C z, z, Re w (explicitly given in (16) below) such that the following holds. Let M be given near 0 ∈ C N by an equation of the form

Im w = Q(z , z , ) + Φ≥3 (z , z , Re w ),
with Φ ∈ C z, z, Re w . Then there exists a formal biholomorphic map, unique up to a finite-dimensional set of parameters, of the form H(z, w) = (z + f ≥2 , w + g ≥3 ) such that in the new (formal) coordinates (z, w) = H -1 (z , w ) the manifold M is given by an equation of the form

Im w = Q(z, z) + Φ ≥3 (z, z, Re w) with Φ ≥3 ∈ Nf .
Let us remark that the parameter space in Theorem 1 can be described explicitly; this is done at the very end of section 5, and it turns out that it is closely related to the infinitesimal automorphisms (up to order 3) of the model quadric. The solution of the analytic normal form problem, however, runs into all of the difficulties described above. However, there is a partial, "weak" normalization problem, described by a normal form space N w f ⊃ Nf (again defined below in ( 16)), which in practice does not try to normalize the (3, 2) and the (2, 3)-terms and therefore treats the transversal d-manifold z = f 0 (w) as a parameter. This fact is somewhat of independent interest, so we state it as a theorem:

Theorem 2. Fix a nondegenerate form of full rank Q(z, z) on C n with values in C d , i.e. a map of the form Q(z, z) = (z t J 1 z, . . . , zt J d z) with the J k satisfying (1). Then for the subspace N w = N w f ∩ C{z, z, Re w} defined below in (16) the following holds. Let M be given near 0 ∈ C N by an equation of the form

Im w = Q(z , z ) + Φ≥3 (z , z , Re w ).
Then for any f 0 ∈ C{w} n vanishing at the origin (f 0 ∈ (w)C{w} n for short), there exists a biholomorphic map of the form H(z, w) = (z + f 0 + f ≥2 , w + g ≥3 ) with f ≥2 (0, w) = 0, unique up to a finite dimensional space of parameters, such that in the new coordinates (z, w) = H -1 (z , w ) the manifold M is given by an equation of the form

Im w = Q(z, z) + Φ ≥3 (z, z, Re w) with Φ ≥3 ∈ N w .
As above, the parameter space can be described explicitly. Let us note that (as is apparent from the construction of the convergent solution) the corresponding formal problem also has a solution.

There is a nice geometric interpretation of the convergent normal form given in Theorem 2. If we fix a germ of a real-analytic submanifold N ⊂ M through 0 which is transversal to T c 0 M , given by the equation z = f 0 (u), the normalizing transformation provides for a unique convergent parametrization identifying the subset defined by {z = 0, v = 0} in the normal form with N , that is, we obtain an (essentially unique) map γ : R d → M parametrizing N and (by identifying the standard basis of the complex tangent space of the normal form at the point (0, t) with a designated basis of T c γ(t) M , a frame of T c γ(t) M , for each t ∈ R d . The analytic choice of such a transverse manifold satisfying the additional restrictions that the defining equation of M in the coordinates for which N corresponds to {0} × R d actually is in Nf is actually quite more involved than the choice of a transverse curve in the case of a hypersurface, as the "resonant terms" already alluded to above provide for an intricate nonlinear coupling of the PDEs which we will derive. It is with that in mind that one has to put some additional constraint in order to provide for a complete convergent normalization. We note, however, that we obtain a complete solution to the formal normalization problem.

Even though we cannot guarantee convergence of every formal normal form we are able to give some simple, purely algebraic conditions describing a subset of formal normal forms, for which the transformation to the normal form (and therefore also the normal form) can be shown to be convergent if the data is. This condition is imposed on the terms of type (1, 1) and (1, 2), determined from the decomposition

Φ(z, z, u) = j,k Φ j,k (z, z, u), Φ j,k (tz, sz, u) = t j s k Φ(z, z, u).
Before stating our result, we note that we write

Φ j,k (z, z, u) = ∂Φ j,k ∂u 1 , . . . , ∂Φ j,k ∂u d ,
which is a d × d-matrix of formal power series in u taking values in the space of polynomials in z and z (homogeneous of degree j in z and k in z).

Theorem 3. Fix a nondegenerate form of full rank Q(z, z) on C n with values in C d , i.e. a map of the form Q(z, z) = (z t J 1 z, . . . , zt J d z) with the J k satisfying (1). Let M be given near 0 ∈ C N by an equation of the form

Im w = Q(z , z , ) + Φ≥3 (z , z , Re w ),
with Φ ∈ C{z, z, Re w}. Then any formal biholomorphic map into the normal form from Theorem 1 is convergent if the (formal) normal form

Im w = Q(z, z) + Φ ≥3 (z, z, Re w) satisfies Φ 1,1 Φ 1,2 + Φ 1,2 (Q + Φ 1,1 ) = 0. ( 2 
)
It is a natural question to ask how our normal form relates to the Chern-Moser normal form. In fact, our normalization procedure in Theorem 3 is a bit different from the Chern-Moser procedure. Let us emphasize that in the hypersurface case (d = 1) the normal form in Theorem 1, even though necessarily different from the Chern-Moser normal form, is automatically convergent. Indeed, in this case, (2) on the formal normal form is automatically satisfied since Φ 1,1 = Φ 1,2 = 0.

The difference of our normal form from the Chern-Moser construction is in some sense necessary, since it is geared towards higher codimensional manifolds. However, we can adapt it in such a way that in codimension one, we obtain a completely new proof of the convergence of the Chern-Moser normal form, which relies only on the inductive procedure used to construct it. We shall discuss this in detail in section 8.

We would like to emphasize that having to impose a condition on the formal normal form in order to ensure the convergence of the normalizing transformation is a phenomenon that occurs in other problems arising e.g. in the theorem of Dynamical Systems. For instance, in Hamiltonian local dynamics, consider a germ of an analytic Hamiltonian vector field in ) . It was shown by Birkhoff (in the 1930's) that, in dimension 2 (i.e. if p = 1), there always exists an analytic transformation into the Birkhoff normal form. In higher dimension, the situation is dramatically more complicated. In the late 60's, Rüssmann [START_REF] Rüssmann | Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung[END_REF] proved that if the formal Birkhoff normal form has the form Ĥ(H 2 ) = Ĥ( p i=1 λ i (x 2 i + y 2 i )) (which is an algebraic condition) then there exists an analytic transformation to the Birkhoff normal form (under a small divisors condition). This condition is of course automatically satisfied in dimension 2. This apparently technical condition on the formal normal form is now understood as a complete integrability condition and has a geometrical interpretation. There is also a similar phenomenon in the framework of CR-singularities following the seminal article of Moser-Webster [START_REF] Moser | Normal forms for real surfaces in C 2 near complex tangents and hyperbolic surface transformations[END_REF] (involving reversible biholomorphisms in dimension 2 that are automatically locally holomorphically conjugate to a normal form) and the more recent work by Gong-Stolovitch [START_REF] Gong | Real submanifolds of maximum complex tangent space at a CR singular point[END_REF] (in higher dimension, some conditions are needed to obtain the holomorphic normalization of reversible biholomorphisms).

R 2p (or C 2p ), X H = p i=1
These are very similar situations to the conditions which we uncovered in our main result. After having defined a suitable (and not trivial) notion of normal form, we found a condition on the formal normal form that ensure that there is an analytic transformation to a (analytic) normal form. This condition is automatically satisfied in codimension 1, that is in Chern-Moser situation.
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Framework

We first gather some notational and technical preliminaries, which are going to be used in the sequel without further mentioning.

Initial quadric

Let M be a germ of a real analytic manifold at the origin of C n+d defined by an equation of the form

v = Q(z , z ) + Φ≥3 (z , z , u ) (3) 
where

w := u + iv ∈ C d , u = Re w ∈ R d , v = Im w ∈ R d and z ∈ C n .
Here, Q(z , z ) is a quadratic polynomial map with values in R d and Φ≥3 (z , z , u ) an analytic map germ at 0. We endow the variables z , z , w with weights: z and z get endowed with weights p 1 = p 2 = 1 and w (and also u and v) with p 3 = 2 respectively. Hence, the defining equation of the model quadric Im w = Q(z, z) is homogeneous (q-h) of quasi-degree (q-d) 2. We assume that the higher order deformation Φ≥3 (z, z, u) has quasi-order (q

-o) ≥ 3, that is Φ≥3 (z , z , u ) = p≥3 Φp (z , z , u ),
with Φp (z , z , u ) q-h of degree p. Hence, M is a higher order perturbation of the quadric defined by the homogeneous equation v = Q(z , z ). We assume that the quadratic polynomial Q is a Hermitian form on C n , valued in R d , meaning it is of the form

Q(z, z) =    Q 1 (z, z) . . . Q d (z, z)    ,
where each Q k (z, z) = zt J k z is a Hermitian form on C n defined by a Hermitian n × n-matrix J k . In particular, we observe that

Q(a, b) = Q(b, ā), for any a, b ∈ C n . We assume that Q(z, z) is nondegenerate, if Q(v, e) = 0 for all v ∈ C n implies e = 0, or equivalently, d k=1 ker J k = {0}.
We also assume that the forms J k are linearly independent, which translates to the fact that

if k λ k J k = 0 for scalars λ k , then λ k = 0, k = 1, . . . , d.
In terms of the usual nondegeneracy conditions of CR geometry (see e.g. [START_REF] Baouendi | Real submanifolds in complex space and their mappings[END_REF]) these conditions can be stated equivalently by requiring that the model quadric v = Q(z, z) is 1-nondegenerate and of finite type at the origin.

Complex defining equations

We will also have use for the complex defining equations for the real-analytic (or formal) manifold M . If M is given by Im w = ϕ(z, z, Re w),

where ϕ is at least quadratic, an application of the implicit function theorem (solving for w) shows that one can give an equivalent equation w = θ(z, z, w).

Such an equation comes from the defining equation of a real hypersurface if and only if

θ(z, z, θ(z, z, w)) = w.
We say that the coordinates (z, w) are normal if ϕ(z, 0, u) = ϕ(0, z, u) = 0, or equivalently, if θ(z, 0, w) = θ(0, z, w) = w. The following fact is useful:

Lemma 4. Let (z, z, w, w) be a defining function for a germ of a real-analytic submanifold M ⊂ C n z × C d w .
Then (z, w) are normal coordinates for M if and only if (z, 0, w, w) = (0, z, w, w) = 0.

For a proof, we refer to [START_REF] Baouendi | Real submanifolds in complex space and their mappings[END_REF].

Fischer inner product

Let V be a finite dimensional vector space (over C or R), endowed with an inner product •, • . We denote by u = (u 1 , . . . , u d ) a (formal) variable, and write V u for the space of formal power series in u with values in V . A typical element f ∈ V u will be written as

f (u) = α∈N d f α u α , f α ∈ V. (4) 
We define an extension of this inner product to V u by

f α u α , g β u β = α! f α , g α α = β 0 α = β. (5) 
The inner product f, g is not defined on all of V u , but is only defined whenever at most finitely many of the products f α g α are nonzero. In particular, f, g is defined whenever g

∈ F [u]
. This inner product is called the Fischer inner product [START_REF] Fischer | Über die Differentiationsprozesse der Algebra[END_REF][START_REF] Belitskii | Invariant normal forms of formal series[END_REF]. If T : F 1 u → F 2 u is a linear map, we say that T has a formal adjoint if there exists a map T * : :

F 2 u → F 1 u such that T f, g 2 = f, T * g 1
whenever both sides are defined.

Lemma 5. A linear map T as above has a formal adjoint if

T (F 1 [u]) ⊂ F 2 [u], where F j [u]
is the space of polynomials with values in F j , j = 1, 2.

Proof. Let T (f α u α ) =: g α = β g α β u β , and set T * (h β u β ) = s β (u) = α s β α u α . We need that T (f α u α ), h β u β 2 = β! g α β , h β 2 = f, T * (h β u β ) 1 = α! f α , s β α 1
, which has to hold for all α, β, and arbitrary f α ∈ F 1 , h β ∈ F 2 . This condition determines s β α uniquely: Fix h β and consider the linear form

F 1 f α → T f α u α , h β . Since •, • 1 is non- degenerate, there exists a uniquely determined s β α ∈ F 1 such that g α β , h β 2 = α! β! f α , s β α 1
.

We now only need to ensure that the series T * h is well-defined for h = β h β u β . It would be given by

T * h = α   β s β α   u α ,
which is a well-defined expression under the condition that T (f α u α ) is a polynomial.

We are now quickly going to review some of the facts and constructions which we are going to need.

The map D

α : F u → F u , D γ f (u) = ∂ |γ| f ∂u γ = α α! γ! γ!f α u α-γ has the formal adjoint M γ g(u) = u γ g(u).
Indeed,

D γ f α u α , g β u β = α γ γ!(α -γ)! f α , g α-γ = f α u α , g β u β+γ β = α -γ 0 β = α -γ . If L : F 1 → F 2 is a linear operator, then the induced operator T L : F 1 u → F 2 u defined by T L α f α u α = α Lf α u α has the formal adjoint T * L = T L * , since T L f α u α , g β u β 2 = α! Lf α , g β 2 = α! f α , L * g β 1 = f α u α , T L * g β u β α = β 0 else.
Let L j : F u → F j u be linear operators, j = 1, . . . , n, each of which possesses a formal adjoint L * j . Then the operator

L = (L 1 , . . . , L n ) : F u → ⊕ j F j u ,
where ⊕ j F j is considered as an orthogonal sum, has the formal adjoint L * = j L * j . More generally, it is often convenient to gather all derivatives together: consider the map D k : F u → Sym k F u , where Sym k F is the space of symmetric k-tensors on C d (respectively R d ) with values in F , defined by

D k f (u) = (D α f (u)) α∈N d |α|=k has the formal adjoint D * k = M k given by M k g(u) = γ∈N d |γ|=k g γ (u)u γ , where g(u) = (g γ (u)) |γ|=k .
Here we realize the space Sym k F as the space of homogeneous polynomials of degree k in d variables (u 1 , . . . , u d ), i.e.

Sym k F = ( k+d-1 d-1 ) j=1 F,
with the induced norm as an orthogonal sum (which is the usual induced norm on that space).

If L 1 : F u → F 1 u and L 2 : F 1 u → F 2 u are linear maps each of which possesses a formal adjoint, then

L = L 2 • L 1 has the formal adjoint L * = L * 1 • L * 2 .
It is often convenient to use the normalized Fischer product [START_REF] Lombardi | Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation[END_REF], which is defined by

f α u α , g β u β = α! |α|! f α , g α α = β 0 α = β. (6) 
While the adjoints with respect to the normalized and the standard Fischer inner product differ by constant factors for terms of the same homogeneity, the existence of adjoints and their kernels agree. Thus, it is not necessary to distinguish between the normalized and the standard Fischer product when looking at kernels of adjoints. The normalized version of the inner product is far more suitable when dealing convergence issues and also better for nonlinear problems [START_REF] Lombardi | Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation[END_REF][proposition 3.6-3.7].

Our coefficient spaces F 1 and F 2 are often going to be spaces of polynomials (in z and z) of certain homogeneities, themselves equipped with the Fischer norm. Let H n,m be the space of homogeneous polynomials of degree m in z ∈ C n . We shall omit to write dependance on the dimension n if the context permits. Our definition of the (normalized) Fischer inner product •, • , means that on monomials

z α , z β = α! |α|! α = β, 0 α = β, (7) 
and the inner product on (H n,m ) is induced by declaring that the components are orthogonal with each other :

if f = (f 1 , . . . , f ) ∈ (H n,m ) , then f, g = j=1 f j , g j .
Let R m,k be the space of polynomials in z and z, valued in C d , which are homogeneous of degree m (resp. k) in z (resp. z). Also this space will be equipped with the Fischer inner product •, • d,k , where the components are declared to be orthogonal as well. That is, the inner product of a polynomial P = (P 1 , . . . , P d ) t ∈ R m,k with a polynomial Q = (Q 1 , . . . , Q d ) t ∈ R m,k is defined by P, Q = P , Q , and the latter inner products are given on the basis monomials by

z α 1 zα 2 , z β 1 zβ 2 = α 1 !α 2 ! (|α 1 |+|α 2 |)! α 1 = β 1 , α 2 = β 2 0 α 1 = β 1 or α 2 = β 2 . (8)

The normalization conditions

In this section, we shall discuss some of the operators which we are going to encounter and discuss the normalization conditions used in Theorem 1, Theorem 2, and Theorem 3. The first normalization conditions on the (p, 0) and (0, p) terms of a power series Φ(z, z, u) ∈ C z, z, u , decomposed as

Φ(z, z, u) = ∞ j,k=0 Φ j,k (z, z, u), is that Φ p,0 = Φ 0,p = 0, p ≥ 0. ( 9 
)
With the potential to confuse the notions, we note that this corresponds to the requirement that (z, w) are "normal" coordinates in the sense of Baouendi, Ebenfelt, and Rothschild (see e.g. [START_REF] Baouendi | Real submanifolds in complex space and their mappings[END_REF]) (it is also equivalent to the requirement that Φ "does not contain harmonic terms"). We write

N 0 := {Φ ∈ C z, z, u : Φ(z, 0, u) = Φ(0, z, u) = 0}. ( 10 
)
The first important operator, K, is defined on formal power series in z and u (or w), and maps them to power series in z, z, u, linear in z, by

K : C z, u d → C z, z, u d (z 2 ) , K(ϕ(z, u)) = Q(ϕ(z, u), z) =    zt J 1 (ϕ(z, u)) . . . zt J d (ϕ(z, u))    .
We can also consider K, defined by

K : C z, u d → C z, z, u d (z 2 ) , K(ϕ(z, u)) = Q(z, ϕ(z, u)) =    (ϕ(z, u)) t J 1 z . . . (ϕ(z, u)) t J d z    .
The important distinction for these operators to the case d = 1, is that for d > 1, they are not of full range. They are still injective, as we'll show later in Lemma 7. We will also construct a rather natural complementary space for their range, namely the kernels of

K * : C z, z, u d (z 2 ) → C z, u d , K *    b 1 (z, z, u) . . . b d (z, z, u)    = d j=1   Jj    ∂ ∂ z1 0 . . . ∂ ∂ zn 0       b j
and of ( K) * , respectively. These operators are needed for the normalization of the (p, 1) and (1, p) terms for p > 1 and constitute our first set of normalization conditions different from the Chern-Moser conditions:

K * Φ p,1 = K * Φ 1,p = 0, p > 1. ( 11 
)
We set the corresponding normal form space

N 1 ≤k = Φ ∈ C z, z, u : K * Φ p,1 = K * Φ 1,p = 0, 1 < p ≤ k . (12) 
For our other normalization conditions, in addition the operator K, we shall need the operator ∆, introduced by Beloshapka in [START_REF] Beloshapka | Construction of the normal form of the equation of a surface of high codimension[END_REF]. It is defined for a power series map in (z, z, u) (valued in an arbitrary space) by

(∆ϕ)(z, z, u)) = d j=1 ϕ u j (z, z, u)Q j (z, z).
Its adjoint with respect to the Fischer inner product is going to play a prominent role: It is defined, again for an arbitrary power series map ϕ, by

∆ * ϕ = d j=1 u j Q j ∂ ∂z , ∂ ∂ z ϕ.
The operator ∆ * is the equivalent to the trace operator which we are going to use. The possible appearance of "unremovable" terms in Φ 1,1 makes it a bit harder to formulate the corresponding trace conditions, as not only the obviously invariant Q plays a role, but rather all the invariant parts of Φ j,j for j ≤ 3. Furthermore, in the general setting, we do not have a "polar decomposition" for Φ 1,1 , making it hard to decide which terms to "remove" and which to "keep" when normalizing the diagonal tems. We opt for a balanced approach in our second set of normalization conditions, involving the diagonal terms (1, 1), (2, 2), and (3, 3):

-6∆ * Φ 1,1 + (∆ * ) 3 Φ 3,3 = 0 K * (Φ 1,1 -i∆ * Φ 2,2 -(∆ * ) 2 Φ 3,3 ) = 0. ( 13 
)
We define the set of power series Φ ∈ C z, z, u satisfying these normalization conditions as N d ("d" stands for "diagonal terms"). Let us note that in the case d = 1, these conditions are different from the Chern-Moser conditions. The last set of normalization conditions deals with the (2, 3) and the (3, 2) terms; those possess terms which are not present in the Chern-Moser setting, but which simply disappear in the case d = 1, reverting to the Chern-Moser conditions:

K * (∆ * ) 2 (Φ 2,3 + i∆Φ 1,2 ) = K * (∆ * ) 2 (Φ 3,2 -i∆Φ 2,1 ) = 0. ( 14 
)
The space of the power series which satisfy this condition will be denoted by

N off = Φ ∈ C z, z, u : K * (∆ * ) 2 (Φ 2,3 + i∆Φ 1,2 ) = K * (∆ * ) 2 (Φ 3,2 -i∆Φ 2,1 ) = 0 . (15)
This is the normal forms space of "off-diagonal terms". Let us note that in the case d = 1, because in our choice of normalization we have that Φ 1,1 = 0 in general, even though our normalization condition for the (3, 2) term reverts to the same differential equation as the differential equation for a chain, our full normal form will not necessarily produce chains. We discuss this issue later in section 8.

We can now define the spaces Nf ⊂ N w f of normal forms:

Nf := N 0 ∩ N 1 ≤∞ ∩ N d ∩ N off N w f := N 0 ∩ N 1 ≤∞ ∩ N d (16)
3 Transformation of a perturbation of the initial quadric

We consider a formal holomorphic change of coordinates of the form

z = Cz + f ≥2 (z, w) =: f (z, w), w = sw + g ≥3 (z, w) =: g(z, w) (17) 
where the invertible n × n matrix C and the invertible real d × d matrix s satisfy

Q(Cz, C z) = sQ(z, z).
In these new coordinates, equation (3) reads

v = Q(z, z) + Φ ≥3 (z, z, u). ( 18 
)
This is the new equation of the manifold M (in the coordinates (z, w)). We need to find the expression of Φ ≥3 . We have the following conjugacy equation:

sv + Im(g ≥3 (z, w)) = Q Cz + f ≥2 (z, w), C z + f≥2 (z, w) + Φ≥3 Cz + f ≥2 (z, w), C z + f≥2 (z, w), su + Re(g ≥3 (z, w)) .
Let us set as notation f := f (z, u + iv) and f := f (z, u -iv) with v := Q(z, z) + Φ ≥3 (z, z, u).

We shall write Q for Q(z, z). The conjugacy equation reads

1 2i (g -ḡ) = Q f, f + Φ≥3 f, f , g + ḡ 2 . ( 19 
)
As above, we set f ≥2 := f ≥2 (z, u + iv) and f≥2 := f≥2 (z, u -iv). We have

1 2i (s(u + iv) -s(u -iv)) = sQ(z, z) + sΦ ≥3 (z, z, v) Q f, f = Q Cz + f ≥2 , C z + f≥2 = Q Cz, f≥2 + Q f ≥2 , C z + Q Cz, C z + Q f ≥2 , f≥2 Φ≥3 f, f , 1 2 [g + ḡ] = Φ≥3 Cz, C z, su + Φ≥3 f, f , 1 2 [g + ḡ] -Φ≥3 Cz, C z, su (20) 
Therefore, we can rewrite (19) in the following way:

1 2i [g ≥3 (z, u + iQ) -ḡ≥3 (z, u -iQ)] -Q Cz, f≥2 (z, u -iQ) + Q f ≥2 (z, u + iQ), C z = Q f ≥2 , f≥2 + Φ≥3 Cz, C z, su -sΦ ≥3 (z, z, u) + Φ≥3 f, f , 1 2 (g + ḡ) -Φ≥3 Cz, C z, su + 1 2i (g ≥3 (z, u + iQ) -g ≥3 ) - 1 2i (ḡ ≥3 (z, u -iQ) -ḡ≥3 ) + Q Cz, f≥2 -Q Cz, f≥2 (z, u -iQ) + Q f ≥2 , C z -Q f ≥2 (z, u + iQ), C z
Let us set C = id and s = 1. We shall write this equation as

L(f ≥2 , g ≥3 ) = T (z, z, u; f ≥2 , g ≥3 , Φ) -Φ (21) 
where L(f ≥2 , g ≥3 ) (resp. T (z, z, u; , f ≥2 , g ≥3 , Φ)) denotes the linear (resp. nonlinear) operator defined on the left (resp. right) hand side of (21). The linear operator L maps the space of homogeneous holomorphic vector fields QH k-2 of quasi degree k -2 ≥ 1, that is, of expressions of the form

f k-1 (z, w) ∂ ∂z + g k (z, w) ∂ ∂w = f k-1 (z, w) •    ∂ ∂z 1 . . . ∂ ∂zn    + g k (z, w) •    ∂ ∂w 1 . . . ∂ ∂w d    ,
where f k-1 and g k are quasi-homogeneous polynomials taking values in C n and C d , respectively to the space of quasi-homogeneous polynomials of degree k ≥ 3 with values in C d . We shall denote the restriction of L to QH k-2 by L k .

By expanding into homogeneous component, equation (21) reads

L(f k-1 , g k ) = {T (z, z, u; f ≥2 , g ≥3 , Φ)} k -Φ k = {T (z, z, u; f <k-1 ≥2 , g <k ≥3 ), Φ <k } k -Φ k . (22)
Here, {T (z, z, u; f ≥2 , g ≥3 ), Φ} k (resp. f <k-1

≥2

) denotes the quasi-homogeneous term of degree k (resp. < k -1) of the Taylor expansion of T (z, z, u; f ≥2 , g ≥3 , Φ) (resp. f ≥2 ) at the origin.

It is well-known (see e.g. [START_REF] Baouendi | CR automorphisms of real analytic manifolds in complex space[END_REF]) that the operator L, considered as an operator on the space of (formal) holomorphic vector fields, under our assumptions of linear independence and nondegeneracy of the form Q, has a finite-dimensional (as a real vector space) kernel, which coincides with the space of infinitesimal CR automorphisms of the model quadric Im w = Q(z, z) fixing the origin. It follows that, for any k ≥ 3, any complementary subspace N k to the image of L k gives rise to a formal normal form of degree k. By induction on k, we prove that there exists a (f k-1 , g k ) and a Φ k ∈ N k such that equation ( 22) is solved. A a consequence, up to elements of the space of infinitesimal automorphisms of the model quadric, there exists a unique formal holomorphic change of coordinates such that the "new" defining function lies in the space of normal form N := k≥3 N k .

In order to find a way to choose N with the additional property that for analytic defining functions, the change of coordinates is also analytic, we shall pursue a path which tries to rewrite the important components of L as partial differential operators.

From now on, we write {h} p,q for the term in the Taylor expansion of h which is homogeneous of degree p in z and of degree q in z. For a map h = h(z, z, u), we have {h} p,q = h p,q (u) for some map h p,q (u) taking values in the space of polynomials homogeneous of degree p in z and of degree q in z (with values in the same space as h), which is analytic in a fixed domain of u independent of p and q (provided that h is analytic). We also will from now on write f k (z, u) for the homogeneous polynomial of degree k (in z) in the Taylor expansion of f . Even though this conflicts with our previous use of the subscript, no problems shall arise from the dual use.

In what follows our notation can be considered as an abuse of notation: in an expression such as D k u g(z, u)(Q + Φ) k , we write as if Q + Φ was a scalar. This is harmless since we are only interested in a lower bound of the vanishing order of some fix set of monomials in z, z. However, if one decides to consider D k u g as a symmetric multilinear form and considers powers as appropriate "filling" of these forms by arguments, one can also consider the equations as actual equalities.

We have

g ≥3 (z, u + iQ) -g ≥3 (z, u + iQ + iΦ) = k≥1 i k k! D k u g ≥3 (z, u) Q k -(Q + Φ) k , (23) 
and

Q f ≥2 -f ≥2 (z, u + iQ), C z = Q   k≥1 i k k! D k u f ≥2 (z, u) (Q + Φ) k -Q k , C z  ,
and therefore

D k u g(z, u) Q k -(Q + Φ) k p,q = p l=0 D k u g l (z, u) Q k -(Q + Φ) k p-l,q and Q f ≥2 -f ≥2 (z, u + iQ), C z p,q = Q {f ≥2 -f ≥2 (z, u + iQ)} p,q-1 , C z (24) = p l=0 k≥1 i k k! Q D k u f l (z, u) (Q + Φ) k -Q k p-l,q-1 , C z .
4 Equations for the (p, q)-term of the conjugacy equation

For any non negative integers p, q, let us set

T p,q := Φ≥3 f, f , 1 2 (g + ḡ) -Φ≥3 Cz, C z, su p,q . 
4.1 (p, 0)-terms

According to (96), ( 102),(106) , the (p, 0)-term of the conjugacy equation ( 19), for p ≥ 2, is

1 2i g p = Q(f p , f0 ) + T p,0 + Φp,0 Cz, C z, su -sΦ p,0 (z, z, u) =: F p,0 . (25) 
For p = 1, the linear map L gives a new term -Q(Cz, f0 ) to the previous one. Hence, we have 1 2i

g 1 -Q(Cz, f0 ) = Q(f 1 , f0 ) + T 1,0 + Φ1,0 Cz, C z, su -sΦ 1,0 (z, z, u) =: F 1,0 . (26) 
For p = 0, we have

Im(g 0 ) = Q(f 0 , f0 ) + T 0,0 + Φ0,0 Cz, C z, su -sΦ 0,0 (z, z, u) =: F 0,0 (27) 

(p, 1)-terms

According to (97), ( 102),(107) , the (p, 1)-term of the conjugacy equation ( 19), for p ≥ 3, is

1 2 D u g p-1 Q -Q(f p , C z) = Im i j<p D u g p-j Φ j,1 + Q(f p , f1 ) +iQ(Df p-1 (Q + Φ 1,1 ), f0 ) -iQ(f p-1 , D u f0 (Q + Φ 1,1 )) + Φp,1 (Cz, su) -sΦ p,1 (z, u) + T p,1 =: F p,1 . (28) 
For p = 2, we get the same expression on the right hand side, but the linear part gains the term iQ(Cz, D u f0 Q). Hence, we have

1 2 D u g 1 Q -Q(f 2 , C z) + iQ(Cz, D u f0 Q) = F 2,1 . (29) 
For p = 1, we have

D u Re(g 0 (u)) • Q -Q(Cz, f1 (z, u)) -Q(f 1 (z, u), C z) = F 1,1 (30) 

(3, 2)

For the (3, 2)-terms, we obtain

- 1 4i D 2 u g 1 (z, u)Q 2 + 1 2 Q(Cz, D 2 u f0 (u)Q 2 ) -iQ(D u f 2 (z, u)Q, C z) = (110) + 1 2i (100) + (105) + Φ3,2 (Cz, C z, su) -sΦ 3,2 (z, z, u) - 1 2i (100) + (105) + (111) 3,2 := F 3,2 .
(31) where (111) 3,2 denotes the (3, 2)-component of ( 111), (100) (resp. ( 105)) denotes the (3, 2)component of (ḡ

≥3 (z, u -iQ) -ḡ≥3 ) (resp. Q Cz, f≥2 -Q Cz, f≥2 (z, u -iQ) ).

(2, 2)-terms

For the (2, 2) term, we have

- 1 2 D 2 u Im(g 0 ) • Q 2 +iQ(Cz, D u f1 (z, u) • Q) -iQ(D u f 1 (z, u) • Q, C z) = (108) + 1 2i (98) + (103) + Φ2,2 (Cz, C z, su) -sΦ 2,2 (z, z, u) - 1 2i (98) + (103) + (111) 2,2 =: F 2,2 .
(32)

(3, 3)-terms

For the (3, 3) term, we have

- 1 6 D 3 u Re(g 0 ) • Q 3 + Q(Cz, D 2 u f1 (z, u) • Q 2 ) + Q(D 2 u f 1 (z, u) • Q 2 , C z) = (109) + 1 2i (99) + (104) + Φ3,3 (Cz, C z, su) -sΦ 3,3 (z, z, u) - 1 2i (99) + (104) + (111) 3,3 =: F 3,3 . (33) 
5 A full formal normal form: Proof of Theorem 1

We recall that we have used above the following notation for the grading of the transformation : we consider transformations of the form

z * = z + k≥0 f k , w * = w + k≥0 g k
where f k (z, w) and g k (z, w) are homogeneous of degree k in z; f k and g k can also be considered as power series maps in w valued in the space of holomorphic polynomials in z of degree k taking values in C n and C d , respectively. We then collect from the equations computed in Section 4: Using (25)-(28), we have

Im(g 0 ) = F 0,0 1 2i g 1 -Q(Cz, f0 ) = F 1,0 1 2i g p = F p,0 , p ≥ 2 1 2 D u g p Q -Q(f p+1 , z) = F p+1,1 p ≥ 2
Using (29) and (31), we have

1 2 D u g 1 Q -Q(f 2 , z) + iQ(z, D u f0 Q) = F 2,1 - 1 4i D 2 u g 1 (z, u)Q 2 + 1 2 Q(z, D 2 f0 (u)Q 2 ) -iQ(D u f 2 (z, u)Q, z) = F 3,2
Using (30),( 32) and (33), we have Im(g 0 ) = F 0,0

D u Re(g 0 (u)) • Q -Q(z, f1 (z, u)) -Q(f 1 (z, u), z) = F 1,1 - 1 2 D 2 u Im (g 0 ) • Q 2 + iQ(z, D u f1 (z, u) • Q) -iQ(D u f 1 (z, u) • Q, z) = F 2,2 - 1 6 D 3 u Re(g 0 ) • Q 3 + Q(z, D 2 u f1 (z, u) • Q 2 ) + Q(D 2 u f 1 (z, u) • Q 2 , z) = F 3,3
In order to obtain an operator L acting on the space of maps, and taking values in the space of formal power series in C z, z, u d endowed with Hermitian product 8, we simplify a bit the left hand sides, express the linear occurence of the terms Φ p,q of the "new" manifold, and change the right hand side accordingly:

Im g 0 = Φ 0,0 + F0,0 1 2i g p = Φ p,0 + Fp,0 -Q(f p+1 , z) = Φ p+1,1 + Fp+1,1 p ≥ 2 -Q(f 2 , z) + iQ(z, D u f0 Q) = Φ 2,1 + F2,1 1 2 Q(z, D 2 f0 (u)Q 2 ) -iQ(D u f 2 (z, u)Q, z) = Φ 3,2 + F3,2 D u Re(g 0 (u)) • Q -Q(z, f1 (z, u)) -Q(f 1 (z, u), z) = Φ 1,1 + F1,1 iQ(z, D u f1 (z, u) • Q) -iQ(D u f 1 (z, u) • Q, z) = Φ 2,2 + F2,2 - 1 6 D 3 u Re(g 0 ) • Q 3 + Q(z, D 2 u f1 (z, u) • Q 2 ) + Q(D 2 u f 1 (z, u) • Q 2 , z) = Φ 3,3 + F3,3 (34) 
At this point, the existence of some formal normal form follows by studying the injectivity of the linear operators appearing on the left hand side of (34) (as already explained in Beloshapka [START_REF] Beloshapka | Construction of the normal form of the equation of a surface of high codimension[END_REF]). We now explain how we can reach the normalization conditions from Section 2.4.

For the terms Φ p,0 (for p ≥ 0) this is simply done by applying the conditions (9) to (34) and substituting the resulting expressions for Im g 0 and g p into the remaining equations.

In order to obtain the normalization conditions for the terms Φ p,1 , we apply the operator K * to lines 3 and 4 of (34), yielding after application of the normalization conditions (11) a system of implicit equations for f p for p ≥ 2. If we substitute the solution of this problem back into the remaining equations, we obtain (now already using the operator notation)

- 1 2 K∆ 2 f 0 = Φ 3,2 -i∆Φ 2,1 + F3,2 ∆ Re(g 0 ) -K f1 -Kf 1 = Φ 1,1 + F1,1 i K∆f 1 -iK∆f 1 = Φ 2,2 + F2,2 - 1 6 ∆ 3 Re(g 0 ) + K∆ 2 f1 + K∆ 2 f 1 = Φ 3,3 + F3,3 , (35) 
We can then define the space of normal forms to be the kernel of the adjoint of the operator

L : C u n × R u d × C u n 2 → R d 3,2 ⊕ R d 1,1 ⊕ R d 2,2 ⊕ R d 3,3 L(f 0 , Re g 0 , f 1 ) =     -1 2 K∆ 2 f 0 ∆ Re(g 0 ) -K f1 -Kf 1 i K∆ f1 -iK∆f 1 -1 6 ∆ 3 Re(g 0 ) + K∆ 2 f1 + K∆ 2 f 1    
with respect to the Hermitian products on these spaces. The solution can be found by constructing the homogeneous terms in u (!) of f 0 , Re g 0 , f 1 inductively, since the right hand sides only contains terms of lower order homogeneity (and thus, found in a preceding step). However, the f 1 enters the nonlinear terms in such a way as to render the system (35) singular when one attempts to interpret it as (a system of complete partial) differential equations, because the equation for the (3, 2)-term contains in the F3,2 an f 1 , thereby linking f 0 with f 1 ; therefore, the appearance of f 0 in the term F3,3 acts as if it contained an f 1 , which exceeds the order of derivative f 1 appearing in the linear part.

However, in the formal sense, a solution to this equation exists and is unique modulo ker L, which we know to be a finite dimensional space, and in particular unique if we require (f 0 , Re g 0 , f 1 ) ∈ Im L * . This gives us exactly our normal form space, and thus gives Theorem 1.

6 Analytic solution to the weak conjugacy problem: Proof of Theorem 2

Step 1: Preparation

In this section, we shall first find a change of coordinates of the form z = f 0 (w) + z and w = w +iG(z, w), where G(0, w) = Ḡ(0, w), in order to ensure the normalization conditions Φ p,0 = Φ 0,p = 0 for all non negative integers p. This condition is equivalent to the fact that the coordinates (z, w) are normal in the sense of Section 2.2. In particular, if we consider a complex defining equation θ for our perturbed quadric Im w = Q(z , z ) + Φ(z , z , Re w ), then we see by Lemma 4 that (z, w) are normal coordinates if and only if

w + iG(z, w) = θ(z + f 0 (w), f0 (w), w -iG(0, w)), (36) 
or eqivalently if and only if

1 2 G(z, w) + Ḡ(0, w) = φ z + f 0 (w), f0 (w), w + i 2 (G(z, w) -Ḡ(0, w)) (37) 
We can thus first obtain G(0, w) from the equation derived from (37) by putting z = 0: G(0, w) = φ(f 0 (w), f0 (w), w)

and then define G(z, w) by ( 36), obtaining G(z, w) = 1 i θ(z + f 0 (w), f0 (w), w -i φ(f 0 (w), f0 (w), w)) -w .

Summing up: we can therefore replace the given defining funtion by this new one, and assume from now on that f 0 = 0 and that the coordinates are already normal. This change of coordinates is rather standard and can be found in e.g. [START_REF] Baouendi | Real submanifolds in complex space and their mappings[END_REF].

6.2

Step 2: Normalization of (1, 1), (2, 2), (3, 3), (2, 1), and (3, 1)-termsterms

In this section we shall normalize further the equations of the manifold. Namely, we shall proceed a change of coordinates such that, not only, the manifold is prepared as in the previous section, but also its (1, 1), (2, 1), (3, 1), (2, 2), and (3, 3) terms belong to a subspace of normal forms. We will now (after having prepared with the given map f 0 ) only consider a change of coordinates of the form z = z + f (z, w) = z + f 1 + f 2 + f 3 and w = w + g(z, w) = w + g 0 which satisfies f (0, w) = 0, g(0) = 0 and Df (0) = 0, Dg(0) = 0. We assume that Φ p,0 = Φ 0,p = 0, 0 ≤ p, i.e. that g has been chosen according to the solution of the implicit function theorem in the preceding subsection; with the preparation above, i.e. Φp,0 = Φ0,p = 0, and the restriction on f this amounts to Im g 0 = 0. Using the left hand side of equations ( 30), ( 32),( 33),( 29) and (28) together with f 0 = 0, let us set

L 1,1 (f 1 , g 0 ) := D u Re(g 0 (u)) • Q -Q(z, f1 (z, u)) -Q(f 1 (z, u), z) (38) 
L 2,2 (f 1 , g 0 ) := -1 2 D 2 u Im(g 0 ) • Q 2 + iQ(z, D u f1 (z, u) • Q) -iQ(D u f 1 (z, u) • Q, z) (39) L 3,3 (f 1 , g 0 ) := -1 6 D 3 u Re(g 0 ) • Q 3 + Q(z, D 2 u f1 (z, u) • Q 2 ) + Q(D 2 u f 1 (z, u) • Q 2 , z)(40) L 2,1 (f 2 ) = -Q(f 2 , z) (41) L 3,1 (f 3 ) = -Q(f 3 , z) (42) (43) 
Therefore, equations (30),( 32) and (33) read :

L 1,1 (f 1 , g 0 ) = Re(D u g 0 (u))Φ 1,1 + Q(f 1 , f1 ) + Φ1,1 (z, z, u) -Φ 1,1 (z, z, u) +D z Φ1,1 (z, z, u)f 1 (z, u) + D z Φ1,1 (z, z, u)f 1 (z, u) (44) L 2,2 (f 1 , g 0 ) = iQ(D u f 1 (Q + Φ 1,1 ), f1 ) -iQ(f 1 , D u f1 (Q + Φ 1,1 )) +2 Re(Q(iD u f 1 (u)Φ 1,1 , z)) + (111) 2,2 + Φ2,2 (z, z, u) -Φ 2,2 (z, z, u) + Q(f 2 , f2 ) + Im iD u g 0 (u)Φ 2,2 + 1 2 D 2 u g 0 (u)(2Φ 1,1 Q + Φ 2 1,1 ) (45) 
L 3,3 (f 1 , g 0 ) = Q(iD 2 u f 1 (Q + Φ 1,1 ) 2 )), f1 ) + Q(f 1 , -iD 2 u f1 (Q + Φ 1,1 ) 2 ) +2 Re Q(iD u f 1 (u)Φ 2,2 , z) + 1 2 Q 1 2 D 2 u f 1 (u)(2Φ 1,1 Q + {Φ 2 } 2,2 ), z + Im iD u g 0 (u)Φ 3,3 + 1 2 D 2 u g 0 (u)(2Φ 2,2 Q + {Φ 2 } 3,3 ) - i 6 D 3 u g 0 (u)(3Φ 2 1,1 Q + Φ 3 1,1 + 3Φ 1,1 Q 2 ) + Φ3,3 (z, z, u) -Φ 3,3 (z, z, u) +(111) 3,3 (46) 
Furthermore, equation ( 28) and ( 29) for p = 3 reads :

L 2,1 (f 2 ) = Re (D u g 0 (u)) Φ 2,1 + Q(f 2 , f1 ) + Φ2,1 (z, z, u) -Φ 2,1 (z, z, u) + T 2,1 L 3,1 (f 3 ) = Re (D u g 0 (u)) Φ 3,1 + Q(f 3 , f1 ) + Φ3,1 (z, z, u) -Φ 3,1 (z, z, u) + T 3,1 (47) 
Let us recall that the operator ∆ is given by ∆ : R p,q u → R p+1,q+1 u , ∆R(u) = D u R(u).Q(z, z). Then we have

L 1 (f 1 , Re(g 0 )) =   ∆ Re(g 0 ) -2 Re Q(f 1 , z) -2 Im Q(∆f 1 , z) -1 6 ∆ 3 Re(g 0 ) + Re Q(∆ 2 f 1 , z)   . ( 48 
)
Let us write

L 2 (f 2 , f 3 ) = -Q(f 2 , z) -Q(f 3 , z) (49) 
The system (44)-(47) now reads

L(f 1 , f 2 , f 3 , Re(g 0 )) = G(u, D i u f 1 , D j u Re(g 0 ), D l u f 2 , Φ 123 ) ( 50 
)
where the indices ranges are: 0 ≤ i ≤ 2, 0 ≤ j ≤ 3, and 0 ≤ l ≤ 1. Also, Φ 123 stands for (Φ 1,1 , Φ 2,2 , Φ 3,3 , Φ 2,1 , Φ 3,1 ). Let us emphasize the dependence of G on Φ 123 below. We have

G = -(I -D u Re(g 0 ))Φ 123 + G(u, D i u f 1 , D j u Re(g 0 ), D k u g 1 , D l u f 2 , Φ 123 ) (51)
The equations corresponding to L 2 then turn into a set of implicit equations for f 2 and f 3 , which we can solve uniquely in terms of f 1 and Re g 0 . After substituting those solutions back into F, we satisfy the normalization conditions in N 2 , and we turn up with a set of equations for f 1 and Re g 0 :

L 1 (f 1 , Re(g 0 )) = π 1 F 1 (u, D i u f 1 , D j u Re(g 0 )) ( 57 
)
where the indices ranges are: 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3, From now on, ord 0 f will denote the order of f (z, z, u) w.r.t u at u = 0. Let us recall that we always have

ord 0 Φ1,1 ≥ 1 ( 58 
)
We now claim that there is an analytic change of coordinates z = z * +f 1 (z * , w * )+f 2 (z * , w * )+ f 3 (z * , w * ), w = w * + g 0 (w * ) such that also the diagonal terms of the new equation of the manifold are in normal form, that is

(Φ 1,1 , Φ 2,2 , Φ 3,3 , Φ 2,1 , Φ 3,1 ) ∈ N 1 × N 2 .
In fact, we shall prove that there is exists a unique (f 1 , Re(g 0 )) ∈ Im(L * 1 ) with this property; if we would like to have all solutions to that problem, we will see that we can construct a unique solution for any given "initial data" in ker L 1 . Instead of working directly on equation (57), we shall first "homogenize" the derivatives of that system. By this we mean, that we apply operator ∆ 2 to the first coordinate of (57) and ∆ to the second coordinate of (57). The resulting system reads L1 ( f1 , Re(g

0 )) = F1 (u, D i u f1 , D j u Re(g 0 )) (59) 
where

L1 ( f1 , Re(g 0 )) =   ∆ 3 Re(g 0 ) -2 Re Q(∆ 2 f1 , z) -2 Im Q(∆ 2 f1 , z) -1 6 ∆ 3 Re(g 0 ) + Re Q(∆ 2 f1 , z).   =: L 1 (D 2 u f1 , D 3 u Re(g 0 )) (60) 
Here, L 1 denotes a linear operator on the finite dimensional vector spaces Sym 2 (C d , C n )× Sym 3 (C d , R d ) , and we have set f 1 = j 1 f 1 + f1 , g 0 = j 2 g 0 + g0 , and

L1 := D • L 1 , F1 (u, D i u f1 , D j u Re(g 0 )) := D • π 1 • F 1 (u, D i u f 1 , D j u g 0 ),
where

D :=   ∆ 2 0 0 0 ∆ 0 0 0 I   .
Using the right hand side of ( 44), ( 45), ( 46), and differentiating accordingly, we see that ord 0 ( F(u, 0)) ≥ 1.

Let us set m = (m 1 , m 3 ) = (2, 3) and

F ≥0 2,m := A k 1 d ≥m 1 × A k 3 d ≥m 3
where the k i 's are defined in (53) (for notation, see subsection B.1). Then a tuple of analytic functions

H := (H 1 , H 3 ) = ( f1 , Re(g 0 ))
with ord 0 f 1 ≥ 2, ord 0 g 0 ≥ 3 is an element of F ≥0 2,m . Then, equation (59) reads :

S(H) = F(u, j m u H) (61) S(H) := L 1 (D 2 u H 1 , D 3 u H 3 ). ( 62 
)
Let us show that the assumptions of the Big denominators theorem 14 are satisfied. First of all, for any integer i, let us set

H (i) := (H (m 1 +i) 1
, H

(m 3 +i) 3

). Their linear span will be denotes by H (i) . Let us show that, for any i, S(H (i) ) is homogeneous of degree of degree i. Indeed, let us consider the linear operator d : ( f1 , Re(g 0 )) → (D 2 u f1 , D 3 u Re(g 0 )). It is one-to-one from F ≥0 2,m and onto the space of Sym

2 (C d , C n ) × Sym 3 (C d , R d )-valued analytic functions in (R d , 0). Obviously, d(H (i) ) is homogeneous of degree i. Let V ∈ image(S). We recall that S = L 1 • d. Let us set K := (L 1 L * 1 ) -1 (V ).
It is well defined since V is valued in the range of L 1 . Therefore, K ≤ α V for some positive number α. On the other hand, we have L * 1 K ∈ image d, so we can (uniquely) solve the equation

d( f1 , Re(g 0 )) = L * 1 K.
This solution now satisfies clearly :

f (i+2) 1 ≤ |||L * 1 |||α i 2 V (i)
Re(g

(i+3) 0 ) ≤ |||L * 1 |||α i 3 V (i) S( f1 , Re(g 0 )) = L 1 d( f1 , Re(g 0 )) = L 1 L * 1 K = V.
Hence, S satisfies the Big Denominators property with respect to m = (m 1 , m 3 ) = (2, 3). On the other hand, let us show that H → F(u, j m u H) strictly increases the degree by q = 0. This means that ord 0 F(u, j m u H) -F(u, j m u H) > ord 0 (H -H).

According to Corollary 16 of Appendix B, we just need to check that the system is regular. So let us now prove that the analytic differential map H → F(u, j m u H) is regular in the sense of definition 10. To do so, we have to differentiate each term of H → F(u, j m u H) with respect to the unknowns and their derivatives and show that the vanishing order of the functions their multiplied by are greater or equal than number p j,|α| as defined in (113) in definition 10. We recall that q = 0. Therefore, these number are either 0 (no condition) or 1 (vanishing condition). The later correspond to the vanishing at u = 0 of the coeffcient in front the highest derivative order of the unknown :

∂ Fi ∂u j,α (u, ∂H), |α| = m j .
where H = (H 1 , . . . , H r ) ∈ F ≥0 r,m . But this condition in turn is automatically fulfilled by the construction of the system, since we have put exactly the highest order derivatives appearing in each of the conjugacy equations appearing with a coefficient which is nonzero when evaluated at 0 into the linear part of the operator, and no of the operations which we applied to the system changes this appearance. Let us recall that f 1 (0) = 0, Re g(0) = 0, Df 1 (0) = 0, D Re g(0) = 0 and D 2 Re g(0) = 0 . As a conclusion, we see that the map H → F(u, j m u H) is regular. Furthermore, according to (62), the linear operator S has the Big Denominator property of order m = (2, 3). Then according the Big Denominator theorem 14 with q = 0, equation (61) has a unique solution

H ≥0 ∈ F ≥0 2,m := A k 1 d ≥m 1 × A k 3 d ≥m 3
. This provides the terms of higher order in the expansions of f 1 and Re g 0 , and therefore, we proved the Proposition 6. There is exists a unique analytic map (f 1 , Re(g 0 ), f 2 , f 3 ) ∈ Im(L * 1 )×Im(L * 2 ) such that under the change of coordinates z = z * + f 1 (z * , w * ) + f 2 (z * , w * ) + f 3 (z * , w * ), w = w * +g 0 (w * ), the (1, 1), (2, 1), (2, 2) and (3, 3) terms of the new equation of the manifold are in normal form, that is,

Φ ∈ N 0 ∩ N d ∩ N 1
≤3 as defined in Section 2.4.

Normalization of terms (m, 1), m ≥ 4

Let us perform another change of coordinates of the form z = z * + p≥4 f p (z * , w * ), w = w * . According to (21)we obtain by extracting the (p, 1)-terms, p ≥ 4

-Q(f (z, u), z) = Φ * ,1 (z + f (z, u), z, u) -Φ * ,1 (z, u), (63) 
where Φ * ,1 (z, z, u) := p≥4 Φp,1 (z, z, u) is analytic at 0. We recall that Φ(z, 0, u) = Φ(0, z, u) = 0. Therefore, by Taylor expanding, we obtain

{ Φ≥3 f, f , u } * ,1 = Φ≥3 (z + f ≥2 (z, u), z, u) + ∂ Φ≥3 ∂z (f ≥2 (z, u + iQ + iΦ) -f ≥2 (z, u)) + ∂ Φ≥3 ∂ z f≥2 (z, u -iQ -iΦ) + • • • * ,1
Since Φp,0 = 0 for all integer p, the previous equality reads

{ Φ≥3 f, f , u } * ,1 = Φ * ,1 (z + f ≥2 (z, u), z, u) .

A linear map

In this section we consider the linear map K, which maps a germ of holomorphic function f (z) at the origin to

K(f ) = Q(f (z), z). ( 64 
)
This complex linear operator K is valued in the space of power series in z, z, valued in C d which are linear in z. We will first restrict K to a map K m on the space of homogeneous polynomials of degree m in z, with values in C n , For any C, δ > 0, let us define the Banach space

B n,C,δ := {f = m f m , f m ∈ H n,m , f m ≤ Cδ m }. (65) 
Then, the map K m is valued in the space R m,1 of polynomials in z and z, valued in C d , which are linear in z and homogeneous of degree m in z. Let us consider the space R * ,1 :=

m R m,1 as well as {f = m f m ∈ R * ,1 , f m ≤ Cδ m }
where . denotes the modified Fischer norm and C, δ a positive numbers. The latter is a Banach space denoted R * ,1 (C, δ).

In particular, let us note that if we write P k = j P j k (z)z j with P j k ∈ H m , then

P k 2 = (m + 1) n j=1 P j k 2 . ( 66 
)
Let us write P k = zt P k where P k = (P 1 k , . . . , P n k ) t . We can now formulate Lemma 7. There exists a constant C > 0 such that for all m ≥ 0, we have that

f ≤ C (m + 1) K m f .
In particular, K has a bounded inverse on its image :

if g ∈ R * ,1 (M, δ) ∩ ImK, then K -1 (g) ∈ B M,δ and K -1 (g) ≤ C g .
Proof. We consider the n × (nd)-matrix J defined by

J =    J 1 . . . J d    . (67) 
Since •, • is nondegenerate, we can choose an invertible n×n-submatrix J from J, composed of the rows in the spots (j 1 , . . . , j n ); let k(j ) denote which J k the row j belongs to. Then, if K m f = P , we have for every k = 1, . . . , d that zt J k f = zt P k . Hence, by complexification we see that J k f = P k . Let P = (P j 1 k(j 1 ) , . . . P jn k(jn) ) t . Then Jf = P , and we can write f = ( J) -1 P . Hence,

f 2 ≤ C n =1 P j k(j ) 2 ≤ C m + 1 P 2 ,
by the observation in (66).

In order to find an explicit complementary space to image K m , we will use the Fischer inner product to compute its adjoint K * m . We first note, that since the components of R m,1 are orthogonal to one another, if we write

K m = (K 1 m , . . . , K d m ), then K * m = (K 1 m ) * + • • • + (K d m ) * . The adjoints of the maps K k m , k = 1, . . . , d are computed via K k m f, P k = zt J k f, j P j k zj = n p,q=1 (J k ) p q zp f q , j P j k zj = 1 m + 1 n p,q=1 (J k ) p q f q , P p k = 1 m + 1 n p,q=1 f q , (J k ) p q P p k (68) 
to be given by

(m + 1)((K k m ) * P k ) q = n p=1 (J k ) q p P p k = n p=1 (J k ) q p ∂ ∂ zp P k , (69) 
or in more compact notation,

(m + 1)(K k m ) * P k = J k ∂ ∂ z P k . (70) 
We now define the subspace N 1 m,1 to consist of the elements of the kernel of K * m , i.e.

N 1 m,1 := P = (P 1 , . . . P d ) t ∈ R m,1 : d k=1 J k ∂ ∂ z P k = d k=1 J k P k = 0 . (71) 
Proposition 8. There exists a holomorphic transformation z = z * + f ≥4 (z, w), w = w * such that, the new equation of the manifold satisfies

Φ p,1 ∈ N p,1 , p ≥ 4.
Proof. Let π * ,1 be the orthogonal projection onto the range of K. Then since we want Φ * ,1 to belong the normal forms space N 1 * ,1 , we have to solve

-K(f ) := -Q(f (z, u), z) = π * ,1 Φ * ,1 (z + f (z, u), z, u).
According to Lemma 7, the latter has an analytic solution by the implicit function theorem and we are done.

Convergence of the formal normal form

We are now going to prove convergence of the formal normal form in Section 5 under the additional condition of Theorem 3 on the formal normal form. The goal of this section is to show that one can, under this additional condition, replace the nonlinear terms in the conjugacy equations for the terms of order up to (3, 3), by another system which allows for the application of the big denominator theorem. We are again going to consider two real-analytic Levi-nondegenerate submanifolds of C N , but we now need to use their complex defining equations w = θ(z, z, w) and w = θ(z, z, w), respectively, where θ and θ are germs of analytic maps at the origin in C n × C n × C d valued in C d ; analogously to the real defining functions, we think about θ as the "old" and about θ as the "new" defining equation.

When dealing with the complex defining function, we will usually write χ = z and τ = w. Recall that a map θ : C 2n+d → C d determines a real submanifold if and only if the reality relation

τ = θ(z, χ, θ(χ, z, τ )) (72) 
holds. θ is obtained from a real defining equation Im w = ϕ(z, z, Re w) by solving the equation w -w 2i = ϕ z, z, w + w 2 for w.

We will already at the outset prepare our conjugacy equation so that (z, w) are normal coordinates for these submanifolds, i.e. that θ(z, 0, τ ) = θ(0, χ, τ ) = τ and we assume that θ(z , 0, τ ) = θ(0, χ , τ ) = τ . In terms of the original "real" defining function this means ϕ(z, 0, s) = ϕ(0, z, s) = 0 (and analogously for φ).

If our real defining function, as assumed before, satisfies ϕ(z, z, s) = Q(z, z) + Φ(z, z, s), we can write θ(z, χ, τ ) = τ + 2iQ(z, χ) + S(z, χ, τ ).

S can be further decomposed as

S(z, χ, τ ) = ∞ j,k=1
S j,k (τ )z j χ k .

Here we think of S j,k as a power series in τ taking values in the space of multilinear maps on (C n ) j+k which are symmetric in their first j and in their last k variables separately, taking values in C d (i.e. polynomials in z and χ homogeneous of degree j in z and of degree k in χ), and for any such map L, write Lz j χ k for L(z, . . . , z j times , χ, . . . , χ k times

).

We note for future reference the following simple observations:

S 1, = 2iΦ 1, , S ,1 = 2iΦ ,1 , ≥ 1, S 2,2 = 2i Φ 2,2 + iΦ 1,1 (Q + Φ 1,1 ) , S 2,3 = 2i Φ 2,3 + iΦ 1,2 (Q + Φ 1,1 ) + iΦ 1,1 Φ 1,2 , S 3,2 = 2i Φ 3,2 + iΦ 2,1 (Q + Φ 1,1 ) + iΦ 1,1 Φ 2,1 . (73) 
and

Φ 2,2 = 1 2i S 2,2 - 1 4i S 1,1 (2iQ + S 1,1 ) Φ 2,3 = 1 2i S 2,3 - 1 4i S 1,1 S 1,2 - 1 4i S 1,2 (2iQ + S 1,1 ), Φ 3,2 = 1 2i S 3,2 - 1 4i S 1,1 S 2,1 - 1 4i S 2,1 (2iQ + S 1,1 ) Φ 3,3 = 1 2i S 3,3 - 1 4i S 2,2 (2iQ + S 1,1 ) - 1 8i S 1,1 (2S 2,2 + S 1,1 (2iQ + S 1,1 ))+ - 1 4i S 1,2 S 2,1 - 1 4i S 2,1 S 1,2 + 1 16i S 1,1 (2iQ + S 1,1 ) 2 . ( 74 
)
Furthermore, from the fact that θ(z, χ, θ(χ, z, w)) = w, we obtain the following equations relating S j,k and their conjugates:

S 1, (w)+ S ,1 (w) = 0, S 2,2 -S 1,1 (2iQ-S1,1 )+ S2,2 = 0, S 2,3 -S 1,2 (2iQ-S1,1 )+S 1,1 S2,1 + S3,2 = 0 (75) A map H = (f, g) maps the manifold defined by w = θ(z, z, w) into the one defined by w = θ(z , z , w ) if and only if the following equation is satisfied:

g(z, θ(z, χ, τ )) = θ(f (z, θ(z, χ, τ )), f (χ, τ ), ḡ(χ, τ )). ( 76 
)
An equivalent equation is (after application of (72))

g(z, w) = θ(f (z, w), f (χ, θ(χ, z, w)), ḡ(χ, θ(χ, z, w))). (77) 
If we set χ = 0 in (77), the assumed normality of the coordinates, i.e. the equation θ(z, 0, w) = 0, is equivalent g(z, w) = θ(f (z, w), f (0, w), ḡ(0, w)); in particular, for w = θ(z, χ, τ ), we have the (also equivalent) condition g(z, θ(z, χ, τ )) = θ(f (z, θ(z, χ, τ )), f (0, θ(z, χ, τ )), ḡ(0, θ(z, χ, τ ))).

(78)

On the other hand setting z = 0, observing θ(0, χ, τ ) = τ , and using (the conjugate of) (76) we also have ḡ(χ, τ ) = θ( f (χ, τ ), f (0, τ ), g(0, τ ))

Combining this with (76) and (78), we obtain the following equivalent equation, which now guarantees the normality of (z, w):

θ(f (z, θ(z, χ, τ )), f (0, θ(z, χ, τ )), ḡ(0, θ(z, χ, τ ))) = θ f (z, θ(z, χ, τ )), f (χ, τ ), θ( f (χ, τ ), f (0, τ ), g(0, τ )) . (80) 
Lastly, we can use one of the equations implicit in (80) to eliminate Im g from it. This is easiest done using (37), which (after extending to complex w) becomes (Im g)(0, w) = φ(f (0, w), f (0, w), (Re g)(0, w)).

Substituting this relation into (80) eliminates the dependence on Im g completely from the equation, only Re g appears now.

We now substitute f = z + f ≥2 (z, w), where f only contains terms of quasihomogeneity greater than 1, and write f ≥2 (z, w) = k≥0 f k (w)z k , g(0, w) = w + g 0 (w); we also write ψ = Re g 0 for brevity. Let us first disentangle the equation (81). In our current notation, this reads (Im g 0 )(w) = φ(f 0 (w), f0 (w), w + ψ(w)).

(82)

By virtue of the fact that φ(z, 0, s) = 0, this exposes Im g 0 as an nonlinear expression in f 0 , f0 , and ψ.

We can thus rewrite (80) as

θ z + f ≥2 , f0 • θ, θ + ψ • θ + i φ(f 0 • θ, f0 • θ, θ + ψ • θ) = θ z + f ≥2 , χ + f≥2 , θ(χ + f≥2 , f 0 , τ + ψ + i φ(f 0 (w), f0 (w), w + ψ(w))) , (83) 
where we abbreviate f ≥2 = f ≥2 (z, θ(z, χ, τ )) and f≥2 = f≥2 (χ, τ ). We will now extract terms which are linear in the variables f ≥2 , f≥2 , and ψ from this equation. We rewrite:

θ z + f ≥2 , f0 • θ, θ + ψ • θ + i φ(f 0 • θ, f0 • θ, θ + ψ • θ) = τ + 2iQ(z, χ) + S + ψ • θ + 2iQ(z, f0 • θ) + . . . θ z + f ≥2 , , χ + f≥2 , θ(χ + f≥2 , f 0 , τ + ψ + i φ(f 0 (w), f0 (w), w + ψ(w))) = θ(χ + f≥2 , f 0 , τ + ψ + i φ(f 0 (w), f0 (w), w + ψ(w))) + 2iQ(z + f ≥2 , , χ + f≥2 ) + . . . = τ + ψ + 2iQ(z, χ) -2iQ(f 0 , χ) + 2iQ(z, f≥2 ) + 2iQ(f ≥2 , χ) + . . . ,
where we will elaborate on the terms which appear in the dots a bit below.

We can thus further express the conjugacy equation (83) in the following form:

ψ•θ -ψ + 2iQ(z, f0 • θ) + 2iQ(f 0 , χ) -2iQ(z, f≥2 ) -2iQ(f ≥2 , χ) = T z, χ, τ, f 0 , f0 , ψ, f 0 • θ, f0 • θ, ψ • θ, f ≥2 , f≥2 -S, (84) 
where T has the property that in the further expansion to follow, it will only create "nonlinear terms". We now restrict (84) to the space of power series which are homogeneous of degree up to at most 3 in z and χ. By replacing the compositions ψ • θ, f0 • θ, and f j • θ, for j ≤ 3, by their Taylor expansions, we get

ψ(τ + 2iQ(z, χ) + S(z, χ, τ )) = 3 k=0 ψ (k) (τ ) (2iQ(z, χ) + S(z, χ, τ )) k , mod (z) 4 + (χ) 4 f0 (τ + 2iQ(z, χ) + S(z, χ, τ )) = 3 k=0 f (k) 0 (τ ) (2iQ(z, χ) + S(z, χ, τ )) k , mod (z) 4 + (χ) 4 f j (τ + 2iQ(z, χ) + S(z, χ, τ )) = 3-j k=0 f (k) j (τ ) (2iQ(z, χ) + S(z, χ, τ )) k , mod (z) 4 + (χ) 4 .
The resulting equations, ordered by their homogeneity in (z, χ), writing h = (f 0 , f0 , ψ), and saving space by setting ϕ ≤j = (ϕ, ϕ , . . . , ϕ (j) ) and S <p,<q = (S k, : k < p, ≤ q or k ≤ p, < q) , become

zχ -ψ Q + Q(z, f1 ) + Q(f 1 , χ) = S 1,1 2i + T1,1 h ≤1 , f 1 , f1 z 2 χ -2iQ(z, f 0 Q) + Q(f 2 , χ) = S 2,1 2i + T2,1 h ≤1 , f ≤1 1 , f1 , S 1,1 z 3 χ Q(f 3 , χ) = S 3,1 2i + T3,1 h ≤1 , f ≤1 1 , f 2 , f1 , S <3,<1 zχ 2 2iQ(f 0 Q, χ) + Q(z, f2 ) = S 1,2 2i + T1,2 h ≤1 , f 1 , f1 , S 1,1 zχ 3 Q(z, f3 ) = S 1,3 2i + T1,3 h ≤1 , f 1 , f 2 , f1 , S <1,<3 z 2 χ 2 -iψ Q 2 + 2iQ(f 1 Q, χ) = S 2,2 2i + T2,2 h ≤2 , f ≤1 1 , f 2 , f1 , f2 , S <2,<2 z 2 χ 3 -2Q(f 0 Q 2 , χ) = S 2,3 2i + T2,3 h ≤2 , f ≤1 1 , f 2 , f1 , f2 , S <2,<3 z 3 χ 2 2iQ(f 2 Q, χ) + 2Q(z, f 0 Q 2 ) = S 3,2 2i + T3,2 h ≤2 , f ≤2 1 , f 2 , f1 , f2 , S <3,<2 z 3 χ 3 2 3 ψ Q 3 -2Q(f 1 Q 2 , χ) = S 3,3 2i + T3,3 h ≤3 , f ≤2 1 , f ≤1 2 , f1 , f2 , S <3,<3 (85) 
The "nonlinear terms" T(p,q) have the property that the derivatives of highest order appearing in each line, if they appear in the nonlinear part, then their coefficient vanishes when evaluated at τ = 0. (One can go through very similar arguments as in Section 3 to convince oneself of that fact). This system has the problem that the equations for the z 2 χ and z 3 χ involve f 1 and that the equation for z 3 χ 2 inolves f 1 , which effectively turns the full system of equations singular: In order to see that, consider the last two lines of the preceding system, brought to the same order of differentiation in the u-variables:

z 3 χ 2 2iQ(f 2 Q 2 , χ) + 2Q(z, f 0 Q 3 ) = S 3,2 Q 2i + T3,2 h ≤3 , f ≤3 1 , f ≤1 2 , f ≤1 1 , f ≤1 2 , Ŝ<3,<2 z 3 χ 3 2 3 ψ Q 3 -2Q(f 1 Q 2 , χ) = S 3,3 2i + T3,3 h ≤3 , f ≤2 1 , f ≤1 2 , f1 , f2 , S <3,<3
and note that in the nonlinear terms, the order of differentiation of f 1 in the first line is 3 in the nonlinear part while it is 2 in the linear part on the second line. This behaviour has to be excluded. However, we have improved the system from (34), since the equations for zχ 2 and for z 2 χ 3 do not have this problem. We can thus use our crucial assumptions, namely that

Φ 1,2 (Q + Φ 1,1 ) + Φ 1,1 Φ 1,2 = 0. ( 86 
)
Under this assumption, (73) implies that S 1,2 = -S2,1 , S 1,3 = -S3,1 , S 3,2 = -S2,3 , and we can replace the equations for these terms with their conjugate equations, therefore eliminating the derivatives of too high order. Indeed, among the previous equations, consider each pair of equations of the form L p,q = Sp,q 2i + Tpq and ( * )L q,p = Sq,p 2i + Tqp . Assume that Tqp involves higher derivatives than Tpq . Since Spq = -S qp , we have Tqp = L q,p -S q,p 2i = L q,p + Sp,q 2i = L q,p -Lp,q + T pq .

Hence, we can replace equation (*) by Lp,q = Sq,p 2i + T pq , lowering thereby the order of the differentials involved. Therefore, we obtain a system of the form

zχ -ψ Q + Q(z, f1 ) + Q(f 1 , χ) = S 1,1 2i + T1,1 h ≤1 , f 1 , f1 z 2 χ -2iQ(z, f 0 Q) + Q(f 2 , χ) = S 2,1 2i + T 1,2 h≤1 , f1 , f 1 , S1,1 z 3 χ Q(f 3 , χ) = S 3,1 2i + T 1,3 h≤1 , f1 , f2 , f 1 , S<1,<3 zχ 2 2iQ(f 0 Q, χ) + Q(z, f2 ) = S 1,2 2i + T1,2 h ≤1 , f 1 , f1 , S 1,1 zχ 3 Q(z, f3 ) = S 1,3 2i + T1,3 h ≤1 , f 1 , f 2 , f1 , S <1,<3 z 2 χ 2 -iψ Q 2 + 2iQ(f 1 Q, χ) = S 2,2 2i + T2,2 h ≤2 , f ≤1 1 , f 2 , f1 , f2 , S <2,<2 z 2 χ 3 -2Q(f 0 Q 2 , χ) = S 2,3 2i + T2,3 h ≤2 , f ≤1 1 , f 2 , f1 , f2 , S <2,<3 z 3 χ 2 -2Q(z, f 0 Q 2 ) = S 3,2 2i + T 3,2 h≤2 , f ≤1 1 , f2 , f 1 , f 2 , S<2,<3 z 3 χ 3 2 3 ψ Q 3 -2Q(f 1 Q 2 , χ) = S 3,3 2i + T3,3 h ≤3 , f ≤2 1 , f ≤1 2 , f1 , f2 , S <3,<3
The equations for the (2, 1), the (3, 1) and the (3, 2) term now depend nonlinearly on the conjugate Sp,q , which we replace by their conjugates (i.e. the unbarred terms) using the rules (75). After that, we can use the implicit function theorem in order to eliminate the dependence of the Tp,q on the S p,q , obtaining the equivalent system of equations

zχ -ψ Q + Q(z, f1 ) + Q(f 1 , χ) = S 1,1 2i + T 1,1 h ≤1 , f 1 , f1 z 2 χ -2iQ(z, f 0 Q) + Q(f 2 , χ) = S 2,1 2i + T 2,1 h ≤1 , f1 , f 1 z 3 χ Q(f 3 , χ) = S 3,1 2i + T 3,1 h ≤1 , f1 , f2 , f 1 zχ 2 2iQ(f 0 Q, χ) + Q(z, f2 ) = S 1,2 2i + T 1,2 h ≤1 , f 1 , f1 , zχ 3 Q(z, f3 ) = S 1,3 2i + T 1,3 h ≤1 , f 1 , f 2 , f1 z 2 χ 2 -iψ Q 2 + 2iQ(f 1 Q, χ) = S 2,2 2i + T 2,2 h ≤2 , f ≤1 1 , f 2 , f1 , f2 z 2 χ 3 -2Q(f 0 Q 2 , χ) = S 2,3 2i + T 2,3 h ≤1 , f ≤1 1 , f 2 , f1 , f2 z 3 χ 2 -2Q(z, f 0 Q 2 ) = S 3,2 2i + T 2,3 h ≤2 , f ≤1 1 , f 2 , f1 , f2 z 3 χ 3 2 3 ψ Q 3 -2Q(f 1 Q 2 , χ) = S 3,3 2i + T 3,3 h ≤3 , f ≤2 1 , f ≤1 2 , f1 , f2
We use this system and substitute it (and its appropriate derivatives) into (74) in order to obtain equations for the Φ p,q , leading to

zχ -ψ Q + Q(z, f1 ) + Q(f 1 , χ) = Φ 1,1 + T 1,1 h ≤1 , f 1 , f1 z 2 χ -2iQ(z, f 0 Q) + Q(f 2 , χ) = Φ 2,1 + T 1,2 h≤1 , f1 , f 1 z 3 χ Q(f 3 , χ) = Φ 3,1 + T 1,3 h≤1 , f1 , f2 , f 1 zχ 2 2iQ(f 0 Q, χ) + Q(z, f2 ) = Φ 1,2 + T 1,2 h ≤1 , f 1 , f1 , zχ 3 Q(z, f3 ) = Φ 1,3 + T 1,3 h ≤1 , f 1 , f 2 , f1 z 2 χ 2 i Q(f 1 Q, χ) -Q(z, f 1 Q) = Φ 2,2 + S2,2 h ≤2 , f ≤1 1 , f ≤1 1 , f 2 , f2 z 2 χ 3 -iQ(z, f 2 Q) = Φ 2,3 + S2,3 h ≤2 , f ≤1 1 , f 2 , f1 , f2 z 3 χ 2 iQ(f 2 Q, χ) = Φ 3,2 + S3,2 h≤2 , f ≤1 1 , f2 , f 1 , f 2 z 3 χ 3 1 6 ψ Q 3 - 1 2 Q(f 1 Q 2 , χ) + Q(z, f 1 Q 2 ) = Φ 3,3 + S3,3 h ≤3 , f ≤2 1 , f ≤1 2 , f ≤2 1 , f ≤1 2 
(87) This system is now "well graded" so that we can expose it as a system of PDEs which allows for the application of the big denominator theorem. However, we first single out the equations for z 2 χ, z 3 χ, zχ 2 , zχ 3 :

z 2 χ -2iQ(z, f 0 Q) + Q(f 2 , χ) = Φ 2,1 + T 1,2 h≤1 , f1 , f 1 z 3 χ Q(f 3 , χ) = Φ 3,1 + T 1,3 h≤1 , f1 , f2 , f 1 zχ 2 2iQ(f 0 Q, χ) + Q(z, f2 ) = Φ 1,2 + T 1,2 h ≤1 , f 1 , f1 , zχ 3 Q(z, f3 ) = Φ 1,3 + T 1,3 h ≤1 , f 1 , f 2 , f1 (88) 
Applying the adjoint operator K * to the system (88) and using the normalization conditions (11) for the (1, p) and (p, 1)-terms for p = 2, 3 transforms them into a system of implicit equations for f 2 and f 3 in term of h ≤1 , f 1 and their conjugates:

z 2 χ K * Kf 2 = K * (2iQ(z, f 0 Q) + T 1,2 ) z 3 χ K * Kf 3 = K * T 1,3 (89) 
By the fact that K * K is invertible (on the image of K * , where the right hand side lies), we can solve this equation for f 2 and f 3 and substitute the result into the "remaining" equations to obtain the following system:

zχ -ψ Q + Q(z, f1 ) + Q(f 1 , χ) = Φ 1,1 + T 1,1 h ≤1 , f 1 , f1 z 2 χ 2 i Q(f 1 Q, χ) -Q(z, f 1 Q) = Φ 2,2 + S 2,2 h ≤2 , f ≤1 1 , f ≤1 1 z 3 χ 3 1 6 ψ Q 3 - 1 2 Q(f 1 Q 2 , χ) + Q(z, f 1 Q 2 ) = Φ 3,3 + S 3,3 h ≤3 , f ≤2 1 , f ≤2 1 z 3 χ 2 -2Q(z, f 0 Q 2 ) = Φ 3,2 -iΦ 2,1 Q + S 3,2 h≤2 , f ≤1 1 , f 1 (90 
) While coupled in the nonlinear parts, the linear parts of the equations corresponding to the diagonal terms of type (1, 1), (2, 2), and (3, 3) on the one hand and of the off-diagonal terms of type (3, 2) (we drop from now on the conjugate term (2, 3)) on the other hand are decoupled, the diagonal terms only depending on f 1 and ψ, the off-diagonal terms on f 0 and their derivatives.

We thus obtain the linear operator L already introduced in Section 5, if we rewrite everything in terms of our operators ∆, K and K (see section 2.4),

zχ

-∆ψ

+ K f1 + Kf 1 = Φ 1,1 + T 1,1 z 2 χ 2 i K∆f 1 -K∆ f1 = Φ 2,2 + S 2,2 z 3 χ 3 1 6 ∆ 3 ψ - 1 2 K∆ 2 f 1 + K∆ 2 f1 = Φ 3,3 + S 3,3 (91) 
The equation determining f 0 can be rewritten as

-2 K∆ 2 f0 = Φ 3,2 -i∆Φ 2,1 + S 3,2 (92) 
Let us stress that even though the linear terms here are the same as in Section 5, the nonlinear terms are not the same as we had in that section, and an elimination of the derivatives of "bad order" like we did here is only possible under some restriction. However, with this in mind, we can completely proceed as in the proof of Theorem 2: we first project the equations on the normal form space N off × N d , and obtain an equation of the form -2 K∆ 2 f0 = π 0 S 3,2

-∆ψ + K f1 + Kf 1 = π 1 T 1,1 i Kf 1 -K f1 = π 2 S 2,2 1 6 ∆ 3 ψ - 1 2 K∆ 2 f 1 + K∆ 2 f1 = π 3 S 3,3 (93) 
Let us first compute {f α ≥2 } p 2 ,q 2 with p 2 , q 2 ≤ 3. In the following computations, f, g are considered as vector valued functions except when computing f α , (g + ḡ) γ where f, g are considered as scalar functions and α, γ as an integers.

In the sums below, the terms appear with some positive multiplicity that we do not write since we are only interested in a lower bound of vanishing order of the terms. Fron these computations, we easily obtain { f α ≥2 } p 2 ,q 2 in the following way : replace f k by fk in formula defining {f α } p,q in order to obtain { f α } q,p . Furthermore, we have

∂ k Φ≥3 ∂z α ∂ zβ ∂u γ p 1 ,q 1 = ∂ k Φp 1 +|α|,q 1 +|β| ∂z α zβ u γ
Let us set as notation Re(g) := g + ḡ 2 = g(z, u + i(Q(z, z) + Φ(z, z, u))) + ḡ(z, u -i(Q(z, z) + Φ(z, z, u)) 2 .

B Big denominators theorem for non-linear systems of PDEs

In this section we recall one of the main results of article [START_REF] Stolovitch | Big demonimators and analytic normal forms. with an appendix of M. Zhitomirskii[END_REF] about local analytic solvability of some non-linear systems of PDEs that have the "big denominators property". Definition 10. Let q be a nonnegative integer. Let T : F ≥0 r,m → A s n be a map.

B.1 The problem

• We shall say that it increases the order at the origin (resp. strictly) by q if for all (F, G) ∈ (F ≥0 r,m ) 2 then ord 0 (T (F ) -T (G)) ≥ ord 0 (F -G) + q, (resp. > instead of ≥).

• Assume that T is an analytic differential map of order m defined by a map germ W : J m F ≥0 r,m , 0 → R s as in Definition 9. We shall say that it is regular if, for any formal map F = (F 1 , . . . , F r ) ∈ F ≥0 r,m , then ord 0 ∂W i ∂u j,α (x, ∂F ) ≥ p j,|α| , where p j,|α| = max(0, |α| + q + 1 -m j ) (113)

We have set

∂F := ∂ |α| F i ∂x α , 1 ≤ i ≤ r, 0 ≤ |α| ≤ m i .
Let us consider linear maps :

1. S : F ≥0 r,m → A s n , that increases the order by q and is homogenous, i.e S F Let us consider a differential analytic map of order m, T : F ≥0 r,m → A s n . We consider the equation S(F ) = π (T (F ))

In [START_REF] Stolovitch | Big demonimators and analytic normal forms. with an appendix of M. Zhitomirskii[END_REF], we gave a sufficient condition on the triple (S, T , π) under which equation (114) has a solution F ∈ F ≥0 r,m ; this condition is called the "Big Denominators property" of the triple (S, T , π) defined below.

B.2 Big denominators. Main theorem

Now we can define the big denominators property of the triple (S, T , π) in equation ( 114).

Definition 11. The triple of maps (S, T , π) of form (B.1) has big denominators property of order m if there exists an nonnegative integer q such that the following holds: 1. T is an regular analytic differential map of order m that strictly increases the order by q and j q-1 0 T (0) = 0, i.e. T (F )(x) = W (x, j m x F ) for any x ∈ R n close to 0 and any function germ F ∈ F ≥0 r,m such that j m 0 F is close to 0 and ord 0 (W (x, 0)) ≥ q .

B.3 Application

In this section we shall devise the strictly increasing condition in more detail. We look for a formal solution F ≥0 = i≥0 F (i) to (116). As above, F (i) stands for (F (m 1 +i) 1 , . . . , F (mr+i) r

). We define = πW (x, j m x F )

S(F

We emphasize that condition (117) just means that W strictly increases the order by q as defined in Definition 10. Let us look closer to that condition. Let us denote F ≤i := i j≥0 F (j) and F >i := j>i F (j) . Let us Taylor expand W (x, j m x F ) at F ≤i . We thus have W (x, j m x F ) -W (x, j m x F ≤i ) = ∂W ∂u j,α ((x, j m x F ≤i ))

∂ |α| F >i j ∂x α + 1 2 ∂W ∂u j,α ∂u j ,α ((x, j m x F ≤i ))

∂ |α| F >i j ∂x α ∂ |α | F >i j ∂x α + • • •
We recall that ord 0 F >i j > m j + i and when considering a coordinate u j,α , we have |α| ≤ m j . Hence, we have ord 0 ∂ |α| F >i j ∂x α > m j + i -|α|. In order that the first derivative part of this Taylor expansion satisfies (117), it is sufficient that ord 0 ∂W ∂u j,α ((x, j m x F ≤i )) ≥ |α| -m j + q + 1. This is nothing but the regularity condition as defined in Definition (10). Let us consider the other terms in the Taylor expansion. We have, for instance,

ord 0 ∂ |α| F >i j ∂x α ∂ |α | F >i j ∂x α ≥ m j + i + 1 -|α| + m j + i + 1 -|α |

,m such that j m 0 F

 0 Let r ∈ N * and let m = (m 1 , . . . , m r ) ∈ N r be a fixed multiindex. Let us denoteA k n (resp. A k n >d , A k n , A k n (i)) the space of k-tuples of germs at 0 ∈ R n (or C n ) of analytic functions (resp. vanishing at order d at the origin, formal power series maps, homogeneous polynomials of degree i) of n variables. Let us setF ≥0 r,m := (A n ) ≥m 1 × (A n ) ≥m 2 × • • • × (A n ) ≥mr Given F = (F 1 , ..., F r ) ∈ F ≥0 r,m and x ∈ (R n , 0), let us denote j m x F := (j m 1 x F 1 , • • • , j mr x F r ) , J m F ≥0 r,m := (x, j m x F ) , x ∈ (R n , 0), F ∈ F ≥0 r,m .Definition 9. A map T : F ≥0 r,m → A s n is a differential analytic map of order m at the point 0 ∈ A k n if there exists an analytic map germW : J m F ≥0 r,m , 0 → R s such that T (F )(x) = W (x, j m x F ) for any x ∈ R n closeto 0 and any function germ F ∈ F ≥0 ris close to 0. Denote by v = (x 1 , ..., x n , u j,α ) , 1 ≤ j ≤ r, α = (α 1 , ..., α n ) ∈ N n , |α| ≤ m j the local coordinates in J m A r n , where u j,α corresponds to the partial derivative ∂ |α| /∂x α 1 1 • • • ∂x αn n of the j-th component of a vector function F ∈ A r n . As usual, we have set |α| = α 1 +• • •+α n .

  s n → Image (S) ⊂ A s n is a projection onto Image (S).

.

  Here [G](i) denotes the homogenous part of degree i of G in the Taylor expansion at the origin. Therefore F := i≥ F (i) is a solution of (116
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where D u Re(g 0 )Φ 123 stands for (D u Re(g 0 )Φ 1,1 , D u Re(g 0 )Φ 2,2 , D u Re(g 0 )Φ 3,3 , D u Re(g 0 )Φ 2,1 , D u Re(g 0 )Φ 3,1 ). Furthermore, among Φ 123 , the (i, j)-component of G depends only on Φ ≤i-1,≤j-1 .

Here, G is analytic in u in a neighborhood of the origin, polynomial in its other arguments and

The linear operator L 1 is defined from (Re(g 0 ), f 1 ) ∈ R{u} d × C{u} n 2 ∼ = R{u} k 3 +k 1 to R 1,1 {u} ⊕ R 2,2 {u} ⊕ R 3,3 {u} ∼ = R{u} N for some N . The linear operator L 2 is defined from (f 2 , f 3 ) ∈ C{u} n( n+1 2 ) × C{u} n( n+2 3 ) ∼ = R{u} k 2 +k 4 to R 2,1 {u} × R 3,1 ∼ = R{u} M for some M . Each of these spaces is endowed with the (modified) Fisher scalar product of R{u}. Here we have set :

Let N 1 (resp. N 2 ) be the orthogonal subspace to the image of L 1 (resp. L 2 ) with respect to that scalar product :

These are the spaces of normal forms and they are defined to be the kernels of the adjoint operator with respect to the modified Fischer scalar product : N 1 = ker L * 1 , N 2 = ker L * 2 ; in terms of the normal form spaces introduced in Section 2.4, we have in a natural way

≤3 . Let π i be the orthogonal projection onto the range of L i and

The set of the seven previous equations encoded in (50) has the seven real unknowns Re(f 1 ), Im(f 1 ), Re(f 2 ), Im(f 2 ), Re (f 3 ), Im (f 3 ), Re(g 0 ).

Let us project (50) onto the kernel of L * , which is orthogonal to the image of L with respect to the Fischer inner product, i.e. we impose the normal form conditions (16).

Since Φ 123 belongs to that space, we have

In other words, we have obtained

According to the triangular property mentioned above, we can express successively Φ 1,1 , • • • , Φ 3,3 as an analytic function of only u, D i u f 1 , D j u Re(g 0 ), D l u f 2 . Substituting in (50) and projecting down onto the image of L, we obtain

We now "homogenize" the degree of differentials of these equations again, obtaining a system of the form

Next, we substitute f 0 , Re g 0 , and f 1 with f0 = f 0 -j 3 f 0 , Re ψ = ψ -j 3 ψ, and f1 = f 1 -j 2 f 1 and obtain

We can now apply the Big Denominator theorem 14 to this system, just as we did in the proof of Theorem 2. The setup is the same, with Re(g 0 ) now replaced by (ψ, f 0 ), and the details are completely analogous to the details carried out in the proof of Theorem 2 and therefore left to the reader.

On the Chern-Moser normal form

As we have already pointed out above, our normal form necessarily cannot agree with the normal form of Chern-Moser in the case d = 1 (which we assume from now on). The reason is that we do not have a choice of which normal form space to use for the diagonal terms-the operator associated to all diagonal terms is injective, and we need to use its full adjoint. In the Chern-Moser case, the equation for the (1, 1)-term, (with our notations from above)

is rather special, because the operator f 1 → Re Kf 1 is surjective. (One can check that the weaker condition image ∆ ⊂ image Re K happens if and only if d = 1).

This means that if we look at the normal form condition for the (1, p)-terms, which just becomes Φ 1,p = 0 (because K is surjective, K * is injective, and hence Φ 1,p = 0 if and only if K * Φ 1,p = 0), we can naturally also use it for the (1, 1)-term and just request that Φ 1,1 = 0. A tricky point is that even though Re K is surjective (as a map on H 1 u )), it is not injective. By considering the polar decomposition z

, the equation for the (1, 1)-term becomes an implicit equation for R in terms of all the other variables, because

We can then use the implicit function theorem to solve the (1, 1), (2, 1), and (3, 1)-equations under the requirement Φ 1,1 = Φ 2,1 = Φ 3,1 = 0 jointly for R, f 2 , and f 3 in terms of U and Re g 0 and substitute the result back in all the other equations as we did before. If we follow this procedure and go through with the rest of the arguments following (88) with the appropriate changes, we obtain the Chern-Moser normal form; one just has to note that utrϕ = ∆ * ϕ.

A Computations

We recall that Φ p,0 = Φ 0,q = 0. Therefore, (Q + Φ) l contains no terms (p, q) with p < l or q < l. As a consequence, we have

(23

To obtain ḡ≥3 (z, u -iQ) -ḡ≥3 (z, u -iQ -iΦ), we just use the previous result and substitute g k in ḡk and i by -i. We have, using essentially the same computations :

(24) p,1 = (24) p,0 = 0 (102

We have

) has only terms (p, q) with p ≥ j + k and q ≥ k (rep. p ≥ l and q ≥ l + j). Hence, the function

) contains only terms (p, q) with p ≥ j + k + l and q ≥ j + k + l. we have

with 4 i=1 p i = p, 4 i=1 q i = q.

2. S : F ≥0 r,m → A s n is linear , increases the order by q and is homogenous, i.e. S F

3. the linear map π : A s n → Image (S) ⊂ A s n is a projection.

4. the map S admits right-inverse S -1 : Image(S) → A r n such that the composition S -1 • π satisfies: there exists C > 0 such that for any G ∈ A s n of order > q, one has for all 1 ≤ j ≤ r, and all integer i,

where

x α where the sum is taken over all j = 1, ..., k and all multiindexes α = (α 1 , ..

• or the modified Fisher-Belitskii norm

Remark 13. In practice, for each i, there is a decomposition into direct sums F (i) r,m = L i ⊕K i with S |L i is a bijection onto its range. The chosen right inverse is then the one with zero component along K i . For instance, the case of the modified Fisher-Belitskii norm, K i := ker S * i is the natural one, where S * i denotes the adjoint of S i w.r.t. the scalar product. Remark 15. The precise statement of [START_REF] Stolovitch | Big demonimators and analytic normal forms. with an appendix of M. Zhitomirskii[END_REF] holds for F ∈ F >0 r,m and where the order of W (x, 0) at the origin is greater than q. The shift by 1 (i.e F ∈ F ≥0 r,m and where the order of W (x, 0) at the origin is greater or equal to q) of the above statement, doesn't affect its proof.

If i + 1 > q, then not only the second but also any higher order derivative part of this Taylor expansion satisfies (117).

Corollary 16. If q = 0 and if the system is regular, then it strictly increases the order by 0.