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A Pathwise Fractional one Compartment Intra-Veinous Bolus
Model

Nicolas MARIE

Abstract

To extend the deterministic compartments pharmacokinetics models as diffusions seems not realistic on the bio-
logical side because the paths of these stochastic processes are not smooth enough. In order to extend the one
compartment intra-veinous bolus models, this paper suggests to model the concentration process C by a class of
stochastic differential equations driven by a fractional Brownian motion of Hurst parameter belonging to ]1/2, 1].
The first part of the paper provides probabilistic and statistical results on the concentration process C : the distri-
bution of C, a control of the uniform distance between C and the solution of the associated ordinary differential
equation, and consistent estimators of the elimination constant, of the Hurst parameter of the driving signal, and of
the volatility constant.

The second part of the paper provides applications of these theoretical results on simulated concentrations : a
method to choose the parameters on small sets of observations, and simulations of the estimators of the elimination
constant and of the Hurst parameter of the driving signal. The relationship between the quality of the estimations
and the size/length of the sample is discussed.

Keywords: Pharmacokinetics, One compartment bolus models, Fractional Brownian motion, Fractional Ornstein-
Uhlenbeck process, Ergodicity, Least-square estimation.

1. Introduction

The compartments pharmacokinetic models describe how an administered drug is transmitted among the body’s
compartments. The concentration of the drug in each compartment can be modeled by ordinary differential equa-
tions (see Jacomet, 1989).

In particular, in the one compartment models, the concentration is classically modeled by a linear (deterministic)
differential equation with a negative constant coefficient, taking in account the absorption and the elimination steps.
Only the one compartment models are studied in the current paper.

By D’ Argenio and Park (1997), the elimination process has a deterministic component and a random component.
A natural way to take in account these components is to add a stochastic noise in the linear differential equation
which classically models the concentration. It has been studied in the Itd stochastic calculus framework by many
authors (see Sen and Bell, 2006 ; Donnet and Samson, 2013).

However, as mentioned in Delattre and Lavielle (2011), since the standard Brownian motion has a-Ho6lder contin-
uous paths with a €]0, 1/2[, the extension of the deterministic model as a diffusion is not realistic on the biological
side. Delattre and Lavielle force the regularity of the paths of the concentration process C by putting

I3
C; :=Cpexp (—f Dxds) cte Ry
0

where D is the diffusion which extends the deterministic model.

As mentioned in Marie (2014), another way to increase the regularity of the paths of the concentration process
is to replace the standard Brownian motion by a fractional Brownian motion B” of Hurst parameter H €]1/2, 1]
as driving signal. Since the signal is not a semi-martingale anymore, the stochastic integral is taken pathwise, in
the sense of Young (see Lejay, 2010). The Young integral keeps the regularity of the driving signal, therefore the
concentration process has a-Holder continuous paths with « €]0, H[.

In both It6 and pathwise stochastic calculus frameworks, an interesting volatility function is x € R, + o with
o € Randg € [0, 1]. It covers classical models :

e =0, 0 # 0: Langevin equation. Its solution is the so-called Ornstein-Uhlenbeck process.
o B=1/2,0 # 0: Cox-Ingersoll-Ross model.
e =1, 0 # 0: Linear stochastic differential equation.

e 0 = 0: Linear ordinary differential equation.



In the 1td stochastic calculus framework, that concentration model has been studied on the statistical side in
Kalogeropoulos et al. (2008). In the pathwise stochastic calculus framework, it has been studied on probabilistic
side in Marie (2014).

This paper is devoted to the probabilistic and statistical study of the special case of the one compartment intra-
veinous (i.v.) bolus model with a fractional Brownian signal :

! !
C, =Cy —uf C‘Yds+o'f CPaB ;1 €10,70] (1)
0 0
where
10 :=inf{t e R, : C, =0},

the exponent 5 belongs to [0, 1[, v > 0 is the rate of elimination describing the removal of the drug by all elimination
processes including excretion and metabolism, and Cy := Ay/V with Ag > 0 the administered dose and V > 0 the
volume of the elimination compartment.

Since its vector field is of class C* on the bounded sets of R, Equation (1) admits a unique continuous pathwise
solution defined on [0, 7y] and satisfying C. = X_7+1, where y := /(1 — B) and X is the solution of the following
fractional Langevin equation :

X, =CyP —u(l —ﬁ)f X,ds +o(1 -B)B" ;1 e R, )
0

That equation is obtained by applying the rough change of variable formula to the process C and to the map
x € R, — x'# on [0, 79]. For details, the reader can refer to Marie (2014). The fractional Langevin equation is
deeply studied in Cheridito et al. (2003).

Since the concentration process has to be positive and to end when it hits zero, it can be defined as the solu-
tion of Equation (1) on [0, 7]
For the sake of simplicity, even if the following equality is only true on [0, o], throughout this paper, C is defined
on R, by

Cri=1Cy " + Bl e ;1 e R,

with
O =1 - P teR,

and the Young/Wiener integral (see Appendix A)
t
B (®9) := f 9,dB? ;1 e R,.
0

Note that for H = 1 and 8 = 0, the fractional Brownian motion coincides with r € R, +— &7 such that & ~~ N(0, 1),
and

C = ;e R,

el T

That limit case illustrates that the Hurst parameter H is continuously controlling the regularity of the paths of the
concentration process, but also that o and H provide two complementary ways to control the impact of the random
component on the elimination process with respect to its deterministic component.

In mathematical finance, the semi-martingale property of the prices process is crucial in order to ensure the com-
pleteness of the market. The Itd stochastic calculus is then tailor-made to model prices in finance. In pharmacoki-
netics, the semi-martingale property of the concentration process seems not crucial on the biological side.

To replace the standard Brownian motion by a fractional Brownian motion in the pathwise stochastic calculus
framework implies that the concentration process does not satisfy the Markov property anymore. In general, it
makes the estimation of the parameters v, o and H difficult, but the relationship between C and X mentioned
above allows to bypass these difficulties by using results coming from Hu and Nualart (2010), Istas and Lang
(1997) and, Brouste and Iacus (2013). On the estimation of v (resp. o and H) in a wider class of models, see also
Neuenkirch and Tindel (2014) (resp. Berzin and Le6n, 2008).



Since the stochastic process C could model the elimination process more realistically than the deterministic mod-
els, it could be used for potentially toxic drugs involving in clinical studies. For instance, the elimination of the
ketamine, which can be neurotoxic but more effective than classical antidepressants in the treatment of major de-
pressive disorders (see Correll and Futter, 2006), could be modeled by the stochastic process studied in the current
paper. On a pharmacokinetic/pharmacodynamic model of the elimination of the ketamine, see Dahan et al. (2011).
The pathwise models as Equation (1) are well adapted to population pharmacokinetics. Indeed, the pathwise
stochastic calculus framework is tailor-maid to assume that the parameters of the studied equation are random.
These problems will be studied in forthcoming papers.

The second section is devoted to probabilistic and statistical properties of the processes X and C. The first part
deals with the distribution of the concentration process C and a control, in probability, of the uniform distance
between the fractional Ornstein-Uhlenbeck process X and the solution of the associated ordinary differential equa-
tion. The second part provides a strongly consistent estimator of the elimination constant v, and an extension of
existing ergodic theorems for the fractional Ornstein-Uhlenbeck process X is established. The third part provides
a strongly consistent estimator of (H, o). A weakly consistent estimator of v is deduced when the values of H and
o are unknown.

The third section is devoted to the application of the theoretical results of the second subsection on simulated
concentrations. For small sets of observations, the first part provides a method to choose the parameters H, o and
B. The cornerstone of the method is the control of the uniform distance between X and the solution of the associ-
ated ordinary differential equation mentioned above. The second part illustrates the convergence of the estimators
provided at Section 2. The relationship between the quality of the estimations and the size/length of the sample is
discussed.

Appendices A and B provide respectively useful definitions and results on the fractional Brownian motion, and the
proofs of the results stated at Section 2.

2. Probabilistic and statistical properties of the concentration process

The first subsection deals with the distribution of the concentration process C (see Lemma 1 and Proposition 2)
and a control, in probability, of the uniform distance between the fractional Ornstein-Uhlenbeck process X and the
solution of the associated ordinary differential equation (see Proposition 3).

The second subsection provides a strongly consistent estimator of the elimination constant v studied in Hu and
Nualart (2010), and an extension of existing ergodic theorems for the fractional Ornstein-Uhlenbeck process X is
established.

The third subsection provides a special case of the strongly consistent estimator of (H, o) studied in Istas and Lang
(1997), and Brouste and Iacus (2013). A weakly consistent estimator of v is deduced when the values of H and o
are unknown.

Refer to Appendix B for the proofs of the results stated in this section.
2.1 Distribution of the concentration process and related topics

The following lemma provides a suitable expression of the covariance function of the fractional Ornstein-Uhlenbeck
process X.

Lemma 1 B () is a centered Gaussian process of covariance function Ry such that :
S !
Rip(s.0) = ap(l - BY f f = VDB gy
o Jo
for every s,t € R,. Then, the covariance function Rx of the fractional Ornstein-Uhlenbeck process X satisfies :
S !
Rx(s,t) = ago*(1 - B)* f f |u — v[PHD v A=BlE=0+ = gy
o Jo

forevery s,t € R,.

Proposition 2 For every n € N* and t,,...,t, € R, the distribution of the random vector (Cy,,...,C,) has a



density y, with respect to the Lebesgue measure on (R", B(R")) such that :

n

LX) = Zn(l—ﬁ)"lm(xl,...,xn)l_[ "

(x1,.. X
XnlX1 Quy2\ldet®yl 1
xi_ﬁ x}_ﬁ
1
exp|=5 R | L=Vl 2 Vel| O €RY
x,l[ﬁ xrll_ﬁ

where, R, € S,(R;) and V,, € R" are defined by

i 1
R, j) := ano*(1 - B)?* f f |u — vPHD g v-BlE0+0=0] gy
0 0

and
V(i) i= Cy Pe P

foreveryi,je{l,..., n}.
It is a straightforward application of Lemma 1, the equality C. = |X |**!, and Marie (2014), Proposition 5.1.

Let X% be the solution of the ordinary differential equation associated to Equation (2) :
!
X% = X - u(1 —ﬁ)f X%ds e R,.
0
Proposition 3 For every x > 0and T > 0,

2
P(IX - X7 > x) < 2exp |-——n |
(I ez > ) exp[ ZGZRM(T’T)]

Let A €]0, 1] be arbitrarily chosen. By Proposition 3, it is sufficient to assume that o? € [0, M(A, x, H)] with

2

X
M(A, x,H) = 2Ry (T, T) log(2//1)’

to ensure with probability greater than 1 — A that | X, — Xf‘etl < x e R} forevery r € [0, T].

Consider the function C% : R, — R* defined by C%' := [X%"*! for every t € R,.
Corollary 4 For every x > 0 and T > 0 such that C5** > x**1,
dety1-8 +1 det\1-8 +1 x
PVt € [0,T], C; € [I(C;*) P = X", |(C;5) P + x|” >1-2 —_——.
[ [0,T], C, € [I(C™) RULARN ((Cray)) A1 CXP[ 207 Ry (T, T)]
An application of Proposition 3 and Corollary 4 is provided at Subsection 3.1.

2.2 Ergodic theorem and estimator of the elimination constant

Let Y be the stochastic process defined by :
!
Y, :=o(l-p) f e VIPEgBH 1 e R, .

Theorem 5 Let f : R — R be a continuous function such that :

n

In e N, Aar, br,cr),... (@ by ) € RS XRE 1 Vi, 8 € R, [f(x+8) = f(0)] < (1 + 1) el
i=1



Then,
1T
Tf FXdt — E[f(Yy)] < co.
0 T—o0
With the notations of Theorem 5, put f(x) := x" ; x € R. For every x,& € R,
n—1 n
_ < i| =i
fate) - f@l < EO] ( I.) e
n—1
< D piolel”
i=0
where a; := n — i and
pi(x) = (’z)(l + ) xeR,i=0,...n—1.
Then, by Theorem 5 together with Hu and Nualart (2010), Lemma 5.1 :

1 T
lim — X' dt E(Yy) P-as.
T—oo T 0

212(n)2)! 3)
0

\ (1 — R\v—nH, —nH pgn/21n/2
nlo"(1 - B) v HY AT (2H) § ne N
if neN— (N

For n = 2, (3) coincides with Hu and Nualart (2010), Lemma 3.3.

Assume that the values of the parameters H and o are known. For T > 0 arbitrarily chosen, consider

-1/2H)

1 1 ! 2
TR [aza ~ BPHTQH)T fo Xi dt}

Proposition 6 vy is a strongly consistent estimator of v.

It is a straightforward consequence of (3) for n = 2. The estimator v is studied in Hu and Nualart (2010), Section
4. In particular, a central limit theorem is proved for vy when H €]1/2,3/4[ (see Hu and Nualart, 2010, Theorem
4.1).

2.3 Estimators of the Hurst parameter and of the volatility constant

Assume that the concentration process C is discretely observed at times ¢, . . ., t,, where n € N*, t, := k¢, for every
k €A{0,...,n}, and (8,)en is a strictly positive real sequence such that :

lim 6, = 0 and lim nd, = co.

Proposition 7 Consider
n—2
| Z |ka+2 - 2Xlk + ka72|2
& .1 k=2
H, = 5 log, [ —

|ka+1 - ZXIk + th—l |2

g

k=1
H,isa strongly consistent estimator of H.
Proposition 8 Consider ay := —1/4, a; :=1/2, ay := —1/4 and

-1 1/2

Z |th+1 - 2Xlk + ka—] |2
— 1 I =

oy = ——|-<= X
1-8| 8 2 —
Z agayk — 1[2Hn §2Hn
k=0




T, is a strongly consistent estimator of o.

Refer to Brouste and Iacus (2013), Theorem 1, based on Istas and Lang (1997), Theorem 3, for a proof of Propo-
sition 7 and Proposition 8.

The R-package Yuima, developed by A. Brouste and S. Iacus, allows to compute an estimation of (H, o) via
(ﬁn, 0 ,) from observations of the fractional Ornstein-Uhlenbeck process X.

Proposition 9 Consider
1 -1/(2H,)

. 1 1 S
U, = = =
1 =B |51 - p2H,LQH ) = ™

—

U, is a weakly consistent estimator of v.

3. Numerical simulations and pharmacokinetics

For small sets of observations, the first subsection provides a method to choose the parameters H, o~ and 8. Propo-
sition 3 is the cornerstone of the method. The second subsection illustrates the convergence of the estimators
provided at Section 2. The relationship between the quality of the estimations and the size/length of the sample is
discussed.

3.1 A method to choose H, o and B on small sets of observations

Consider n € N* and (¢4, ...,t,) € R] satisfying #; < --- < t, < T. Throughout this subsection, assume that
the concentrations have been observed at times ¢4,...,%,. These concentrations ci,...,c, provide observations
X1, ..., X, of the fractional Ornstein-Uhlenbeck process X by putting x; := cl.l - i=1,...,n.

Consider the following values of the other parameters involving in Equation (1), coming from Jacomet (1989),
Chapter IL.3 :

Parameters | Values

T 3h
v 3.5h7!
Co 1g

n 500

In order to choose H, o and 3, a method is provided by using these values as an example.
Let A €]0, 1[ be arbitrarily chosen. On one hand, as mentioned at Subsection 2.1, by Proposition 3 ; it is sufficient
to assume that o € [0, M(A, x, H)] with

2

X
M, x,H) = s
b = o T D) log2l D

to ensure with probability greater that 1 — A that |X; — Xf‘e‘l < x € R} forevery f € [0, T]. If in addition X%et > X,
by Corollary 4 :

P[Vt € [0,T1, C, € [I(CIY!' ™ — x 1 [(CEY' P + 1] > 1 - A

On the other hand, as mentioned in the introduction, the Holder regularity of the paths of the concentration process
is controlled by the Hurst parameter H.

The method stated bellow is based on these two points, and allows to choose the parameters H, o and 8 on small
sets of observations.

For H = 09 and 8 = 0.9, the following array provides the values of M(A, x, H) for the usual levels 1 =
0.01,0.05,0.10:

T —271001 005 0.10
0.1 026 0.38 0.46
0.2 0.30 043 053
0.4 036 0.50 0.61




On the two following figures, some paths of the process C are respectively plotted for the extreme cases o = 0.26
and 0> = 4 > 0.61. The paths of the concentration process are plotted in black and the associated deterministic
model is plotted in red :

T T T T P T T T T
02 04 06 08 1 12 14 16 18 2 22 24 26 28

Figure 1: (H,0) = (0.9, v0.26) Figure 2: (H,0) = (0.9,2)

For H = 0.6 and 8 = 0.9, the following array provides the values of M(A, x, H) for the usual levels 1 =
0.01,0.05,0.10 :

T —21001 005 0.10
0.1 0.70 1.00 1.23
0.2 0.80 1.15 142
0.4 092 132 1.63

On the two following figures, some paths of the process C are plotted as for H = 0.9 :

T T T T oot y T T T T T T T
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3

T T T T T T y T T T T T T
02 04 06 08 1 12 14 16 18 2 22 24 26 28 3

Figure 3: (H,0) = (0.6, Vv0.70) Figure 4: (H,0) = (0.6,2)
In order to model the concentration process realistically, it is adapted to take H = 0.9 and, for instance :

o? € 10;M(0.01,0.2'7%,0.9)]
= 10,0.30].

Indeed,

e For H = 0.9 with 02 = 4 > M(0.10,0.4'#,0.9) = 0.61, the paths of the concentration process seem locally
regular enough, but not globally.



e For H = 0.6 with 0> = M(0.01,0.1'2,0.6) = 0.70, the paths of the concentration process seem globally
regular enough, but not locally.

e For H = 0.6 with 0> = 4 > M(0.10,0.4'#,0.6) = 1.63, the paths of the concentration process seem not
regular enough locally and globally.

To take 8 = 0.9 is also adapted, because if 8 € [0, 0.8], for every
o € [M(0.01,0.1'#,0.9); M(0.10,0.4'#,0.6)]

the paths of the concentration process seem not significantly perturbed with respect to the associated deterministic
model. Then, to take 8 = 0.9 ensures that the value of the parameter o can be chosen such that the following
realistic condition is satisfied :

P(Vzt € [0,T], X, € [X*' - 0.2'#, X% + 0.2'#]) > 0.99.

On the observed concentrations ¢y, . .., ¢, the following method allows to choose H, o and 3 :

e Step 1. Take H €]0.5, 1[ close to 1, as 0.9.

e Step 2. Take B €]0, 1].

e Step 3. Choose a standard level 4 €]0, 1[ as 0.01 or 0.05, and put for instance
x = I?Zalx Icil_ﬁ — (Coe V"' A)

= max|x; — C(l)_ﬁe_”“_ﬁ)“l.
i=1
Then, compute M(A, x, H).

If the value of v is unknown, since the paths of the concentration process have to be moderately perturbed

with respect to the associated deterministic model, it can be approximated by linear regression as in Jacomet
(1989) (see Subsection 3.2).

e Step 4. Take 0% €]0; M(A, x, H)] such that the paths of the concentration process are regular enough locally
and globally to model the elimination of the administered drug.
If the paths of the concentration process are not significantly perturbed with respect to the associated deter-
ministic model for some standard levels A €]0, 1[, then go to the second step and choose a greater value of
the parameter S. If the paths of the concentration process are not globally regular enough for some standard
levels A €]0, 1[, then go to the second step and choose a smaller value of the parameter (.

3.2 Parameters estimation

Throughout this subsection, assume that the concentration process C has been discretely observed at times #, .
where n € N*, #;, := ko, for every k € {0, ..., n}, and (6,),ey is a strictly positive real sequence such that :

oo ln,

lim 6, = 0 and lim nd, = oo.

n—oo n—oo

Consider the following values of the parameters involving in Equation (1) :

] Parameters | Values ‘

T né, ;n = 10,...,10°

B 0

v 1.5h7!

H 0.9

a? 0.26

Co lg
The two following figures illustrate the convergence of the estimators v, and H, provided at Proposition 6 and
Proposition 7 respectively. For every n belonging to {10, ..., 10}, the concentration process C is simulated at the
times 10, s and estimations of v and H are computed on these simulated observations denoted by cy,...,c, via

v, and H,,. The estimations are plotted in black and the values of the parameters are plotted in red :



T T T T T T T T T 1 T T T T T T T T T J
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Figure 5: T, ; n = 10,...,103 Figure 6: H, ;n = 10,...,103

The estimator v, converges slowly to the elimination constant v. Then, if the number n of observations is insuffi-
cient, since the paths of the concentration process have to be moderately perturbed with respect to the associated
deterministic model, it is possible de take

_cov[ry, ..., ty;logler), .. ., log(cy)]
- var(ty,...,t,;)

as in Jacomet (1989). The method provided at Subsection 3.1 is also an alternative to choose H and o on small
sets of observed concentrations.

4. Discussion and perspectives

The stochastic model studied in this paper is a natural extension of usual deterministic models used in pharma-
cokinetics. It has smooth enough paths to take realistically in account the random component of the elimination
process, and its explicit expression together with the Decreusefond-Lavaud method allow to simulate it easily. As
mentioned at Section 3, the estimators of the parameters v, H and o provide good estimations for large sets of
observed concentrations. The method described at Subsection 3.1 is well adapted to small sets of observations.
For these reasons, the model could be used in clinical applications.

Assume that the therapeutic response R, to the administered drug at time ¢ € [0, 7] satisfies R, := F(Cy, O;),
where F € C'(R?;R) and O is a stochastic process with R-valued paths, not depending on the initial concentration
Cop = A/V. The random variable C, is derivable with respect to Cy > 0 and

j%’) = Cl1Cy* + oBI@)e ™8, F(C,, O)).
Differential calculus could then allow to compute the dose maximizing the therapeutic response R, for some well
chosen functions F' and well chosen stochastic processes O. On the sensitivity analysis in pharmacokinetics, see
Abraham et al. (2007).
Since the stochastic process C seems to model the elimination process more realistically than the deterministic
function CY, the perspective of clinical applications described above could be interesting for potentially toxic
drugs.
For instance, the elimination of the ketamine, that can be neurotoxic but more effective than classical antide-
pressants in the treatment of major depressive disorders (see Correll and Futter, 2006), could be modeled by the
stochastic process studied in the current paper. To choose F and O such that R; models the Hamilton rating scale or
the Beck depression inventory at time ¢ could allow to compute the dose of ketamine maximizing its antidepressant
effect and minimizing its neurotoxic effect. On a pharmacokinetic/pharmacodynamic model of the elimination of
the ketamine, see Dahan et al. (2011).

Throughout the paper, the model has been studied for one patient. The population pharmacokinetics consists
in making sparse measurements of the concentration of the drug on several patients. In a population model, the
coeflicients are random.



The pathwise models as Equation (1) are well adapted to population pharmacokinetics. Indeed, the pathwise
stochastic calculus framework is tailor-maid to assume that the parameters of the studied equation are random.

These two problems will be studied in forthcoming papers.

Finally, even if this paper deals with an application in pharmacokinetics, note that the studied model could be
used in various degradation processes in physics and chemistry.

Appendix A. Fractional Brownian motion

Inspired by Nualart (2006) and, Decreusefond and Ustiinel (1999), this appendix deals with the fractional Brown-
ian motion B of Hurst parameter H €]1/2, 1[, its reproducing kernel Hilbert space and the Young/Wiener integral
with respect to B, On the Gaussian processes, the reader can refer to Neveu (1968).

For a time T > 0 arbitrarily chosen, consider

Ar i={(s,) €0, TP : s <1}

Definition A.1 A fractional Brownian motion of Hurst parameter H €10, 1] is a centered Gaussian process B of
covariance function Ry defined by :

1
Ry(s,t) := E(s”’ +728 = 5Py ;5,1 €10, T).

The process B is a semi-martingale if and only if H = 1/2 (see Nualart, 2006, Proposition 5.1.1). Then, it is not
possible to integrate with respect to B in the sense of It6. However, since

E(B/" - BYP) = — s
for every s,t € [0, T], the Kolmogorov continuity criterion ensures that B” has a-Hélder continuous paths with
a €]0, H[. Therefore, for every stochastic process X with S-Holder continuous paths such that @ + 8 > 1, X can
be integrated with respect to B in the sense of Young. About the Young integral, which extends the well-known

Riemann-Stieljes integral, the reader can refer to Lejay (2010).

In the sequel, assume that H €]1/2, 1[ and put ay := H(2H — 1). The vector space

T T
H = {h e L*([0,T1;df) : ay f f It — s* =D h(s)h(r)dsdt < oo},
0 0

equipped with the scalar product (., .)¢s defined by

T T
o= an [ [ =PI gwndsdr g < H.
0 0

is the reproducing kernel Hilbert space of B,

Proposition A.2 There exists a standard Brownian motion B such that :

f
Bl = f Kyy(t. $)dB, 1 € [0.T]
0

where

i3
Ky(t,s) := cHsl/z_Hf(u — 32y =12y, (s,1) € Ar
N

and cy > 0 denotes a deterministic constant only depending on H.

T
B(h) := f (Kj;h)(t)dB, ; h € H
0



where

T
(Kyh)(s) = f go(t) (t s)dt; s €[0,T]

defines an iso-normal Gaussian process on H, called Wiener integral with respect to B,

That proposition summarizes several results proved at Nualart (2006), Section 5.1.3.

On one hand, since the Wiener integral defined at Proposition A.2 is an iso-normal Gaussian process, it satis-
fies :

Yo,y € H, E[B"(9)B" ()] = (¢, Y)n.

On the other hand, the Holder continuous functions on [0, T'] belong to H. Then, for every (deterministic) 8-
Hélder continuous function 4 : [0, T] — R such that @ +8 > 1, the Young integral of i with respect to BZ on [0, T]
coincides with the Wiener integral B (h).

There are many methods to simulate sample paths of a fractional Brownian motion. The most popular meth-
ods are the Wood-Chang algorithm (exact method) and the wavelet-based simulation (approximate method). Refer
to Dieker (2004) for a survey on the simulation of the fractional Brownian motion.

This appendix concludes on the Decreusefond-Lavaud method (see Decreusefond and Lavaud, 1996), which is
easy to implement. It is based on the Volterra representation of BY provided at Proposition A.2. Fori = 0,...,n,
consider t; := iT /n. Then,

i-1 .
] f]+l
B =~ [ (t — t)H_mdt] AB,,
i = tj+l — tj t
i—1
(T/mH'12 o
T 1/2 Z[( )H+1/2_(1_J_ 1)H+1/2]ABlj

by putting AB;, := (T/n)"/?¢; for j = 0,...,n— 1, where &, ...,&,. are n independent random variables of same
distribution N'(0, 1).
Appendix B. Proofs

Proof of Lemma 1. For every t € R,
BE (%) = B (910,

where B is the Wiener integral with respect to B, defined at Proposition A.2. Then, B"(1}) is a centered Gaussian
process, and

Ry (s, 1) (M o,57, Hjo,n)H

S !
ay f f lu — v[PHDY, 9, dudv
0 0

=[C)7 + oBI ()] P 1 e R,

for every s,t € R,. Since

the covariance function Ry satisfies :

Rx(s,1)

2 ,~u(1-B)(s+1) Rio(s,1)

S !
CIHO'Z(I _18)2 f f |M _ V|2(H—l)e—u(l—ﬁ)[(r—u)+(s—v)]dudv
0 0

forevery s,t e R,.

Proof of Proposition 3. For every t € R,

X, - X* = —u(1-p) f (X, — X%Yds + o(1 — B)BH.
0



Then,
X, — X% = ¢BA()e VP 1 e R,.

Let T > 0 be arbitrarily chosen. Since X — X% is a centered Gaussian process and its paths are almost surely

bounded on [0, T'], by Borell’s inequality (see Adler, 1990, Theorem 2.1) :

* x2
Vx € Ry, P(IX — X%,y > x) < 2exp [—m}
where
(c)? = sup E(X, - X*P)
t€[0,T]
=  o?Ryy(T,T).

That achieves the proof.

Proof of Corollary 4. Consider x > 0 and 7 > 0 such that X“'Tet > x. On one hand, by Proposition 3 :

2
P(IX - X7 <) > 1—2exp|-—oon |
(I e < ) exp[ SR

On the other hand, consider w € Q such that [|X(w) — X%!|e.7 < x. Since X% is decreasing on [0, T] :

0 < X%* - x < X(w) < X® +x

for every ¢ € [0, T]. So,
(CID'F =™ < Culw) S HEEH'™ + 2!

for every ¢ € [0, T']. Therefore,
11X = X%z < x} € (V1 € [0,T], C; € [[(CEH' P — 21, |(CIH! P + 1),

That achieves the proof by Inequality (4). [J

“4)

Proof of Theorem 5. If f is continuously differentiable, the ergodic theorem stated at Neuenkirch and Tindel
(2011), Proposition 2.3 allows to conclude. In the special case of the fractional Ornstein-Uhlenbeck process, that

additional condition is not required.

Since Y is a centered, stationary and ergodic Gaussian process (see Cheridito et al., 2003), by Birkhoff-Chintchin’s

ergodic theorem together with Fernique’s theorem :
1 (7 as.
= | @ o Bl < .
0 T—oo
Since X; = Y, + (Xy — Yo)e P for every t € R, it is sufficient to prove that :

1 T T

or = —f f(Xt)dt_f f(Yydt
T |Jo 0
a.s O

S,
T—oo

Let T > 0 be arbitrarily chosen, and put p;(x) := c;(1 + |x|)” ; x € R,i € {1,...,n}. Then,
1 T
b < g [ Yo - s
0

1Y (" a1
< ;;WO—YOWI fo pi(Yoe ™ Pdp,



Fori=1,...,n, by Cauchy-Schwarz’s inequality :

1 ! (1-8) 1 ! 2 " ! ! 2a;v(1-p)
; Y, —a;u(l— fdt < f “(Y, dt f —za;v(l—, ldt
T j(; pi(Yre [T A p;i (Y T Jo e

a.s.

12

—_ 0,
T—oo
because
l fT e—zaiv(l—ﬂ)fdt — _ 1 [e—Zaiu(l—ﬂ)T _ l]
T Jy 2a,v(1 - BT
———) 0
T—o0
and

1 (7
= f p;(Y)dt —— E[p; (Yo)] < oo
T 0 T—o0

by Birkhoff-Chintchin’s ergodic theorem together with Fernique’s theorem. That achieves the proof. [J

Proof of Proposition 9. The fractional Ornstein-Uhlenbeck process X satisfies :

Vp >0, sup E(X7|") < oco.
TeR,

Forevery k € {0,...,n— 1} and ¢ € [, tg+1],

E2(X, - X, < vl -p) sup B2 XDt — ] + (1 - BE*(1BY - B

TeR,
< B)[v sup E'2(X2) + o ||t — /7.
TeR,
Then,
1 o S 2 1 Sk 2 w2
E||- f X2dt — - ZX,“; = E Zf (X2 - X2)dt
n Jo n k=0 vk
n-l1 Ti+1
< sup E2(X7) >’ f E'2(X, - X, P)dt
noy TeR, k=0 Iy
n—1
C Tk+ 1 C
< Zf |t—tk|Hdt——6§’
nd, —Jy +1
with
C :=2(1 - ) sup E'*(X3) [v sup EV2(X3) + o
TeR, TeR,
Therefore,
1 16, 2 n—1 )

Let f: R;x]1/2, 1[XR; — R be the continuous map defined by :

—1/Qu)
fu,v,w) =

1 w
1 =B v3(1 - B)%ul’ 2u)
forevery u € R}, v €]1/2,1[ and w € R,.. By Theorem 5, Proposition 7, Proposition 8 and (5) :

n—1
1
= f[Hns Ons — ZX]E(; ] _]P——> v.

n—oo



That achieves the proof. O
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