
HAL Id: hal-01519427
https://hal.science/hal-01519427v1

Submitted on 7 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Délestage avisé dans les systèmes de traitement de flux
Nicolò Rivetti, Yann Busnel, Leonardo Querzoni

To cite this version:
Nicolò Rivetti, Yann Busnel, Leonardo Querzoni. Délestage avisé dans les systèmes de traitement
de flux. ALGOTEL 2017 - 19èmes Rencontres Francophones sur les Aspects Algorithmiques des
Télécommunications, May 2017, Quiberon, France. �hal-01519427�

https://hal.science/hal-01519427v1
https://hal.archives-ouvertes.fr

Délestage avisé dans les systèmes de
traitement de flux

Nicoló Rivetti1, Yann Busnel2,3 et Leonardo Querzoni4

1Technion - Israel Institute of Technology, Haifa, Israel
2IMT Atlantique, Rennes, France
3Inria Rennes – Bretagne Atlantique, France
4Sapienza University of Rome, Italy

Le délestage de charge est une technique utilisée par les systèmes de traitement de flux en réaction aux pics de charge
imprévisibles en entrée, lorsque les ressources de calcul ne sont pas suffisamment provisionnées. Le rôle du délesteur est
d’abandonner certains tuples pour maintenir la charge en entrée en dessous d’un seuil critique, et éviter le débordement
des mémoires tampons menant in fine à la défaillance complète du système. Dans cet article, nous proposons Load-
Aware Shedding (LAS), une solution de délestage de charge qui ne repose ni sur un modèle de coût prédéfini ni sur
des hypothèses sur les temps d’exécution des tuples. LAS construit et maintient dynamiquement et efficacement un
modèle de coût pour estimer, par l’utilisation d’agrégats, la durée d’exécution de chaque tuple avec des taux d’erreur
d’approximation faibles et bornés. Cette estimation est utilisée par un délesteur proactif, localisé en amont de chaque
opérateur, permettant de réduire la latence liée aux files d’attente par le délestage d’un nombre minimal de tuples. Nous
avons prouvé que LAS est une (ε,δ)-approximation d’un délesteur temps-réel optimal. De plus, nous avons évalué son
impact sur des applications de traitement de flux, en terme de robustesse et de fiabilité, par une large expérimentation
sur la plateforme Microsoft Azure.

Mots-clefs : Traitement de flux; Délestage de charge; Algorithme d’approximation probabiliste; Evaluation de perfor-
mances

Travaux co-financés par le projet ANR SocioPlug (ANR-13-INFR-0003) et le projet DeSceNt du Labex CominLabs (ANR-10-LABX-07-01).

1 Introduction
Distributed stream processing systems (DSPS) are today considered as a mainstream technology to build
architectures for the real-time analysis of big data. An application running in a DSPS is typically modeled
as a directed acyclic graph where data operators (nodes) are interconnected by streams of tuples containing
data to be analyzed (edges). The success of such systems can be traced back to their ability to run complex
applications at scale on clusters of commodity hardware. Correctly provisioning computing resources for
DSPS however is far from being a trivial task. System designers need to take into account several factors:
the computational complexity of the operators, the overhead induced by the framework, and the charac-
teristics of the input streams. This latter aspect is often critical, as input data streams may unpredictably
change over time both in rate and content. Bursty input load represents a problem for DSPS as it may
create unpredictable bottlenecks within the system that lead to an increase in queuing latencies, pushing
the system in a state where it cannot deliver the expected quality of service (typically expressed in terms
of tuple completion latency). Load shedding is generally considered a practical approach to handle bursty
traffic. It consists in dropping a subset of incoming tuples as soon as a bottleneck is detected in the system.

Existing load shedding solutions[1, 4] either randomly drop tuples when bottlenecks are detected or
apply a pre-defined model of the application and its input that allows them to deterministically take the best
shedding decision. In any case, all the existing solutions assume that incoming tuples all impose the same
computational load on the DSPS. However, such assumption does not hold for many practical use cases.

Nicoló Rivetti, Yann Busnel et Leonardo Querzoni

The tuple execution duration, in fact, may depend on the tuple content itself. This is often the case whenever
the receiving operator implements a logic with branches where only a subset of the incoming tuples travels
through each single branch. If the computation associated with each branch generates different loads, then
the execution duration will change from tuple to tuple. A tuple with a large execution duration may delay
the execution of subsequent tuples in the same stream, thus increasing queuing latencies and possibly cause
the emergence of a bottleneck.

On the basis of this simple observation, we introduce Load-Aware Shedding (LAS), a novel solution for
load shedding in DSPS. LAS gets rid of the aforementioned assumptions and provides efficient shedding
aimed at matching given queuing latency goals, while dropping as few tuples as possible. To reach this goal
LAS leverages a smart combination of sketch data structures to efficiently collect at runtime information on
the time needed to compute tuples and thus build and maintain a cost model that is then exploited to take
decisions on when load must be shed. LAS has been designed as a flexible solution that can be applied on
a per-operator basis, thus allowing developers to target specific critical stream paths in their applications.

In summary, the contributions provided by this paper are (i) the introduction of LAS, the first solution
for load shedding in DSPS that proactively drops tuples to avoid bottlenecks without requiring a predefined
cost model and without any assumption on the distribution of tuples, (ii) a theoretical analysis of LAS that
points out how it is an (ε,δ)-approximation of the optimal online shedding algorithm and, finally, (iii) an
experimental evaluation that illustrates how LAS can provide predictable queuing latencies that approximate
a given threshold while dropping a small fraction of the incoming tuples.

2 System Model and Problem Definition

We consider a distributed stream processing system (DSPS) deployed on a cluster where several computing
nodes exchange data through messages sent over a network. The DSPS executes a stream processing
application represented by a topology: a directed acyclic graph interconnecting operators, represented by
vertices, with data streams (DS), represented by edges. Data injected by source operators is encapsulated in
units called tuples and each data stream is an unbounded sequence of tuples. Without loss of generality, here
we assume that each tuple t is a finite set of key/value pairs that can be customized to represent complex
data structures. To simplify the discussion, in the rest of this work we deal with streams of unary tuples each
representing a single non negative integer value. We also restrict our model to a topology with an operator
LS (load shedder) that decides which tuples of its outbound DS σ consumed by operator O shall be dropped.
Tuples in σ are drawn from a large universe [n] = {1, . . . ,n} and are ordered, i.e., σ = 〈t1, . . . , tm〉. Therefore
[m] = 1, . . . ,m is the index sequence associated with the m tuples contained in the stream σ. Both m and n
are unknown. We denote with ft the unknown frequency of tuple t, i.e., the number of occurrences of t in σ.
We assume that the execution duration of tuple t on operator O, denoted as w(t), depends on the content of
t. In particular, without loss of generality, we consider a case where w depends on a single, fixed and known
attribute value of t. The probability distribution of such attribute values, as well as w, are unknown, may
differ from operator to operator and may change over time. However, we assume that subsequent changes
are interleaved by a large enough time frame such that an algorithm may have a reasonable amount of time
to adapt. On the other hand, the input throughput of the stream may vary, even with a large magnitude, at
any time. Let q(i) be the queuing latency of the i-th tuple of the stream, i.e., the time spent by the i-th tuple
in the inbound buffer of operator O before being processed. Let us denote as D ⊆ [m], the set of dropped
tuples in a stream of length m, i.e., dropped tuples are thus represented in D by their indices in the stream
[m]. Moreover, let d ≤ m be the number of dropped tuples in a stream of length m, i.e., d = |D|. We can
define the average queuing latency as: Q(j) = ∑i∈[j]\D q(i)/(j− d) for all j ∈ [m]. The goal of the load
shedder is to maintain the average queuing latency smaller than a given threshold τ by dropping as less
tuples as possible while the stream unfolds. The quality of the shedder can be evaluated both by comparing
the resulting Q against τ and by measuring the number of dropped tuples d. More formally, we define the
load shedding problem as follows: given a data stream σ = 〈t1, . . . , tm〉, find the smallest set D such that
∀ j ∈ [m]\D,Q(j)≤ τ.

Délestage avisé dans les systèmes de traitement de flux

3 Load Aware Shedding
Load-Aware Shedding (LAS) is based on a simple, yet effective, idea: if we assume to know the execution
duration w(t) of each tuple t in the operator, then we can foresee queuing times and drop all tuples that
will cause the queuing latency threshold τ to be violated. However, the value of w(t) is generally unknown.
LAS builds and maintain at run-time a cost model for tuple execution durations. It takes shedding decision
based on the estimation Ĉ of the total execution duration of the operator: C = ∑i∈[m]\D w(ti). In order to
do so, LAS computes an estimation ŵ(t) of the execution duration w(t) of each tuple t. Then, it computes
the sum of the estimated execution durations of the tuples assigned to the operator, i.e., Ĉ = ∑i∈[m]\D ŵ(t).
At the arrival of the i-th tuple, subtracting from Ĉ the (physical) time elapsed from the emission of the first
tuple provides LAS with an estimation q̂(i) of the queuing latency q(i) for the current tuple. To enable this
approach, LAS builds a sketch on the operator (i.e., a memory efficient data structure) that will track the
execution duration of the tuples it processes. When a change in the stream or operator characteristics affects
the tuples execution durations w(t), i.e., the sketch content changes, the operator will forward an updated
version to the load shedder, which will than be able to (again) correctly estimate the tuples execution
durations. This solution does not require any a priori knowledge on the stream or system, and is designed
to continuously adapt to changes in the input stream or on the operator characteristics.

3.1 LAS design

c
1 2 3 4

r
2

1

F

c
1 2 3 4

W

〈F ,W〉

O

LAS

Ĉ

〈F ,W〉

LS
〈tuple〉 | 〈tuple, Ĉ〉

〈F ,W〉

〈∆〉 A

B

C

D

E

Fig. 1: Load-Aware Shedding data structures with r = 2
(δ = 0.25), c = 4 (ε = 0.70).

The operator maintains two Count Min [2] sketch
matrices (Figure 1.A): the first one, denoted as F ,
tracks the tuple frequencies ft ; the second one, de-
noted as W , tracks the tuples cumulated execution
durations Wt =w(t)× ft . Both Count Minmatrices
share the same sizes and 2-universal hash functions.
The latter is a generalized version of the Count
Min providing (ε,δ)-additive-approximation of point
queries on stream of updates whose value is the tuple
execution duration when processed by the instance.
The operator will update both matrices after each tuple execution. The operator is modeled as a finite state
machine (Figure 2) with two states: START and STABILIZING. The START state lasts as long as the
operator has executed N tuples, where N is a user defined window size parameter. The transition to the
STABILIZING state (Figure 2.A) triggers the creation of a new snapshot S . A snapshot is a matrix of size
r×c where ∀i∈ [r], j ∈ [c] : S [i, j] = W [i, j]/F [i, j]. We say that the F and W matrices are stable when the
relative error η between the previous snapshot and the current one is smaller than a configurable parameter
µ. Then, each time the operator has executed N tuples, it checks whether η≤ µ. (i) In the negative case S is
updated (Figure 2.B). (ii) In the positive case the operator sends the F and W matrices to the load shedder
(Figure 1.B), resets their content and moves back to the START state (Figure 2.C).

start stabilizing

execute N tuples
create snapshot S

execute N tuples ∧ relative error η ≤ µ
send F and W to scheduler and reset them

execute N tuples ∧
relative error η > µ
update snapshot SA

B

C

Fig. 2: Operator finite state machine.

The LS (Figure 1.C) maintains the estimated cumu-
lated execution duration of the operator Ĉ and a pairs
of initially empty matrices 〈F ,W 〉. The load shed-
der computes, for each tuple t, the estimated queuing
latency q̂(i) as the difference between the operator
estimated execution duration Ĉ and the time elapsed
from the emission of the first tuple. It then checks
if the estimated queuing latency for t satisfies the
CHECK method. This method encapsulates the logic
for checking if a desired condition on queuing latencies is violated or not. In this paper, as stated in Sec-
tion 2, we aim at maintaining the average queuing latency below a threshold τ. Then, CHECK tries to add
q̂ to the current average queuing latency. If the result is larger than τ (i), it simply returns true; otherwise
(ii), it updates its local value for the average queuing latency and returns f alse. Note that different goals,
based on the queuing latency, can be defined and encapsulated within CHECK. If CHECK(q̂) returns true,

Nicoló Rivetti, Yann Busnel et Leonardo Querzoni

(i) the load shedder returns true as well, i.e., tuple t must be dropped. Otherwise (ii), the operator estimated
execution duration Ĉ is updated with the estimated tuple execution duration ŵ(t), i.e., the tuple must not be
dropped. There is a delay between any change in w(t) and when LS receives the updated F and W matri-
ces. This introduces a skew in the cumulated execution duration estimated by LS. In order to compensate
this skew, we introduce a synchronization mechanism (Figure 1.D and 1.E) that kicks in whenever the LS
receives a new pair of matrices from the operator. Notice also that there is an initial transient phase in which
the LS has not yet received any information from the operator. This means that in this first phase it has no
information on the tuples execution times and is forced to apply some naive policy. This mechanism is thus
also needed to initialize the estimated cumulated execution times in this initial transient phase.

The complete theoretical analysis of LAS is available in [3].

4 Experimental Evaluation

 1

 10

 100

 1000

 10000

 100000

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

A
ve

ra
ge

 C
om

pl
et

io
n

La
te

nc
y

(m
s)

Number of Tuples m

Full Knowledge LAS Straw-Man

Fig. 3: Prototype use case: Average completion latency

We extensively tested LAS both in a simu-
lated environment with synthetic datasets and
on a prototype implementation running with
real data. Due to space constraints, the ex-
tensive simulation results are available in the
companion paper [3]. To evaluate the im-
pact of LAS on real applications we im-
plemented a prototype targeting the Apache
Storm framework. We have deployed our
cluster on Microsoft Azure cloud service. We used a dataset containing a stream of preprocessed tweets
related to the 2014 European elections. The tweets are enriched with a field mention containing the entities
mentioned in the tweet. These entities can be easily classified into politicians, media and others. We con-
sider the first 500,000 tweets, mentioning roughly n = 35,000 distinct entities. The test topology is made of
a source (spout) and two operators (bolts) LS and O. The source reads the input stream and emits the tuples
consumed by bolt LS. Bolt LS uses either Straw-Man, LAS or Full Knowledge to perform the load shedding
on its outbound data stream consumed by bolt O. The Straw-Man algorithm uses the same shedding strategy
of LAS, however it uses the average execution duration as the tuple’s estimated execution duration. On the
other hand, Full Knowledge knows the exact execution duration for each tuple. Finally operator O gather
some statistics on each tweet and decorate the outgoing tuples with some additional information. However
the statistics and additional informations differ depending on the class the entities mentioned in each tweet
belong. Each of the 500,000 tweets may contain more than one mention, leading to 110 different execution
duration values from 1 millisecond to 152 milliseconds. Figure 3 reports the average completion latency
as the stream unfolds. As the plots show, LAS provides completion latencies that are extremely close to
Full Knowledge, dropping a similar amount of tuples. Conversely, Straw-Man completion latencies are at
least one order of magnitude larger. This is a consequence of the fact that in the given setting Straw-Man
does not drop tuples, while Full Knowledge and LAS drop on average a steady amount of tuples ranging
from 5% to 10% of the stream. These results confirm the effectiveness of LAS in keeping a close control
on queuing latencies (and thus provide more predictable performance) at the cost of dropping a fraction of
the input load.

References
[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.

Aurora: a new model and architecture for data stream management. Int. J. on Very Large Data Bases, 12(2), 2003.

[2] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications.
J. of Algorithms, 55, 2005.

[3] N. Rivetti, Y. Busnel, and L. Querzoni. Load-aware shedding in stream processing systems. In Proc. of the 10th
ACM Int. Conf. on Distributed and Event-based Systems, 2016.

[4] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load shedding in a data stream manager.
In Proc. of the 29th Int. Conf. on Very large data bases, 2003.

	Introduction
	System Model and Problem Definition
	Load Aware Shedding
	LAS design

	Experimental Evaluation

