
HAL Id: hal-01519432
https://hal.science/hal-01519432

Submitted on 7 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ordonnancement dynamique pour un équilibrage de
charge quasi-optimal dans les systèmes de traitement de

flux
Nicolò Rivetti, Emmanuelle Anceaume, Yann Busnel, Leonardo Querzoni,

Bruno Sericola

To cite this version:
Nicolò Rivetti, Emmanuelle Anceaume, Yann Busnel, Leonardo Querzoni, Bruno Sericola. Ordon-
nancement dynamique pour un équilibrage de charge quasi-optimal dans les systèmes de traitement
de flux. ALGOTEL 2017 - 19èmes Rencontres Francophones sur les Aspects Algorithmiques des
Télécommunications, May 2017, Quiberon, France. �hal-01519432�

https://hal.science/hal-01519432
https://hal.archives-ouvertes.fr

Ordonnancement dynamique pour un
équilibrage de charge quasi-optimal dans les
systèmes de traitement de flux

Nicoló Rivetti1, Emmanuelle Anceaume2, Yann Busnel3,4,
Leonardo Querzoni5 et Bruno Sericola4

1Technion - Israel Institute of Technology, Haifa, Israel
2IRISA / CNRS, Rennes, France
3IMT Atlantique, Rennes, France
4Inria Rennes – Bretagne Atlantique, France
5Sapienza University of Rome, Italy

La répartition de la charge sur les opérateurs sans état parallélisé dans un système de traitement de flux repose princi-
palement sur le groupement aléatoire des tuples. Chacun de ces derniers peut être assigné à n’importe quelle instance
disponible de l’opérateur considéré, indépendamment des assignations précédentes. L’approche classique consiste à
transmettre à tour de rôle les tuples aux différentes instances parallèles existantes. Cette politique convient bien tant
que le temps d’exécution de tous les tuples est plus ou moins le même. Cette hypothèse est cependant rarement vérifiée
en pratique, où les temps d’exécution reposent principalement sur le contenu des tuples, et peut causer un déséquilibre
imprévisible menant in fine à un accroissement indésirable des temps d’exécution et potentiellement à la défaillance
du système. Dans cet article, nous proposons Online Shuffle Grouping (OSG), une solution de groupement permettant
de réduire le temps d’exécution global des tuples. OSG commence par estimer, par l’utilisation d’agrégats, la durée
d’exécution de chaque tuple, avec des taux d’erreur d’approximation faibles et bornés, lui permettant d’effectuer un
ordonnancement pro-actif en temps-réel. Nous proposons une analyse probabiliste de OSG et évaluons son impact
sur des applications de traitement de flux, en terme de robustesse et de fiabilité, par une large expérimentation sur la
plateforme Microsoft Azure.

Mots-clefs : Traitement de flux; Groupement de clé; Equilibrage de charge; Algorithme d’approximation probabiliste;
Evaluation de performance

Travaux co-financés par le projet ANR SocioPlug (ANR-13-INFR-0003) et le projet DeSceNt du Labex CominLabs (ANR-10-LABX-07-01).

1 Introduction
Stream processing systems are today gaining momentum to perform analytics on continuous data streams.
Their ability to achieve sub-second latencies, coupled with their scalability, makes them the preferred choice
for many big data companies. A stream processing application is commonly modeled as a direct acyclic
graph where data operators, represented by vertices, are interconnected by streams of tuples containing
data, the directed edges. Scalability is usually attained at the deployment phase parallelizing data operator
using multiple instances, each of which will handle a subset of the tuples conveyed by the operator’s ingoing
stream. The strategy used to route tuples in a stream toward the instances of the receiving operator is called
grouping function. Operator parallelization is straightforward for stateless operators, i.e., data operators
whose output is only a function of the current tuple in input. In this case, the grouping function is free to
assign the next tuple in the input stream, to any instance of the operator (contrarily to stateful operators,
where tuple assignment is constrained). Such grouping functions are often called shuffle grouping and are a
fundamental element of a number of stream processing applications. Shuffle grouping implementations are

Nicoló Rivetti, Emmanuelle Anceaume, Yann Busnel, Leonardo Querzoni et Bruno Sericola

designed to balance the load on the receiving operator instances, increasing the system efficiency.Notable
implementations, such as Apache Storm, leverage a simple Round-Robin scheduling strategy routing the
same number of tuples to each instance. Amini et al. [1], look into non-uniform operators and/or tasks.
These approaches are effective as long as the time taken by the operator instance to process a tuple (tuple
execution time) is the same for any tuple. In this case, all parallel instances of the operator experience over
time, on average, the same load. However,for many practical use cases we cannot assume that all tuples of
a stream have the same execution time. The tuple execution time, in fact, may depend on the tuple content
itself. This is often the case whenever the receiving operator implements a logic with branches where only
a subset of the incoming tuples travels through each single branch, each generating different loads. Then
the execution time will change from tuple to tuple. In this case shuffle grouping implemented with Round-
Robin may produce imbalance (an example is given in [4]), as some tuple may end-up being queued on
some overloaded operator instances, increasing the time needed for a tuple to be completely processed by
the application (tuple completion time).

We introduce Online Shuffle Grouping (OSG) a novel approach to shuffle grouping that aims at reducing
tuple completion times by carefully scheduling each incoming tuple. In particular, OSG makes use of
sketches to efficiently keep track of tuple execution times at the available operator instances and then applies
a greedy online multiprocessor scheduling algorithm to assign tuples to operator instances at runtime. The
status of each instance is monitored in a smart way in order to detect possible changes in the input load
distribution and coherently adapt the scheduling. As a result, OSG provides an important performance
gain in terms of tuple completion times with respect to Round-Robin for all those settings where tuple
processing times are not similar, but rather depend on the tuple content. In summary, we provide the
following contributions: (i) We present OSG, the first solution (to the best of our knowledge) to load
balance shuffle grouped parallel operator (non-uniform) with non-uniform tuple execution times; (ii) We
analyze study the two components of our solution; (iii) We evaluate OSG with an extensive evaluation.

2 System Model

We consider a stream processing system (SPS) deployed on a cluster where several computing nodes ex-
change data through messages over a network. The SPS executes a stream processing application repre-
sented by a topology: a directed acyclic graph interconnecting operators, represented by nodes, with data
streams (DS), represented by edges. Each topology contains at least a source, i.e., an operator connected
only through outbound DSs, and a sink, i.e., an operator connected only through inbound DSs. For the sake
of clarity, and without loss of generality†, we consider a topology with an operator S (scheduler) which
schedules the tuples that are consumed by the k instances O1, · · · ,Ok of operator O. Each operator instance
has a FIFO input queue where tuples are buffered while the instance is busy processing previous tuples.
Tuples are assigned to sub-streams through shuffle grouping, where each incoming tuple can be assigned
to any sub-stream. Data injected by the source is encapsulated in units called tuples and each data stream
is a sequence of tuples whose size (that is the number of tuples) m is unknown. To simplify the discus-
sion, in the rest of this work we deal with streams of unary tuples with a single non negative integer value.
We denote by wt,op the execution time of tuple t on operator instance Oop (Oop denotes a generic operator
instance) The execution time wt,op is modeled as an unknown function‡ of the content of tuple t and that
may be different for each operator instance (i.e., operator instances may be non-uniform). We assume that
wt,op depends on a single fixed and known attribute value of t. The probability distribution of such attribute
values, as well as wt,op, are unknown and may change over time. However, The time frame between two
subsequent changes allows the algorithm to adapt. Abusing the notation, we may omit in wt,op the operator
instance identifier subscript. The goal we target is to minimize the average tuple completion time L.

† The case where operator S is parallelized is discussed in [4].
‡ In the experimental evaluation we relax the model by taking into account the execution time variance

Ordonnancement dynamique pour un équilibrage de charge quasi-optimal dans les systèmes de traitement de flux

3 Online Shuffle Grouping
Online Shuffle Grouping is a shuffle grouping implementation based on a simple, yet effective idea: if we
know the execution time wt,op of each tuple t on any operator instances, we can schedule the execution of
incoming tuples minimizing the average per tuple completion time at the operator instances. However, the
value of wt,op is generally unknown. A common solution is to build a cost model for the tuple execution time
and then use it to proactively schedule incoming load. However building an accurate cost model usually
requires a large amount of a priori knowledge on the system. Furthermore, once a model has been built, it
can be hard to handle changes in the system or input stream characteristics at runtime. To overcome all these
issues, OSG takes decisions based on the estimation Ĉop of the execution time assigned to instance Oop, that
is Cop = ∑t∈Oin

op
wt,op. In order to do so, OSG computes an estimation ŵt,op of the execution time wt,op of

each tuple t on each operator instance Oop. Then, OSG can also compute the sum of the estimated execution
times of the tuples assigned to an instance Oop, i.e., Ĉop = ∑t∈Oin

op
ŵt,op, which in turn is the estimation of

Cop. A Greedy Online Scheduler algorithm for multiprocessor scheduling is then fed with estimations for
all the available operator instances. Online scheduling means that the scheduler does not know in advance
the sequence of tasks it has to schedule. In [4] prove that Greedy Online Scheduler approximates an optimal
omniscient scheduling algorithm, that is an algorithm that knows in advance all the tuples it will received.§

c
1 2 3 4

r
2

1

FO2

c
1 2 3 4

WO2

〈FO2
,WO2

〉

O2

〈FO1 ,WO1〉

O1

POSG

Ĉ = [ĈO1
, ĈO2

]

〈FO1
,WO1

〉

〈FO2
,WO2

〉

S

〈tuple〉
| 〈tupl

e, Ĉ[O1]〉

〈FO2
,WO2

〉

〈∆O2 〉

A

B

C

D

E

Fig. 1: Online Shuffle Grouping design with r = 2
(δ = 0.25), c = 4 (ε = 0.70) and k = 2.

To implement this approach, each operator instance
builds a sketch (i.e., a memory efficient data structure)
that will track the execution time of the tuples it pro-
cesses. When a change in the stream or instance(s) char-
acteristics affects the tuples execution times on some in-
stances, the concerned instance(s) will forward an up-
dated sketch to the scheduler which will then be able
to (again) correctly estimate the tuples execution times.
This solution does not require any a priori knowledge on
the stream composition or the system, and is designed to
continuously adapt to changes in the input distribution or
on the instances load characteristics. In addition, this so-
lution is proactive, namely its goal is to avoid unbalance
through scheduling, rather than detecting the unbalance
and then attempting to correct it. A reactive solution can
hardly be applied to this problem, in fact it would schedule input tuples on the basis of a previous, possi-
bly stale, load state of the operator instances. In addition, reactive scheduling typically imposes a periodic
overhead even if the load distribution imposed by input tuples does not change over time. For the sake of
clarity, we consider a topology with a single operator S (i.e., a scheduler) which schedules the tuples of
a DS Oin consumed by the k instances of operator O (cf., Figure 1). To encompass topologies where the
operator generating DS Oin is itself parallelized, we can easily extend the model by taking into account
parallel instances of the scheduler S. We show [4] that also in this setting OSG performances are better than
Round-Robin scheduling policy. Our approach is hop-by-hop, i.e., we consider a single shuffle grouped
edge in the topology at a time. However, OSG can be applied to any shuffle grouped stage of the topology.

3.1 OSG design
Each operator instance op maintains two Count Min [2] sketch matrices (Figure 1.A): the first one, de-
noted by Fop, tracks the tuple frequencies ft,op; the second, denoted by Wop, tracks the tuples cumulated
execution times Wt,op = wt,op× ft,op. Both Count Min matrices have the same sizes and hash functions.
The latter is the generalized version of the Count Min presented in [2] where the update value is the tuple
execution time when processed by the instance (i.e., wt,op). The operator instance will update both matrices
after each tuple execution. If the operator instance detects that there has been a change in the tuples execu-
tion time, then it forwards (Figure 1.B) the updated matrices to the scheduler. The scheduler (Figure 1.C)
§ Notice that this is a variant of the join-shortest-queue (JSQ) policy, where we measure the queue length as the time needed to execute

all the buffered tuples, instead of the number of buffered tuples.

Nicoló Rivetti, Emmanuelle Anceaume, Yann Busnel, Leonardo Querzoni et Bruno Sericola

maintains the estimated cumulated execution time for each instance, in a vector Ĉ of size k, and the set of
pairs of matrices: {〈Fop,Wop〉}, initially empty. For each tuple t, the scheduler assigns it to the operator in-
stance applying the Greedy Online Scheduler algorithm, i.e., assigns the tuple to the operator instance with
the least estimated cumulated execution time, i.e., routes the current tuples towards operator op∗, where
op∗ = minargop∈[k] Ĉ [op]. Then it increments the target instance estimated cumulated execution time with

the estimated tuple execution time ŵt,op∗ , i.e., Ĉ [op∗]← Ĉ [op∗] + ŵt,op∗ . There is a delay between any
change in the stream or operator instances characteristics and when the scheduler receives the updated Fop
and Wop matrices from the affected operator instance(s). This introduces a skew in the cumulated execu-
tion times estimated by the scheduler. In order to compensate for this skew, we introduce a synchronization
mechanism (Figure 1.D and 1.E) that springs whenever the scheduler receives a new pair of matrices from
any operator instance. Notice also that there is an initial transient phase in which the scheduler has not yet
received any information from operator instances. This means that in this first phase it has no information
on the tuples execution times and is forced to use the Round-Robin policy. The synchronization mechanism
is thus also needed to initialize the estimated cumulated execution times in this initial transient phase. The
complete theoretical analysis of OSG is available in [4].

4 Experimental Evaluation
We extensively tested OSG both in a simulated environment with synthetic datasets and on a prototype
implementation running with real data. Due to space constraints, the complete results are available in [4].
In this test we want to compute the reach of twitted terms in a dataset generated through LDBC Social
Network Benchmark [3]. Using the default parameters of this benchmark, we obtained a followers graph
of 9,960 nodes and 183,005 edges (the maximum out degree was 734) as well as a stream of 2,114,269
tweets where the most frequent author has an empirical probability of occurrence equal to 0.0038. The
reach of a term is the total number of estimated unique Twitter users to which were delivered tweets
about the search term. Usually, this metric is calculated through a periodic batch process using the fol-
lowers graph, where edges are enriched with re-tweet probabilities. We propose instead to compute this
value in a streaming fashion, for each tweet, restricting the computation to a depth of 3 in the followers
graph of 9,960 nodes. Globally, the tuple execution times belong to the interval [0.01,70] ms, the most
frequent tuple execution time is in average 65 ms, while the average per tuple execution time is 20 ms.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2 3 4 5 6 7 8 9 10

av
er

ag
e

co
m

pl
et

io
n

tim
e

(m
s)

number of operator instances k

OSG ASSG

Fig. 2: Prototype average per tuple completion time
Lalg as a function of the number of operators k.

Figure 2 shows the mean, maximum and minimum av-
erage completion time Lalg for both OSG and ASSG
(Apache Storm standard Shuffle Grouping implementa-
tion) as a function of the number of instances k over
10 executions. Except for the unanticipated spike of
ASSG for k = 5, the completion latency decreases as
k increases. For all k OSG has a smaller mean aver-
age completion latency than ASSG. In addition, for most
values of k, the maximum average completion latency of
OSG is smaller or equal to the minimum average com-
pletion latency of ASSG. Finally, the average speed up
of OSG with respect to ASSG is at least 1.05, at most 3.4 and in average 1.5. To achieve these results, OSG
exchanges only a few thousand additional messages, against a stream size of m = 2,114,269.

References
[1] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure. Adaptive control of extreme-scale stream processing systems. In Proc.

of the 26th IEEE Int. Conf. on Dist. Comp. Syst., 2006.
[2] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. J. of

Algorithms, 2005.
[3] Linked Data Benchmark Council. Social Network Benchmark. http://ldbcouncil.org/benchmarks/snb.
[4] N. Rivetti, E. Anceaume, Y. Busnel, L. Querzoni, and B. Sericola. Online scheduling for shuffle grouping in distributed stream

processing systems. In Proc. of the 17th Int. Middleware Conf., 2016.

http://ldbcouncil.org/benchmarks/snb

	Introduction
	System Model
	Online Shuffle Grouping
	OSG design

	Experimental Evaluation

