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Consider a mean-reverting equation, generalized in the sense it is driven by a 1-dimensional centered Gaussian process with Hölder continuous paths on [0, T ] (T > 0). Taking that equation in rough paths sense only gives local existence of the solution because the non-explosion condition is not satisfied in general. Under natural assumptions, by using specific methods, we show the global existence and uniqueness of the solution, its integrability, the continuity and differentiability of the associated Itô map, and we provide an L p -converging approximation with a rate of convergence (p 1). The regularity of the Itô map ensures a large deviation principle, and the existence of a density with respect to Lebesgue's measure, for the solution of that generalized mean-reverting equation. Finally, we study a generalized mean-reverting pharmacokinetic model.

Let W be a 1-dimensional centered Gaussian process with α-Hölder continuous paths on [0, T ] (T > 0 and α ∈]0, 1]).

Consider the stochastic differential equation (SDE) :

(1)

X t = x 0 + t 0 (a -bX u ) du + σ t 0 X β u dW u ; t ∈ [0, T ]
where, x 0 > 0 is a deterministic initial condition, a, b, σ 0 are deterministic constants and β satisfies the following assumption :

Assumption 1.1. The exponent β satisfies :

β ∈]1 -α, 1].
When the driving signal is a standard Brownian motion, equation [START_REF] Adler | An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes[END_REF] taken in the sense of Itô, is used in many applications. For example, it is studied and applied in finance by J-P. Fouque et al. in [START_REF] Feng | Small-Time Asymptotics for Fast Mean-Reverting Stochastic Volatility Models[END_REF] for β ∈ [1/2, 1[. The cornerstone of their approach is the Markov property of diffusion processes. In particular, their proof of the global existence and uniqueness of the solution at Appendix A involves S. Karlin and H.M. Taylor [START_REF] Karlin | A Second Course in Stochastic Processes[END_REF], Lemma 6.1(ii). Still for β ∈ [1/2, 1[, the convergence of the Euler approximation is proved by X. Mao et al. in [START_REF] Mao | Euler-Maruyama Approximations in Mean-Reverting Stochastic Volatility Model under Regime-Switching[END_REF] and [START_REF] Wu | A Highly Sensitive Mean-Reverting Process in Finance and the Euler-Maruyama Approximations[END_REF]. For β 1, equation ( 1) is studied by F. Wu et al. in [START_REF] Wu | A Highly Sensitive Mean-Reverting Process in Finance and the Euler-Maruyama Approximations[END_REF]. Recently, in [START_REF] Dung | Fractional Geometric Mean Reversion Processes[END_REF], N. Tien Dung got an expression and shown the Malliavin's differentiability of a class of fractional geometric mean-reverting processes.

Equation ( 1) is a generalization of the mean-reverting equation. In this paper, we study various properties of (1) by taking it in the sense of rough paths (cf. T. Lyons and Z. Qian [START_REF] Lyons | System Control and Rough Paths[END_REF]). Note that Doss-Sussman's method could also be used since ( 1) is a 1-dimensional equation (cf. H. Doss [START_REF] Doss | Liens entre équations différentielles stochastiques et ordinaires[END_REF] and H.J. Sussman [START_REF] Sussman | On the Gap between Deterministic and Stochastic Ordinary Differential Equations[END_REF]). A priori, even in these senses, equation (1) admits only a local solution because it doesn't satisfy the non-explosion condition of [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Exercice 10.56.

At Section 2, we state useful results on rough differential equations (RDEs) and Gaussian rough paths coming from P. Friz and N. Victoir [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF]. Section 3 is devoted to study deterministic properties of [START_REF] Adler | An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes[END_REF]. We show existence and uniqueness of the solution for equation [START_REF] Adler | An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes[END_REF], provide an explicit upper-bound for that solution and study the continuity and differentiability of the associated Itô map. We also provide a converging approximation with a rate of convergence. Section 4 is devoted to study probabilistic properties of (1) ; properties of the solution's distribution, various integrability results, a large deviation principle and the existence of a density with respect to Lebesgue's measure on (R, B(R)) for the solution of [START_REF] Adler | An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes[END_REF]. Finally, at Section 5, we study a pharmacokinetic model based on a particular generalized mean-reverting (M-R) equation (inspired by K. Kalogeropoulos et al. [START_REF] Kalogeropoulos | Diffusion-driven Models for Physiological Processes[END_REF]).

Rough differential equations and Gaussian rough paths

Essentially inspired by P. Friz and N. Victoir [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], this section provides useful definitions and results on RDEs and Gaussian rough paths.

In a sake of completeness, results on rough differential equations are stated in the multidimensional case.

Let T N (R d ) be the step-N tensor algebra over R d (N ∈ N * ) :

T N R d = N i=0 R d ⊗i .
For i = 1, . . . , N , (R d ) ⊗i is equipped with its euclidean norm . (2) The function y is α-Hölder continuous if and only if,

y α-Höl;T = sup (s,t)∈∆ T y t -y s |t -s| α < ∞.
In the sequel, the space of continuous functions with finite p-variation will be denoted by : C p-var [0, T ]; R d .

The space of α-Hölder continuous functions will be denoted by :

C α-Höl [0, T ]; R d .
If it is not specified, these spaces will always be equipped with norms . p-var;T and . α-Höl;T respectively.

Remark. Note that :

C α-Höl [0, T ]; R d ⊂ C 1/α-var [0, T ]; R d .
Definition 2.2. Let y : [0, T ] → R d be a continuous function of finite 1-variation.

The step-N signature of y is the functional S N (y) : ∆ T → T N (R d ) such that for every (s, t) ∈ ∆ T and i = 1, . . . , N ,

S 0 N ;s,t (y) = 1 and S i N ;s,t (y) = s<r1<r2<•••<ri<t dy r1 ⊗ • • • ⊗ dy ri . Moreover, G N (R d ) = S N ;0,T (y); y ∈ C 1-var ([0, T ]; R d ) is the step-N free nilpotent group over R d . Definition 2.3. A map Y : ∆ T → G N (R d ) is of finite p-variation if and only if, Y p-var;T = sup D={r k }∈D T   |D|-1 k=1 Y r k ,r k+1 p C   1/p < ∞
where, . C is the Carnot-Caratheodory's norm such that for every g ∈ G N (R d ),

g C = inf length(y); y ∈ C 1-var ([0, T ]; R d ) and S N ;0,T (y) = g .
In the sequel, the space of continuous functions from ∆ T into G N (R d ) with finite p-variation will be denoted by :

C p-var ([0, T ]; G N (R d )).
If it is not specified, that space will always be equipped with . p-var;T .

Let's define the Lipschitz regularity in the sense of Stein :

Definition 2.4. Consider γ > 0. A map V : R d → R is γ-Lipschitz (in the sense of Stein) if and only if V is C γ on R d , bounded
, with bounded derivatives and such that the γ -th derivative of V is {γ}-Hölder continuous ( γ is the largest integer strictly smaller than γ and {γ} = γ -γ ).

The least bound is denoted by V lip γ . The map . lip γ is a norm on the vector space of collections of γ-Lipschitz vector fields on R d , denoted by Lip γ (R d ).

In the sequel, Lip γ (R d ) will always be equipped with . lip γ .

Let w : [0, T ] → R d be a continuous function of finite p-variation such that a geometric p-rough path W exists over it. In other words, there exists an approximating sequence (w n , n ∈ N) of functions of finite 1-variation such that :

lim n→∞ d p-var;T S [p] (w n ) ; W = 0.
When d = 1, a natural geometric p-rough path W over it is defined by :

(2)

∀(s, t) ∈ ∆ T , W s,t = 1, w t -w s , . . . , (w t -w s ) [p] [p]! .
We remind that if V = (V 1 , . . . , V d ) is a collection of Lipschitz continuous vector fields on R d , the ordinary differential equation dy = V (y)dw n , with initial condition y 0 ∈ R d , admits a unique solution.

That solution is denoted by π V (0, y 0 ; w n ).

Rigorously, a RDE's solution is defined as follow (cf. [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Definition 10.17) :

Definition 2.5. A continuous function y : [0, T ] → R d is a solution of dy = V (y)dW with initial condition y 0 ∈ R d if and only if, lim n→∞ π V (0, y 0 ; w n ) -y ∞;T = 0 where, . ∞;T is the uniform norm on [0, T ].
If there exists a unique solution, it is denoted by π V (0, y 0 ; W).

Theorem 2.6. For a proof, see P. Friz and N. Victoir [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Exercice 10.56.

Let V = (V 1 , . . . , V d )
For P. Friz and N. Victoir, the rough integral for a collection of (γ -1)-Lipschitz vector fields V = (V 1 , . . . , V d ) along W is the projection of a particular full RDE's solution (cf. [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Definition 10.34 for full RDEs) : dX = Φ(X)dW where,

∀i = 1, . . . , d, ∀a, w ∈ R d , Φ i (w, a) = (e i , V i (w))
and (e 1 , . . . , e d ) is the canonical basis of R d .

In particular, if y : [0, T ] → M d (R) and z : [0, T ] → R d are two continuous functions, respectively of finite p-variation and finite q-variation with 1/p + 1/q > 1, the Young integral of y with respect to z is denoted by Y(y, z).

Remark. We are not developing the notion of full RDE in that paper because it is not useful in the sequel. As mentioned above, the reader can refer to [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Definition 10.34 for details.

For a proof of the following change of variable formula for geometric rough paths, cf. [START_REF] Coutin | Rough Paths via Sewing Lemma[END_REF], Theorem 53 :

Theorem 2.7. Let Φ be a collection of γ-Lipschitz vector fields on R d (γ > p) and let W be a geometric p-rough path. Then,

∀(s, t) ∈ ∆ T , Φ (w t ) -Φ (w s ) = DΦ(W)dW 1 s,t
. Now, let state some results on 1-dimensional Gaussian rough paths :

Consider a stochastic process W defined on [0, T ] and satisfying the following assumption :

Assumption 2.8. W is a 1-dimensional centered Gaussian process with α-Hölder continuous paths on [0, T ] (α ∈]0, 1]).

In the sequel, we work on the probability space (Ω, A, P) where Ω = C 0 ([0, T ]; R), A is the σ-algebra generated by cylinder sets and P is the probability measure induced by W on (Ω, A).

Remark. Since W is a 1-dimensional Gaussian process, the natural geometric 1/α-rough path over it defined by ( 2) is matching with the enhanced Gaussian process for W provided by P. Friz and N. Victoir at [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Theorem 15.33 in the multidimensional case.

Finally, Cameron-Martin's space of W is given by :

H 1 W = h ∈ C 0 ([0, T ]; R) : ∃Z ∈ A W s.t. ∀t ∈ [0, T ], h t = E(W t Z) with A W = span {W t ; t ∈ [0, T ]} L 2 . Let ., . H 1 W be the map defined on H 1 W × H 1 W by : h, h H 1 W = E(Z Z) where, ∀t ∈ [0, T ], h t = E(W t Z) and ht = E(W t Z) with Z, Z ∈ A W .
That map is a scalar product on H 1 W and, equipped with it, H 1 W is a Hilbert space.

The triplet (Ω, H 1 W , P) is called an abstract Wiener space (cf. M. Ledoux [START_REF] Ledoux | Isoperimetry and Gaussian Analysis[END_REF]). Proposition 2.9. For d = 1, consider a random variable F : Ω → R, continuously

H 1 W -differentiable (i.e. h → F (ω + h) is continuously differentiable from H 1 W into R, for almost every ω ∈ Ω).
If F satisfies Bouleau-Hirsch's condition (i.e. |D h F | > 0 a.s. for at least one h ∈ H 1 W such that h = 0, where :

(D η F )(ω) = ∂ ∂ε F (ω + εη) ε=0 , ∀η ∈ H 1 W ),
then F admits a density with respect to Lebesgue's measure on (R, B(R)).

Remarks :

(1) Classically, Bouleau-Hirsch's condition is not stated that way and involves Malliavin calculus framework. Consider the Malliavin derivative operator D (cf. D. Nualart [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF], Section 1.2), the reproducing kernel Hilbert space H W of the Gaussian process W (cf. J. Neveu [START_REF] Neveu | Processus aléatoires gaussiens[END_REF]), and the canonical isometry I from H W into H 1 W defined for example at N. Marie [START_REF] Marie | Sensitivities via Rough Paths[END_REF], Section 3.1. Bouleau-Hirsch's condition for d = 1 is DF 2 H > 0.

On one hand, by Cauchy-Schwarz's inequality, it is sufficient to show that there exists h ∈ H 

Deterministic properties of the generalized mean-reverting equation

In this section, we show existence and uniqueness of the solution for equation [START_REF] Adler | An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes[END_REF], provide an explicit upper-bound for that solution and, study the continuity and differentiability of the associated Itô map. We also provide a converging approximation for equation [START_REF] Adler | An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes[END_REF].

Consider a function w : [0, T ] → R satisfying the following assumption :

Assumption 3.1. The function w is α-Hölder continuous (α ∈]0, 1]).

Let W be the natural geometric 1/α-rough path over w defined by [START_REF] Coutin | Rough Paths via Sewing Lemma[END_REF]. Then, we put

W = S [1/α] (Id [0,T ] ⊕ W), which is a geometric 1/α-rough path over t ∈ [0, T ] -→ (t, w t )
by [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Theorem 9.26.

Remark. For a rigorous construction of Young pairing, the reader can refer to [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Section 9.4.

Then, consider the rough differential equation :

(3) dx = V (x)dW with initial condition x 0 ∈ R,
where V is the map defined on R + by :

∀x ∈ R + , ∀t, w ∈ R, V (x).(t, w) = (a -bx)t + σx β w.
For technical reasons, we introduce another equation :

(4) 

y t = y 0 + a(1 -β)
τ 1 ε = inf {t ∈ [0, T ] : y t = ε} ; ε ∈]0, y 0 ], by assuming that inf(∅) = ∞.
Consider also the time τ 1 0 > 0, such that τ 1 ε ↑ τ 1 0 when ε → 0.

3.1.

Existence and uniqueness of the solution. As mentioned above, Section 2 ensures that equation ( 4) has, at least locally, a unique solution denoted y. At Lemma 3.2, we prove it ensures that equation (3) admits also, at least locally, a unique solution (in the sense of Definition 2.5) denoted x. In particular, we show that x = y γ+1 e -b. . At Proposition 3.3, we prove the global existence of y by using the fact it never hits 0 on [0, T ]. These results together ensures the existence and uniqueness of x on [0, T ].

Lemma 3.2. Consider y 0 > 0 and a, b 0. Under assumptions 1.1 and 3.1, up to the time τ 1 ε (ε ∈]0, y 0 ]), if y is the solution of (4) with initial condition y 0 , then

x : t ∈ 0, τ 1 ε -→ x t = y γ+1 t e -bt
is the solution of (3) on [0, τ 1 ε ], with initial condition x 0 = y γ+1 0 .

Proof. Consider the solution y of (4) on [0, τ 1 ε ], with initial condition y 0 > 0.

The continuous function z = ye -b(1-β). takes its values in

[m ε , M ε ] ⊂ R * + on [0, τ 1 ε ].
Since γ > 0, the map Φ : u ∈ [m ε , M ε ] → u γ+1 is C ∞ , bounded and with bounded derivatives.

Then, by applying the change of variable formula (Theorem 2.7) to z and to the map Φ between 0 and t ∈ [0, τ 1 ε ] :

x t = z γ+1 0 + (γ + 1) t 0 z γ s dz s = y γ+1 0 + t 0 (a -bx s ) ds + σ t 0 y γ s e -bβs dw s .
Since γ = β(γ + 1), in the sense of Definition 2.5, x is the solution of (3) on [0, τ 1 ε ] with initial condition x 0 = y γ+1 0 . Proposition 3.3. Under assumptions 1.1 and 3.1, for a > 0 and b 0, with initial condition x 0 > 0 ; τ 1 0 > T and then, equation (3) admits a unique solution πV (0, x 0 ; w) on [0, T ], satisfying :

πV (0, x 0 ; w) = π V (0, x 0 ; W).
Moreover, since T > 0 is chosen arbitrarily, that notion of solution extends to R + .

Proof. Suppose that τ 1 0 T , put y 0 = x 1-β 0 and consider the solution y of (4) on [0, τ 1 ε ] (ε ∈]0, y 0 ]), with initial condition y 0 .

On one hand, note that by definition of τ 1 ε :

y τ 1 ε -y t = ε -y t and y τ 1 ε -y t = a(1 -β) τ 1 ε t y -γ s e bs ds + wτ 1 ε -wt for every t ∈ [0, τ 1 ε ]. Then, since τ 1 ε ↑ τ 1 0 when ε → 0 : (5) y t + a(1 -β) τ 1 0 t y -γ s e bs ds = wt -wτ 1 0 for every t ∈ [0, τ 1 0 [. Moreover, since w is the Young integral of ϑ ∈ C ∞ ([0, T ]; R + ) against w,
and w is α-Hölder continuous, w is also α-Hölder continuous (cf. [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Theorem 6.8).

Together, equality ( 5) and the α-Hölder continuity of w imply :

-w α-Höl;T (τ 1 0 -t) α y t + a(1 -β) τ 1 0 t y -γ s e bs ds w α-Höl;T (τ 1 0 -t) α .
On the other hand, the two terms of that sum are positive. Then, y t w α-Höl;T (τ 1 0 -t) α and ( 6)

a(1 -β) τ 1 0 t y -γ s e bs ds w α-Höl;T (τ 1 0 -t) α . (7) 
Since t ∈ [0, τ 1 0 [ has been chosen arbitrarily, inequality ( 6) is true for every s ∈ [t, τ 1 0 [ and implies :

y -γ s w -γ α-Höl;T τ 1 0 -s -αγ . So a(1 -β) τ 1 0 t y -γ s e bs ds a(1 -β) w -γ α-Höl;T τ 1 0 t (τ 1 0 -s) -αγ e bs ds a(1 -β) 1 -αγ w -γ α-Höl;T (τ 1 0 -t) 1-αγ -lim s→τ 1 0 (τ 1 0 -s) 1-αγ . (8) 
By inequalities [START_REF] Fournié | Applications of Malliavin Calculus to Monte-Carlo Methods in Finance[END_REF] and (8) together :

(9) a(1 -β) 1 -αγ (τ 1 0 -t) 1-αγ -lim s→τ 1 0 (τ 1 0 -s) 1-αγ w γ+1 α-Höl;T (τ 1 0 -t) α . If β 1/(1 + α) > 1 -α, then 1 -αγ 0 and lim s→τ 1 0 - 1 1 -αγ τ 1 0 -s 1-αγ = ∞. If 1/(1 + α) > β > 1 -α, inequality (9) 
can be rewritten as

a(1 -β) 1 -αγ (τ 1 0 -t) 1-α(γ+1) w γ+1 α-Höl;T , but 1 -α(γ + 1) < 0 and lim t→τ 1 0 1 1 -αγ τ 1 0 -t 1-α(γ+1) = ∞. Therefore, if β > 1 -α, τ 1 0 ∈ [0, T ].
An immediate consequence is that :

ε∈]0,y0] [0, τ 1 ε ] ∩ [0, T ] = [0, T ].
Then, (4) admits a unique solution on [0, T ] by putting :

y = y ε on [0, τ 1 ε ] ∩ [0, T ] where, y ε denotes the solution of (4) on [0, τ 1 ε ] ∩ [0, T ] for every ε ∈]0, y 0 ].
By Lemma 3.2, equation ( 3) admits a unique solution πV (0, x 0 ; w) on [0, T ], matching with y γ+1 e -b. .

Finally, since T > 0 is chosen arbitrarily, for w : R + → R locally α-Hölder continuous, equation ( 3) admits a unique solution πV (0, x 0 ; w) on R + by putting :

πV (0, x 0 ; w) = πV (0, x 0 ; w |[0,T ] ) on [0, T ]
for every T > 0.

Remarks and partial extensions :

(1) Note that the statement of Lemma 3.2 holds true when a = 0, and up to the time τ 1 0 , equation ( 3) has a unique explicit solution :

∀t ∈ [0, τ 1 0 ], x t = x 1-β 0 + wt γ+1 e -bt .
However, in that case, τ 1 0 can belong to [0, T ]. Then, x is matching with the solution of equation ( 3) only locally. It is sufficient for the application in pharmacokinetic provided at Section 5.

(2) For every α ∈]0, 1[, equation (4) admits a unique solution y on [0, T ] when : [START_REF] Karlin | A Second Course in Stochastic Processes[END_REF] inf

s∈[0,T ]
ws > -y 0 .

Indeed, for every t ∈ [0, τ 1 0 ],

y t -a(1 -β) t 0 y -γ s e bs ds = y 0 + wt . Then, inf s∈[0,τ 1 0 ] y s -a(1 -β) sup s∈[0,τ 1 0 ] s 0 y -γ u e bu du y 0 + inf s∈[0,T ]
ws .

Since

y is continuous from [0, τ 1 0 ] into R with y 0 > 0 : sup s∈[0,τ 1 0 ] s 0 y -γ u e bu du > 0.
Therefore,

y t inf s∈[0,τ 1 0 ] y s y 0 + inf s∈[0,T ]
ws > 0 (11) by inequality [START_REF] Karlin | A Second Course in Stochastic Processes[END_REF]. Since the right-hand side of inequality [START_REF] Kalogeropoulos | Diffusion-driven Models for Physiological Processes[END_REF] is not depending on τ 1 0 , that hitting time is not belonging to [0, T ].

By Lemma 3.2, equation ( 3) admits also a unique solution on [0, T ] when (10) is true.

(

3) If τ 1 0 ∈ [0, T ], necessarily : a(1 -β) w -γ α-Höl;T τ 1 0 t (τ 1 0 -s) -αγ ds w α-Höl;T (τ 1 0 -t) α for every t ∈ [0, τ 1 0 [.
Then, when β = 1 -α, 1 -αγ = α and by [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Theorem 6.8 :

a w α-Höl;T C(σ, α, b) w 1/α α-Höl;T with C(σ, α, b) = (σbα 2 ) 1/α e bT .
Therefore, πV (0,

x 0 ; w) is defined on [0, T ] when a > C(σ, α, b) w 1/α α-Höl;T . 3.2.
Upper-bound for the solution and regularity of the Itô map. Under assumptions 1.1 and 3.1, we provide an explicit upper-bound for πV (0, x 0 ; w) ∞;T and, show continuity and differentiability results for the Itô map : Proposition 3.4. Under assumptions 1.1 and 3.1, for a > 0 and b 0, with any initial condition

x 0 > 0, πV (0, x 0 ; w) ∞;T x 1-β 0 + a(1 -β)e bT x -β 0 T + σ(b ∨ 2)(1 -β)(1 + T )e b(1-β)T w ∞;T γ+1 . Proof. Consider y 0 = x 1-β 0
, y the solution of ( 4) with initial condition y 0 and τ 2 y0 = sup {t ∈ [0, T ] : y t y 0 } . On one hand, we consider the two following cases :

(1) If t < τ 2 y0 : .

y τ 2 y 0 -y t = a(1 -β)
Therefore, since each term of the sum in the left-hand side of equality [START_REF] Ledoux | Isoperimetry and Gaussian Analysis[END_REF] are positive from Proposition 3.3 :

0 < y t y 0 + | wt -wτ 2 y 0 |.
(2) If t τ 2 y0 ; by definition of τ 2 y0 , y t y 0 and then, y -γ t y -γ 0 . Therefore,

y 0 y t y 0 + a(1 -β)e bT y -γ 0 T + | wt -wτ 2 y 0 |.
On the other hand, by using the integration by parts formula, for every t ∈ [0, T ],

| wt -wτ 2 y 0 | = σ(1 -β) t τ 2 y 0 e b(1-β)s dw s = σ(1 -β) e b(1-β)t w t -e b(1-β)τ 2 y 0 w τ 2 y 0 -b(1 -β) t τ 2 y 0 e b(1-β)s w s ds σ(1 -β) [2 + b(1 -β)T ] e b(1-β)T w ∞;T σ(b ∨ 2)(1 -β)(1 + T )e b(1-β)T w ∞;T , because (1 -β) 2 1 -β 1.
Therefore, by putting cases 1 and 2 together ; for every t ∈ [0, T ],

(13) 0 < y t y 0 + a(1 -β)e bT y -γ 0 T + σ(b ∨ 2)(1 -β)(1 + T )e b(1-β)T w ∞;T .
That achieves the proof because, πV (0, x 0 ; w) = y γ+1 e -b. and the right hand side of inequality ( 13) is not depending on t.

Remark. In particular, by Proposition 3.4, πV (0, x 0 ; w) ∞;T does not explode when a → 0 or/and b → 0.

Notation. In the sequel, for every R > 0,

B α (0, R) := w ∈ C α-Höl ([0, T ]; R) : w α-Höl;T R . Proposition 3.5. Under Assumption 1.1, for a > 0 and b 0, πV (0, .) is a continuous map from R * + ×C α-Höl ([0, T ]; R) into C 0 ([0, T ]; R). Moreover, πV (0, .) is Lipschitz continuous from [r, R 1 ]×B α (0, R 2 ) into C 0 ([0, T ]; R) for every R 1 > r > 0 and R 2 > 0. Proof. Consider (x 1 0 , w 1 ) and (x 2 0 , w 2 ) belonging to R * + × C α-Höl ([0, T ]; R). For i = 1, 2, we put y i 0 = (x i 0 ) 1-β and y i = I(y i 0 , wi ) where, ∀t ∈ [0, T ], wi t = t 0 ϑ s dw i s
and, with notations of equation ( 4), I is the map defined by :

I(y 0 , w) = y 0 + a(1 -β)
. 0 I -γ s (y 0 , w)e bs ds + w.

We also put :

τ 3 = inf s ∈ [0, T ] : y 1 s = y 2 s .
On one hand, we consider the two following cases :

(1) Consider t ∈ [0, τ 3 ] and suppose that y 1 0 y 2 0 .

Since y 1 and y 2 are continuous on [0, T ] by construction, for every s ∈ [0, τ 3 ], y 1 s y 2 s and then,

y 1 s -γ -y 2 s -γ 0. Therefore, y 1 t -y 2 t = y 1 t -y 2 t = y 1 0 -y 2 0 + a(1 -β) t 0 e bs [ y 1 s -γ -y 2 s -γ ]ds + w1 t -w2 t |y 1 0 -y 2 0 | + w1 -w2 ∞;
T . Symmetrically, one can show that this inequality is still true when y 1 0

y 2 0 . (2) Consider t ∈ [τ 3 , T ], τ 3 (t) = sup s ∈ τ 3 , t : y 1 s = y 2 s and suppose that y 1 t y 2 t .
Since y 1 and y 2 are continuous on [0, T ] by construction, for every s ∈ [τ 3 (t), t], y 1 s y 2 s and then,

y 1 s -γ -y 2 s -γ 0.
Therefore,

y 1 t -y 2 t = y 1 t -y 2 t = a(1 -β) t τ 3 (t) e bs [ y 1 s -γ -y 2 s -γ ]ds + w1 t -w2 t -[ w1 τ 3 (t) -w2 τ 3 (t) ]
2 w1 -w2 ∞;T . Symmetrically, one can show that this inequality is still true when y 1 t y 2 t . By putting these cases together and since the obtained upper-bounds are not depending on t : ( 14)

y 1 -y 2 ∞;T |y 1 0 -y 2 0 | + 2T α w1 -w2 α-Höl;T .
Then,

I is continuous from R * + × C α-Höl ([0, T ]; R) into C 0 ([0, T ]; R).
For any α-Hölder continuous function w : [0, T ] → R, from Lemma 3.2 and Proposition 3.3 :

πV (0, x 0 ; w) = e -b. I γ+1 x 1-β 0 , Y(ϑ, w) .
Moreover, by [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Proposition 6.12, Y(ϑ, .) is continuous from

C α-Höl ([0, T ]; R) into itself. Therefore, πV (0, .) is continuous from R * + ×C α-Höl ([0, T ]; R) into C 0 ([0, T ]; R) by composition.
On the other hand, consider R 1 > r > 0 and R 2 > 0. By Proposition 3.4, there exists C > 0 such that :

∀(x 0 , w) ∈ [r, R 1 ] × B α (0, R 2 ), I[x 1-β 0 , Y(ϑ, w)] ∞;T C(r -γ + R 1 + R 2 ).
Then, for every (x 1 0 , w 1 ), (

x 2 0 , w 2 ) ∈ [r, R 1 ] × B α (0, R 2 ), πV (0, x 0 ; w 1 ) -πV (0, x 0 ; w 2 ) ∞;T (γ + 1)C γ (r -γ + R 1 + R 2 ) γ × (1 -β)r -β |x 1 0 -x 2 0 | + 2T α Y(ϑ, w 1 ) -Y(ϑ, w 2 ) α-Höl;T
by inequality [START_REF] Lyons | System Control and Rough Paths[END_REF]. Since Y(ϑ, .) is Lipschitz continuous from bounded sets of C α-Höl ([0, T ]; R) into C α-Höl ([0, T ]; R) (cf. [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Proposition 6.11), that achieves the proof.

In order to study the regularity of the solution of equation ( 3 On the other hand, consider

a > 0, b 0, z(a, b) = x 1-β (a, b) and t 1 , t 2 ∈ [0, τ 1 0 ∧ T ] such that : t 1 < t 2 , x t1 (a, 0) = x t1 (a, b) and x s (a, 0) < x s (a, b) for every s ∈ [t 1 , t 2 ].
As at Lemma 3.2, by the change of variable formula (Theorem 2.7), for every

t ∈ [t 1 , t 2 ], z t (a, 0) -z t (a, b) = z t (a, 0) -z t1 (a, 0) -[z t (a, b) -z t1 (a, b)] = a(1 -β) t t1 [x -β s (a, 0) -x -β s (a, b)]ds + b(1 -β) t t1 x -β s (a, b)ds a(1 -β) t t1 [x -β s (a, 0) -x -β s (a, b)]ds, because x s (a, b) 0 for every s ∈ [t 1 , t] by Proposition 3.3. Since x s (a, 0) < x s (a, b) for every s ∈ [t 1 , t 2 ]
by assumption, necessarily :

z t (a, 0) -z t (a, b) < 0 and t t1 x -β s (a, 0) -x -β s (a, b) ds 0.
Therefore, it's impossible, and for every t For every t ∈ [0, T ],

∈ [0, τ 1 0 ∧ T ], x t (a, 0) x t (a, b).
y t (a, b) -y t (a 0 , b 0 ) = a(1 -β) t 0 y -γ s (a, b)e bs ds - a 0 (1 -β) t 0 y -γ s (a 0 , b 0 )e b 0 s ds + wt -w0 t = a(1 -β) t 0 y -γ s (a, b) -y -γ s (a 0 , b 0 ) e bs ds + (1 -β) t 0
(ae bs -a 0 e b 0 s )y -γ s (a 0 , b 0 )ds + wt -w0 t .

As at Proposition 3.5, by using the monotonicity of u ∈ R * + → u -γ together with appropriate crossing times :

y(a, b) -y(a 0 , b 0 ) ∞;T (1 -β)T ae b. -a 0 e b 0 . ∞;T y -γ (a 0 , b 0 ) ∞;T + 2T α w -w0 α-Höl;T (1 -β)T |a -a 0 |e bT + a 0 e (b∨b0)T T |b -b 0 | × y -γ (a 0 , b 0 ) ∞;T + 2T α w -w0
α-Höl;T . Moreover, by [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Theorem 6.8 :

w -w0 α-Höl;T σ(1 -β) w α-Höl;T e b 0 (1-β). -e b(1-β). 1-Höl;T σ(1 -β) 2 |b -b 0 | × w α-Höl;T e b 0 (1-β)T + b(1 -β)e (b∨b 0 )(1-β)T T .
These inequalities imply that :

lim (a,b)→(a 0 ,b 0 ) y(a, b) -y(a 0 , b 0 ) ∞;T = 0. Therefore, (a, b) → x(a, b) = e -b. y γ+1 (a, b) is a continuous map from (R * + ) 2 into C 0 ([0, T ]; R).
Let's now show the continuous differentiability of the Itô map with respect to the initial condition and the driving signal : Proposition 3.8. Under Assumption 1.1, for a > 0 and b 0, πV (0, .) is contin-

uously differentiable from R * + × C α-Höl ([0, T ]; R) into C 0 ([0, T ]; R).
Proof. In a sake of readability, the space

R * + × C α-Höl ([0, T ]; R) is denoted by E.
Consider (x 0 0 , w 0 ) ∈ E, x 0 := πV (0, x 0 0 ; w 0 ),

m 0 ∈ 0, min t∈[0,T ] x 0 t and ε 0 := -m 0 + min t∈[0,T ] x 0 t .
Since πV (0, .) is continuous from E into C 0 ([0, T ]; R) by Proposition 3.5 :

∀ε ∈]0, ε 0 ], ∃η > 0 : ∀(x 0 , w) ∈ E, (x 0 , w) ∈ B E ((x 0 0 , w 0 ); η) =⇒ πV (0, x 0 ; w) -x 0 ∞;T < ε ε 0 . (15) 
In particular, for every (x 0 , w) ∈ B E ((x 0 0 , w 0 ); η), the function πV (0,

x 0 ; w) is [m 0 , M 0 ]-valued with [m 0 , M 0 ] ⊂ R * + and M 0 := -m 0 + min t∈[0,T ] x 0 t + max t∈[0,T ]
x 0 t .

In [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], the continuous differentiability of the Itô map with respect to the initial condition and the driving signal is established at theorems 11.3 and 11.6. In order to derive the Itô map with respect to the driving signal at point w 0 in the direction h ∈ C κ-Höl ([0, T ]; R d ), κ ∈]0, 1[ has to satisfy the condition α + κ > 1 to ensure the existence of the geometric 1/α-rough path over w 0 + εh (ε > 0) provided at [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Theorem 9.34 when d > 1. When d = 1, that condition can be dropped by [START_REF] Coutin | Rough Paths via Sewing Lemma[END_REF]. Therefore, since the vector field

V is C ∞ on [m 0 , M 0 ], πV (0, .) is continuously differentiable from B E ((x 0 0 , w 0 ); η) into C 0 ([0, T ]; R).
In conclusion, since (x 0 0 , w 0 ) has been arbitrarily chosen, πV (0, .)

is continuously differentiable from R * + × C α-Höl ([0, T ]; R) into C 0 ([0, T ]; R).

A converging approximation.

In order to provide a converging approximation for equation (3), we first prove the convergence of the implicit Euler approximation (y n , n ∈ N * ) for equation ( 4) :

(16)

y n 0 = y 0 > 0 y n k+1 = y n k + a(1 -β)T n (y n k+1 ) -γ e bt n k+1 + wt n k+1 -wt n k
where, for n ∈ N * , t n k = kT /n and k n while y n k+1 > 0.

Remark. On the implicit Euler approximation in stochastic analysis, cf. F. Malrieu [START_REF] Malrieu | Convergence to Equilibrium for Granular Media Equations and their Euler Schemes[END_REF] and, F. Malrieu and D. Talay [START_REF] Malrieu | Concentration Inequalities for Euler Schemes[END_REF] for example.

The following proposition shows that the implicit step-n Euler approximation y n is defined on {1, . . . , n} : Proposition 3.9. Under Assumption 3.1, for a > 0 and b 0, equation ( 16) admits a unique solution (y n , n ∈ N * ). Moreover, ∀n ∈ N * , ∀k = 0, . . . , n, y n k > 0. Proof. Let f be the function defined on

R * + × R × R * + by : ∀A ∈ R, ∀x, B > 0, f (x, A, B) = x -Bx -γ -A.
On one hand, for every A ∈ R and B > 0, f (., A, B) ∈ C ∞ (R * + ; R) and for every x > 0,

∂ x f (x, A, B) = 1 + Bγx -(γ+1) > 0.
Then, f (., A, B) increase on R * + . Moreover, lim

x→0 + f (x, A, B) = -∞ and lim x→∞ f (x, A, B) = ∞. Therefore, since f is continuous on R * + × R × R * + : (17) ∀A ∈ R, ∀B > 0, ∃!x > 0 : f (x, A, B) = 0.
On the other hand, for every n ∈ N * , equation ( 16) can be rewritten as follow :

(18) f y n k+1 , y n k + wt n k+1 -wt n k , a(1 -β)T n e bt n k+1 = 0.
In conclusion, by recurrence, equation ( 18) admits a unique strictly positive solution y n k+1 .

Necessarily, y n k > 0 for k = 0, . . . , n.

That achieves the proof.

For every n ∈ N * , consider the function y n : [0, T ] → R * + such that :

y n t = n-1 k=0 y n k + y n k+1 -y n k t n k+1 -t n k (t -t n k ) 1 [t n k ,t n k+1 [ (t)
for every t ∈ [0, T ].

The following lemma provides an explicit upper-bound for (n, t) ∈ N * ×[0, T ] → y n t . It is crucial in order to prove probabilistic convergence results at Section 4. Lemma 3.10. Under Assumption 3.1, for a > 0 and b 0 :

sup n∈N * y n ∞;T y 0 + a(1 -β)e bT y -γ 0 T + σ(b ∨ 2)(1 -β)(1 + T )e b(1-β)T w ∞;T .
Proof. Similar to the proof of Proposition 3.4.

First of all, by applying ( 16) recursively between integers 0 l < k n and a change of variable :

(19) y n k -y n l = a(1 -β)T n k i=l+1 (y n i ) -γ e bt n i + wt n k -wt n l .
Consider n ∈ N * and k y0 = max {k = 0, . . . , n : y n k y 0 } .

For each k = 1, . . . , n, we consider the two following cases :

(1) If k < k y0 , from equality [START_REF] Neveu | Processus aléatoires gaussiens[END_REF] :

y n ky 0 -y n k = a(1 -β)T n ky 0 i=k+1 (y n i ) -γ e bt n i + wt n ky 0 -wt n k .
Then, (20)

y n k + a(1 -β)T n ky 0 i=k+1 (y n i ) -γ e bt n i = y n ky 0 + wt n k -wt n ky 0 .
Therefore, since each term of the sum in the left-hand side of equality [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF] are positive from Proposition 3.9 : k,y n i > y 0 and then, (y n i ) -γ y -γ 0 . Therefore, from equality (19) :

0 < y n k y n k + a(1 -β)T n ky 0 i=k+1 (y n i ) -γ e bt n i y 0 + | wt n k -wt n ky 0 | because y n ky 0 y 0 . (2) If k > k y0 ; by definition of k y0 , for i = k y0 + 1, . . . ,
y 0 y n k = y n ky 0 + a(1 -β)T n k i=ky 0 +1 (y n i ) -γ e bt n i + wt n k -wt n ky 0 y 0 + a(1 -β)e bT y -γ 0 T + | wt n k -wt n ky 0 |.
As at Proposition 3.4 :

sup t∈[0,T ] y n t max k=0,...,n y n k y 0 + a(1 -β)e bT y -γ 0 T + σ(b ∨ 2)(1 -β)(1 + T )e b(1-β)T w ∞;T . (21) 
That achieves the proof because the right hand side of inequality ( 21) is not depending on n.

With ideas of A. Lejay [START_REF] Lejay | Controlled Differential Equations as Young Integrals : A Simple Approach[END_REF], Proposition 5, we show that (y n , n ∈ N * ) converges and provide a rate of convergence : Theorem 3.11. Under assumptions 1.1 and 3.1, for a > 0 and b 0 ; (y n , n ∈ N * ) is uniformly converging on [0, T ] to y, the solution of equation ( 4) with initial condition y 0 , with rate n -α min (1,γ) .

Proof. It follows the same pattern that Proof of [START_REF] Lejay | Controlled Differential Equations as Young Integrals : A Simple Approach[END_REF], Proposition 5.

Consider n ∈ N * , t ∈ [0, T ] and y the solution of equation ( 4) with initial condition y 0 > 0. Since (t n k ; k = 0, . . . , n) is a subdivision of [0, T ], there exists an integer

0 k n -1 such that t ∈ [t n k , t n k+1 [.
First of all, note that :

(22) |y n t -y t | |y n t -y n k | + |y n k -z n k | + |z n k -y t |
where, z n i = y t n i for i = 0, . . . , n. Since y is the solution of equation ( 4), z n k and z n k+1 satisfy :

z n k+1 = z n k + a(1 -β)T n (z n k+1 ) -γ e bt n k+1 + wt n k+1 -wt n k + ε n k
where,

ε n k = a(1 -β) t n k+1 t n k (y -γ s e bs -y -γ t n k+1 e bt n k+1
)ds.

In order to conclude, we have to show that |y n k -z n k | is bounded by a quantity not depending on k and converging to 0 when n goes to infinity : On one hand, for every (u, v) ∈ ∆ T ,

e bv y -γ v -e bu y -γ u = e bv y γ u -e bu y γ v y γ v y γ u 1 |y u y v | γ e bv |y γ u -y γ v | + |y v | γ |e bu -e bv | e bT y -γ 2 ∞;T y min(1,γ) α-Höl;T |v -u| α min(1,γ) + b y γ ∞;T |v -u| because s ∈ R + → s γ is γ-Hölder continuous with constant 1 if γ ∈]0, 1]
and locally Lipschitz continuous otherwise, y is α-Hölder continuous and admits a strictly positive minimum on [0, T ], and s ∈ [0, T ] → e bs is Lipschitz continuous with constant be bT . In particular, if |v -u| 1,

|e bv y -γ v -e bu y -γ u | e bT y -γ 2 ∞;T y µ α-Höl;T + b y γ ∞;T |v -u| αµ
where µ = min(1, γ).

Then, for i = 0, . . . , k, On the other hand, for each integer i between 0 and k -1, we consider the two following cases (which are almost symmetric) :

|ε n i | a(1 -β)
(1) Suppose that y n i+1 z n i+1 . Then,

y n i+1 -γ -z n i+1 -γ 0.
Therefore,

|y n i+1 -z n i+1 | = y n i+1 -z n i+1 = y n i -z n i + a(1 -β)T n e bt n i+1 (y n i+1 ) -γ -(z n i+1 ) -γ -ε n i |y n i -z n i | + |ε n i |. (2) Suppose that z n i+1 > y n i+1 . Then, z n i+1 -γ -y n i+1 -γ < 0.
Therefore,

|z n i+1 -y n i+1 | = z n i+1 -y n i+1 = z n i -y n i + a(1 -β)T n e bt n i+1 (z n i+1 ) -γ -(y n i+1 ) -γ + ε n i |y n i -z n i | + |ε n i |.
By putting these cases together :

(24) ∀i = 0, . . . , k -1, |z n i+1 -y n i+1 | |z n i -y n i | + |ε n i |.
By applying [START_REF] Sussman | On the Gap between Deterministic and Stochastic Ordinary Differential Equations[END_REF] recursively from k -1 down to 0 :

|y n k -z n k | |y 0 -z 0 | + k-1 i=0 |ε n i | a(1 -β) αµ + 1 T αµ+1 e b. y -γ αµ-Höl;T 1 n αµ ----→ n→∞ 0 ( 25 
)
because y 0 = z 0 and by inequality [START_REF] Simon | Pharmacocinétique de population. Collection Pharmacologie médicale[END_REF].

Moreover, from inequality [START_REF] Wu | A Highly Sensitive Mean-Reverting Process in Finance and the Euler-Maruyama Approximations[END_REF], there exists N ∈ N * such that for every integer n > N ,

|y n k+1 -z n k+1 | max i=1,...,n |y n i -z n i | m y
where,

m y = 1 2 min s∈[0,T ] y s .
In particular,

y n k+1 z n k+1 -m y m y . Then (y n k+1 ) -γ m -γ y , and 
|y n t -y n k | = |y n k+1 -y n k | t -t n k t n k+1 -t n k a(1 -β)T e bT m -γ y + T α w α-Höl;T 1 n α ----→ n→∞ 0.
In conclusion, from inequality [START_REF] Sanz-Solé | A Large Deviation Principle in Hölder Norm for Multiple Fractional Integrals[END_REF] :

|y n t -y t | a(1 -β)T e bT m -γ y + T α w α-Höl;T + y α-Höl;T 1 n α + (26) a(1 -β) αµ + 1 T αµ+1 e b. y -γ αµ-Höl;T 1 n αµ ----→ n→∞ 0.
That achieves the proof because the right hand side of inequality ( 26) is not depending on k and t.

Finally, for every n ∈ N * and t ∈ [0, T ], consider x n t = e -bt (y n t ) γ+1 .

The following corollary shows that (x n , n ∈ N * ) is a converging approximation for x = π(0, x 0 ; w) with x 0 > 0. Moreover, as the Euler approximation, it is just necessary to know x 0 , w and, parameters a, b, σ and β > 1 -α to approximate the whole path x by x n : Corollary 3.12. Under assumptions 1.1 and 3.1, for a > 0 and b 0, (x n , n ∈ N * ) is uniformly converging on [0, T ] to x with rate n -α min (1,γ) .

Proof. For a given initial condition x 0 > 0, it has been shown that x = e -b. y γ+1 is the solution of equation ( 3) by putting

y 0 = x 1-β 0
, where y is the solution of equation ( 4) with initial condition y 0 . From Theorem 3.11 :

x -x n ∞;T C y -y n ∞;T C a(1 -β)T e bT m -γ y + T α w α-Höl;T + y α-Höl;T 1 n α + C a(1 -β) αµ + 1 T αµ+1 e b. y -γ αµ-Höl;T 1 n αµ ----→ n→∞ 0 where, C is the Lipschitz constant of s → s γ+1 on 0, y ∞;T + sup n∈N * y n ∞;T .
Then, (x n , n ∈ N * ) is uniformly converging to x with rate n -α min (1,γ) .

Remark. When α > 1/2 ; β > 1-α > 1/2 and then γ > 1. Therefore, (x n , n ∈ N * ) is uniformly converging with rate n -α < n 1-2α . In other words, the approximation of Corollary 3.12 converges faster than the classic Euler approximation for equations satisfying assumptions of [START_REF] Lejay | Controlled Differential Equations as Young Integrals : A Simple Approach[END_REF], Propositions 5. It is related to the specific form of the vector field V .

Probabilistic properties of the generalized mean-reverting equation

Consider the Gaussian process W and the probability space (Ω, A, P) introduced at Section 2. Under Assumption 2.8, almost every paths of W are satisfying Assumption 3.1. Then, under assumptions 1.1 and 2.8, results of Section 3 hold true for πV (0, x 0 ; W ), with deterministic initial condition x 0 > 0.

This section is essentially devoted to complete them on probabilistic side. In particular, we prove that πV (0, x 0 ; W ) belongs to L p (Ω) for every p 1. We also show that the approximation introduced at Section 3 for πV (0, x 0 ; W ) is converging in L p (Ω) for every p 1.

Remark. Since W is a 1-dimensional process, as mentioned at Section 2, there exists an explicit geometric 1/α-rough path W over it, matching with the enhanced Gaussian process provided by P. Friz and N. Victoir at [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Theorem 15.33. That explains why Assumption 2.8 is sufficient to extend deterministic results of Section 3 to πV (0, x 0 ; W ).

4.1.

Extension of existence results and properties of the solution's distribution. On one hand, when β ∈]1 -α, 1], Proposition 4.1 extend remark 2 of Proposition 3.3 on probabilistic side. On the other hand, we study properties of the distribution of X = πV (0, x 0 ; W ) defined on R + , when W = (W t , t ∈ R + ) is a 1-dimensional Gaussian process with locally α-Hölder continuous paths, stationary increments and satisfies a self-similar property.

Proposition 4.1. Consider a > 0, b 0, α ∈]0, 1[, a process W satisfying As- sumption 2.8, x 0 > 0, y 0 = x 1-β 0 , σ 2 = sup t∈[0,T ] E W 2 t and A = {π V (0, x 0 ; W ) is defined on [0, T ]} .
If 2σ 2 ln(2) < y 2 0 , then P(A) > 0.

Proof. On one hand, by Remark 2 of Proposition 3.3 :

A ⊃ { inf t∈[0,T ] Wt > -y 0 } = { sup t∈[0,T ] -Wt < y 0 }.
On the other hand, since -W is a 1-dimensional centered Gaussian process with continuous paths by construction, by Borell's inequality (cf. [START_REF] Adler | An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes[END_REF], Theorem 2.1) :

P sup t∈[0,T ] -Wt > y 0 2 exp - y 2 0 2σ 2
with σ 2 < ∞. Therefore,

P(A) 1 -P sup t∈[0,T ] -Wt > y 0 1 -2 exp - y 2 0 2σ 2 > 0. Proposition 4.2. Assume that W = (W t , t ∈ R + ) is a 1-dimensional centered
Gaussian process with locally α-Hölder continuous paths, and there exists h > 0 such that :

W .+h -W h D = W.
Under Assumption 1.1, for a > 0 and b 0, with any deterministic initial condition x 0 > 0 :

πV ;0,t+h (0, x 0 ; W ) D = πV ;0,t (0, X h ; W ) for every t ∈ R + .

Proof. By Proposition 3.3, X has almost surely continuous and strictly positive paths on R + . Then, by Theorem 2.7 applied to almost every paths of X and to the map u → u 1-β between 0 and t ∈ R + :

X 1-β t = x 1-β 0 + (1 -β) t 0 X -β u (a -bX u )du + σ(1 -β)W t .
Therefore, X

.+h

D = Z(h) where, Z t (h) = X 1-β h + (1 -β) t 0 Z -γ u (h) a -bZ γ+1 u (h) du + σ(1 -β)W t ; t ∈ R + because W .+h -W h D = W .
In conclusion, by applying Theorem 2.7 to almost every paths of Z(h) and to the map u → u γ+1 :

X t+h -X h D = t 0 (a -bX u+h ) du + σ t 0 X β u+h dW u for every t ∈ R + . Proposition 4.3. Assume that W = (W t , t ∈ R + ) is a 1-dimensional centered
Gaussian process with locally α-Hölder continuous paths, and there exists h > 0 such that :

∀ε > 0, W ε. D = ε h W.
Under Assumption 1.1, for a > 0 and b 0, with any deterministic initial condition x 0 > 0 :

πV ;0,εt (0, x 0 ; W ) D = πV ε,h ;0,t (0, x 0 ; W ) for every t ∈ R + and ε > 0, with :

∀x ∈ R + , ∀t, w ∈ R, V ε,h (x).(t, w) = ε(a -bx)t + σε h x β w.
Proof. By Proposition 3.3, X has almost surely continuous and strictly positive paths on R + . Then, by Theorem 2.7 applied to almost every paths of X and to the map u → u 1-β between 0 and t ∈ R + :

X 1-β t = x 1-β 0 + (1 -β) t 0 X -β u (a -bX u )du + σ(1 -β)W t .
Therefore, for every ε > 0, X 1-β ε.

D

= Z(ε) where,

Z t (ε) = x 1-β 0 + ε(1 -β) t 0 Z -γ u (ε) a -bZ γ+1 u (ε) du + ε h σ(1 -β)W t ; t ∈ R + because W ε. D = ε h W .
In conclusion, by applying Theorem 2.7 to almost every paths of Z(ε) and to the map u → u γ+1 :

X εt D = x 0 + ε t 0 (a -bX εu ) du + σε h t 0 X β εu dW u
for every t ∈ R + and ε > 0.

Remark. Typically, mean-reverting equations driven by a fractional Brownian motion are concerned by propositions 4.2 and 4.3.

Proposition 4.4. Consider a > 0, b 0 and a 1-dimensional fractional Brownian motion (B H t , t ∈ R + ) with Hurst parameter H ∈]0, 1[. Under Assumption 1.1, for every ε > 0 (x 0 > 0) :

τ 4 ε = inf t 0 : πV (0, x 0 ; B H ) t = ε < ∞ P-p.s. Proof. Consider ε > 0 and τ 5 ε = inf {t 0 : Z t = ε} where, Z = π1-β V (0, x 0 ; B H ). Case 1 (ε x 1-β 0
). On one hand, since τ 5 ε = ∞ if and only if Z t > ε for every t ∈ R + , and

Z t = Z 0 + (1 -β) t 0 (aZ -γ s -bZ s )ds + σ(1 -β)B H t , then τ 5 ε = ∞ implies that : ∀t ∈ R + , B H t (1 -β)(bε -ε -γ a)t + ε -Z 0 σ(1 -β) .
Therefore,

P(τ 5 ε = ∞) P ∀t ∈ R + , B H t (1 -β)(bε -ε -γ a)t + ε -Z 0 σ(1 -β) P B H t (1 -β)(bε -ε -γ a)t + ε -Z 0 σ(1 -β)
for every t ∈ R + .

On the other hand, since B H t N (0, t 2H ) :

P B H t (1 -β)(bε -ε -γ a)t + ε -Z 0 σ 2 (1 -β) 2 = 1 t H √ 2π ∞ 0 ϕ(ξ, t)dξ with ϕ(ξ, t) = exp - [ξ + (1 -β)(bε -ε -γ a)t + ε -Z 0 ] 2 σ 2 (1 -β) 2 t 2H .
For every ξ ∈ R and every ε > 0,

lim t→∞ ϕ(ξ, t) = lim t→∞ exp - [ξ + (1 -β)(bε -ε -γ a)] 2 σ 2 (1 -β) 2 t 2(1-H) = 0,
and t ∈ R * + → ϕ(ξ, t
) is a continuous, decreasing map. Then, for every t 1,

|ϕ(ξ, t)| |ϕ(ξ, 1)| ∼ ξ→∞ exp - ξ 2 σ 2 (1 -β) 2 ∈ L 1 (R; dξ).
Therefore, by Lebesgue's theorem :

lim t→∞ P B H t (1 -β)(bε -ε -γ a)t + ε -Z 0 σ(1 -β) = 0,
and for every ε ∈]0,

x 1-β 0 ], τ 5 ε < ∞ almost surely. Case 2 (ε > x 1-β 0
). In that case, τ 5 ε = ∞ if and only if, 0 < Z t < ε for every t ∈ R + . Then, with ideas of the first case :

P(τ 5 ε = ∞) P B H t (1 -β)(bε -ε -γ a)t + ε -Z 0 σ(1 -β) 1 t H √ 2π 0 -∞ ϕ(ξ, t)dξ for every t ∈ R + .
Moreover, results on ϕ have been established for every ξ ∈ R and every ε > 0 at case 1 then, by Lebesgue's theorem :

lim t→∞ P B H t (1 -β)(bε -ε -γ a)t + ε -Z 0 σ(1 -β) = 0,
and for every ε > x 1-β 0 , τ 5 ε < ∞ almost surely.

In conclusion, since τ 4 ε = τ 5 ε 1-β by Lemma 3.2, for every ε > 0, τ 4 ε < ∞ almost surely. (1) πV (0, x 0 ; W ) ∞;T belongs to L p (Ω) for every p 1.

(2) For every p 1, sup

n∈N * X n ∞;T ∈ L p (Ω)
where, for every n ∈ N * , X n = e -b. (Y n ) γ+1 with y 0 = x 1-β 0 .

Proof. On one hand, by Proposition 3.4 and Fernique's theorem :

πV (0, x 0 ; W ) ∞;T x 1-β 0 + a(1 -β)e bT x -β 0 T + σ(b ∨ 2)(1 -β)(1 + T )e b(1-β)T W ∞;T γ+1 ∈ L p (Ω)
for every p 1.

On the other hand, by Lemma 3.10 and Fernique's theorem :

sup n∈N * Y n ∞;T y 0 + a(1 -β)e bT y -γ 0 T + σ(b ∨ 2)(1 -β)(1 + T )e b(1-β)T W ∞;T ∈ L q (Ω)
for every q 1. Then, by putting q = (γ + 1)p for every p 1,

sup n∈N * X n ∞;T ∈ L p (Ω).
Corollary 4.6. Under assumptions 1.1 and 2.8, for a > 0 and b 0, with any deterministic initial condition x 0 > 0, (X n , n ∈ N * ) is uniformly converging on [0, T ] to πV (0, x 0 ; w) in L p (Ω) for every p 1.

Proof. By Corollary 3.12 :

X n -πV (0, x 0 ; W ) ∞;T P-a.s.

----→ n→∞ 0.

Then, by Proposition 4.5 and Vitali's convergence theorem, (X n , n ∈ N * ) is uniformly converging to πV (0, x 0 ; W ) in L p (Ω) for every p 1.

Remark. Note that Proposition 4.5 is crucial to ensure this convergence in L p (Ω) for every p 1. Indeed, inequality (26) doesn't allow to conclude because it is not sure that e b. Y -γ αµ-Höl;T ∈ L 1 (Ω).

4.3.

A large deviation principle for the generalized M-R equation. We establish a large deviation principle for the generalized mean-reverting equation (as P. Friz and N. Victoir at [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Section 19.4).

First of all, let's remind basics on large deviations (for details, the reader can refer to [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]).

Throughout this subsection, assume that inf(∅) = ∞. If (µ ε , ε > 0) satisfies a large deviation principle with good rate function

I : E → [0, ∞], then (µ ε • f -1 , ε > 0)
satisfies a large deviation principle on (F, B(F )) with good rate function J : F → [0, ∞] such that :

J(y) = inf {I(x); x ∈ E and f (x) = y}
for every y ∈ F .

That result is called contraction principle. The reader can refer to [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], Lemma 4.1.6 for a proof.

Consider the space C 0,α ([0, T ]; R) of functions ϕ ∈ C α-Höl ([0, T ]; R) such that :

lim δ→0 + ω ϕ (δ) = 0 with ω ϕ (δ) = sup (s, t) ∈ ∆ T |t -s| δ |ϕ(t) -ϕ(s)| |t -s| α
for every δ > 0.

In the sequel, C 0,α ([0, T ]; R) is equipped with . Assumption 4.9. There exists h > 0 such that :

∀ε > 0, W ε. D = ε h W.
Moreover, H 1 W ⊂ C 0,α ([0, T ]; R) and (C 0,α ([0, T ]; R), H 1 W , P) is an abstract Wiener space.

Remarks :

(1) The notion of abstract Wiener space is defined and detailed in M. Ledoux [START_REF] Ledoux | Isoperimetry and Gaussian Analysis[END_REF].

(2) Typically, the fractional Brownian motion with Hurst parameter H > 1/4 satisfies Assumption 4.9 (cf. [START_REF] Sanz-Solé | A Large Deviation Principle in Hölder Norm for Multiple Fractional Integrals[END_REF], Proposition 4.1).

Consider the stochastic differential equation :

(27)

X t = x 0 + 1 δ t 0 (a -bX s ) ds + σ δ h-1 t 0 X β s dW s ; t ∈ [0, T ]
where, x 0 > 0 is a deterministic initial condition, a, b, σ, δ > 0 and β ∈]0, 1] satisfies Assumption 1.1.

Under assumptions 1.1 and 2.8, by propositions 3.3 and 4.5, equation ( 27) admits a unique solution belonging to L p (Ω) for every p 1.

Moreover, under Assumption 4.9, by Proposition 4.3 :

(28)

X εt = x 0 + ε δ t 0 (a -bX εs ) ds + σε h δ h-1 t 0 X β εs dW s
for every t ∈ [0, T ] and ε > 0.

In the sequel, assume that δ = ε. Then, X ε. satisfies :

X ε. = πV (0, x 0 ; εW )
where, V is the map defined on R + by :

∀x ∈ R + , ∀t, w ∈ R, V (x).(t, w) = (a -bx)t + σx β w.
Let show that (X ε. , ε > 0) satisfies a large deviation principle : where,

I(w) = 1 2 w H 1 W if w ∈ H 1 W ∞ if w ∈ H 1 W for every w ∈ C 0,α ([0, T ]; R).
Proof. Since C 0,α ([0, T ]; R) ⊂ C α-Höl ([0, T ]; R) by construction, Proposition 3.5 implies that πV (0, x 0 ; .) is continuous from

C 0,α ([0, T ]; R) into C 0 ([0, T ]; R).
On the other hand, under Assumption 4.9, by M. Ledoux [START_REF] Ledoux | Isoperimetry and Gaussian Analysis[END_REF], Theorem 4.5 ;

(εW, ε > 0) satisfies a large deviation principle on C 0,α ([0, T ]; R) with good rate function I.

Therefore, since X ε. = πV (0, x 0 ; εW ) for every ε > 0, by the contraction principle (Proposition 4.8), (X ε. , ε > 0) satisfies a large deviation principle on C 0 ([0, T ]; R) with good rate function J.

4.4.

Density with respect to Lebesgue's measure for the solution. Via Bouleau-Hirsch's method, this subsection is devoted to show that πV (0, x 0 ; W ) t admits a density with respect to Lebesgue's measure on (R, B(R)) for every t ∈]0, T ] and every x 0 > 0.

Notation. For two normed vector spaces E and F , the embedment of E in F is denoted by E → F .

Throughout this subsection, assume that W satisfies : Assumption 4.11. Cameron-Martin's space of W satisfies :

C ∞ 0 ([0, T ]; R) ⊂ H 1 W → C α-Höl ([0, T ]; R). Example.
A fractional Brownian motion with Hurst parameter H > 1/4 satisfies Assumption 4.11. Proposition 4.12. Under assumptions 1.1, 2.8 and 4.11, for a > 0, b 0 and any t ∈]0, T ], πV (0, x 0 ; W ) t admits a density with respect to Lebesgue's measure on (R, B(R)).

Proof. With notations of Proposition 3.8, by Proposition 2.9 and the transfer theorem, it is sufficient to show that ω ∈ Ω → z t [z 0 , W (ω)] satisfies Bouleau-Hirsch's condition for any t ∈]0, T ].

On one hand, by Proposition 3.8 (cf. Proof), z(z 0 , .) is continuously differentiable from C α-Höl ([0, T ]; R) into C 0 ([0, T ]; R). Then, z(z 0 , .) is continuously differentiable on

H 1 W → C α-Höl ([0, T ]; R) ⊂ C 0 ([0, T 
]; R). By P. Friz and N. Victoir [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Lemma 15.58, for almost every ω ∈ Ω,

∀h ∈ H 1 W , W (ω + h) = W (ω) + h.
Therefore, almost surely :

z [x 0 ; W (. + h)] = z [x 0 ; W (.) + h] ,
and z(x 0 , W ) is continuously H 1 W -differentiable.

On the other hand, by Proposition 3.8, for every h ∈ H 1 W ,

D h z t (z 0 , W ) = σ(1 -β)h t + t 0 Ḟ [z s (z 0 , W )] D h z s (z 0 , W )ds = σ(1 -β) t 0 h s exp t s Ḟ [z u (z 0 , W )] du ds. In particular, D h z t (z 0 , W ) > 0 for h := Id [0,T ] ∈ H 1 W .
In conclusion, by Proposition 2.9, for every t ∈]0, T ], z t (z 0 , W ) and then πV (0, x 0 ; W ) t , admit a density with respect to Lebesgue's measure on (R, B(R)) respectively.

A generalized mean-reverting pharmacokinetic model

We study a pharmacokinetic model based on a particular generalized mean-reverting equation (inspired by K. Kalogeropoulos et al. [START_REF] Kalogeropoulos | Diffusion-driven Models for Physiological Processes[END_REF]).

In order to study the absorption/elimination processes of a given drug, the following deterministic mono-compartment model is classically used :

(29)

C t = t 0 A 0 K a v e -Kas -K e C s ds ; t ∈ [0, T ]
where :

• A 0 > 0 is the dose administered to the patient at initial time.

• v > 0 is the volume of the elimination compartment E (extra-vascular tissues). • K a 0 is the rate of absorption in compartment A. If the drug is administered by rapid injection, an IV bolus injection, it is natural to take K a = 0.

• K e > 0 is the rate of elimination in compartment E, describing removal of the drug by all elimination processes including excretion and metabolism. • C t is the concentration of the drug in compartment E at time t ∈ [0, T ].

Remark. About deterministic pharmacokinetic models, the reader can refer to Y. Jacomet [START_REF] Jacomet | Pharmacocinétique. Cours et Exercices[END_REF] and N. Simon [START_REF] Simon | Pharmacocinétique de population. Collection Pharmacologie médicale[END_REF].

Recently, in order to modelize perturbations during the elimination processes, stochastic generalizations of (29) has been studied :

C t = t 0 A 0 K a v e -Kas -K e C s ds + t 0 σ (s, C s ) dB s ; t ∈ [0, T ]
where, B is a standard Brownian motion and the stochastic integral is taken in the sense of Itô. For example, in K. Kalogeropoulos et al. [START_REF] Kalogeropoulos | Diffusion-driven Models for Physiological Processes[END_REF] :

C t = t 0 A 0 K a v e -Kas -K e C s ds + σ t 0 C β s dB s ; t ∈ [0, T ] with σ > 0 and β ∈ [0, 1].
However, these models aren't realistic (cf. M. Delattre and M. Lavielle [START_REF] Delattre | Pharmacokinetics and Stochastic Differential Equations : Model and Methodology[END_REF]), because the obtained process C is too rough.

Since probabilistic properties of Itô's integral aren't particularly interesting in that situation, if the drug is administered by rapid injection, C could be the solution of equation ( 1) with C 0 = A 0 /v, a = 0 and b = K e .

In order to bypass the difficulty of the standard Brownian motion's paths roughness, one can take a Gaussian process W satisfying Assumption 2.8 with α close to 1. Typically, a fractional Brownian motion B H with a high Hurst parameter H (cf. simulations below).

Precisely :

(30)

C t = A 0 v -K e t 0 C s ds + σ t 0 C β s dW s
where the stochastic integral is taken pathwise, in the sense of Young. Moreover, since a = 0, we shown at Section 3 that until it hits zero, the solution of equation ( 30) is matching with the process X defined by : ∀t ∈ R + , X t = A 0 v It is natural to assume that when the concentration hits 0, the elimination process stops. Then, we put C = X1 [0,τ 1 0 ∧T [ where T > 0 is a deterministic fixed time. On one hand, remark that the stochastic model (black) keeps the trend of the deterministic model (red). On the other hand, remark that when the Hurst parameter is relatively close to 1 (H = 0.9), perturbations in biological processes are taken in account by C, but more realistically than for H = 0.6.

In the sequel, we also consider the process Z = X 1-β . Its covariance function is denoted by c Z .

For clinical applications, parameters K e , σ and β have to be estimated. Consider a dissection (t 0 , . . . , t n ) of [0, T ] for n ∈ N * . We also put x i = X ti and z i = Z ti for i = 0, . . . , n. The following proposition provides the likelihood function of (x 1 , . . . , x n ) which can be approximatively maximized with respect to the parameter θ = (K e , σ, β) by various numerical methods (not studied in this paper) :

Proposition 5.1. Under assumptions 1.1 and 2.8, the likelihood function of (x 1 , . . . , x n ) is given by : Proof. Since W is a centered Gaussian process as a Wiener integral against W ; (z 1 , . . . , z n ) is a centered Gaussian vector with covariance matrix Γ(θ). We denote by f 1,...,n (θ; .) the natural density of (z 1 , . . . , z n ) with respect to Lebesgue's measure on (R n , B(R n )). There is probably many ways to use that result in medical treatments. For example, assume that f τ (x) modelize a part of patient's therapeutic response to the administered drug. Proposition 5.3 provides a way to minimize the initial dose for an optimal response.

L(θ; x 1 , . . . , x n ) = 2 n (1 -β) n 1 x1>0,...,xn>0 ( 

Consider an arbitrary

Remarks :

(1) By the strong law of large numbers, there exists an almost surely converging estimator for that sensitivity. (2) For any x > 0, one can show the existence of a stochastic process h x defined on [0, T ] such that ḟτ (x) = E[F (C x τ )δ(h x )] where, δ denotes the divergence operator associated to the Gaussian process W . Then, F has not to be derivable anymore by assuming that F ∈ L 2 (R * + ). It is particularly useful if F is not continuous at some points.
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Definition 2 . 1 .( 1 )

 211 i , (R d ) ⊗0 = R and the canonical projection on (R d ) ⊗i for any Y ∈ T N (R d ) is denoted by Y i . First, let's remind definitions of p-variation and α-Hölder norms (p 1 and α ∈ [0, 1]) : Consider y : [0, T ] → R d : The function y has finite p-variation if and only if, y p-var;T = sup D={r k }∈D T

  be a collection of locally γ-Lipschitz vector fields on R d (γ > p) such that : V and D[p] V are respectively globally Lipschitz continuous and (γ -[p])-Hölder continuous on R d . With initial condition y 0 ∈ R d , equation dy = V (y)dW admits a unique solution π V (0, y 0 ; W).

  s e bs ds + wτ 2 y 0 -wt . Then, by definition of τ 2 y0 : (12) y t + a(1 -β) s e bs ds = y 0 + wt -wτ 2 y 0

  ) with respect to parameters a, b 0 characterizing the vector field V , let's denote by x(a, b) (resp. y(a, b)) the solution of equation (3) (resp. (4)) up to τ 1 0 ∧ T . Proposition 3.6. Under assumptions 1.1 and 3.1, for every a, b 0, x(0, b) x(a, b) x(a, 0). Proof. On one hand, consider a 0, b > 0 and t ∈ [0, τ 1 0 ∧ T ] : y t (a, b) -y t (0, b) = a(1 -β) t 0 y -γ s (a, b)e bs ds 0, because y s (a, b) 0 for every s ∈ [0, T ] by Proposition 3.3. Then, by Lemma 3.2 : x(0, b) x(a, b).

Proposition 3 . 7 .

 37 Under assumptions 1.1 and 3.1, (a, b) → x(a, b) is a continuous map from (R * + ) 2 into C 0 ([0, T ]; R). Proof. Consider a 0 , a, b 0 , b > 0 and w0 , w : [0, T ] → R two functions defined by : ∀t ∈ [0, T ], w0 t = σ(1 -β) t 0 e b 0 (1-β)s dw s and wt = σ(1 -β) t 0 e b(1-β)s dw s .

4. 2 .ϑ

 2 Integrability and convergence results. Consider the implicit Euler approximation (Y n , n ∈ N * ) for the following SDE :Y t = y 0 + a(1 -β) t 0 Y -γ s e bs ds + Wt ; t ∈ [0, T ], y 0 > 0 s dW s and ϑ t = σ(1 -β)e b(1-β)tfor every t ∈ [0, T ].Proposition 4.5. Under assumptions 1.1 and 2.8, for a > 0 and b 0, with any deterministic initial condition x 0 > 0 :

Definition 4 . 7 .Proposition 4 . 8 .

 4748 Let E be a topological space and let I : E → [0, ∞] be a good rate function (i.e. a lower semicontinuous map such that {x ∈ E : I(x) λ} is a compact subset of E for every λ 0).A family (µ ε , ε > 0) of probability measures on (E, B(E)) satisfies a large deviation principle with good rate function I if and only if, for every A ∈ B(E),-I(A • ) lim ε→0 ε log [µ ε (A)] lim ε→0 ε log [µ ε (A)] -I( Ā) where, ∀A ∈ B(E), I(A) = inf x∈A I(x). Consider E and F two Hausdorff topological spaces, a continuous map f : E → F and a family (µ ε , ε > 0) of probability measures on (E, B(E)).

  α-Höl;T and the Borel σ-field generated by open sets of the α-Hölder topology. The same way, C 0 ([0, T ]; R) is equipped with . ∞;T and the Borel σ-field generated by open sets of the uniform topology. Now, suppose that W satisfies :

Proposition 4 . 10 .

 410 Consider x 0 > 0. Under assumptions 1.1, 2.8 and 4.9, for a > 0 and b 0, (X ε. , ε > 0) satisfies a large deviation principle on C 0 ([0, T ]; R) with good rate function J : C 0 ([0, T ]; R) → [0, ∞] defined by : ∀y ∈ C 0 ([0, T ]; R), J(y) = inf I(w); w ∈ C 0,α ([0, T ]; R) and y = πV (0, x 0 ; w)

0 e

 0 with Wt = σ(1 -β) t Ke(1-β)s dW s .

9 M 6 Figure 1 .

 961 Figure 1. GM-R model v.s. deterministic model currently used

  2π) n/2 |det [Γ(θ)]| expσ 2 (θ) = Var(z 1 , . . . , z n ), ) . . . c Z (t 1 , t n ) . . . . . . . . . c Z (t n , t 1 ) . . . σ 2 n (θ)

1 ,) 1 ,

 11 Borel bounded map ϕ : R n → R. By the transfer theorem :E[ϕ(x 1 , . . . , x n )] = E[ϕ(|z 1 | γ+1 , . . . , |z γ+1 n . . . , a γ+1 n )f 1,...,n (θ; a 1 , . . . , a n )da 1 . . . da nby reduction to canonical form of quadratic forms.Put u i = a γ+1 i for a i ∈ R * + and i = 1, . . . , n. Then, (a 1 , . . . , a n ) = (u and |J(u 1 , . . . , u n )(u 1 , . . . , u n ) denotes the Jacobian of :(u 1 , . . . , u n ) ∈ (R * + ) n -→ (uBy applying that change of variable :E[ϕ(x 1 , . . . , x n )] = 2 n (γ + 1) n R n + du 1 . . .du n ϕ(u 1 , . . . , u n ) × f 1,...,n (θ; u 1 γ+1

  1 W satisfying h = 0 and | DF, I -1 (h) H | > 0. On the other hand, with Malliavin calculus methods, one can easily show that DF, I -1 (h) H = D h F .

	(2) About Bouleau-Hirsch's criterion for d	1, please refer to [20], Theorem
	2.1.2.	

We don't develop it in that paper because the Malliavin calculus framework has to be introduced before. To understand that idea, please refer to E. Fournié et al. [7] in Brownian motion's case and N. Marie [18].

Therefore, P (x1,...,xn) (θ; du 1 , . . . , du n ) = L(θ; u 1 , . . . , u n )du 1 . . . du n with : L(θ; u 1 , . . . , u n ) = 2 n (γ + 1) n f 1,...,n (θ; u

Finally, consider a random time τ ∈ [0, τ 1 0 ∧ T ] and a deterministic function F : R + → R satisfying the following assumption :

Let show the existence and compute the sensitivity of

Proposition 5.3. Under assumptions 1.1, 2.8 and 5.2, the function f τ is differentiable on R * + and,

Proof. First of all, the function

Consider x > 0 and ε ∈]0, 1].

On one hand, since F belongs to C 1 (R + ; R), from Taylor's formula :

On the other hand, since θ, ε ∈ [0, 1] :

By Fernique's theorem, the right hand sides of inequalities (31) and (32) belong to L p (Ω) for every p > 0. Moreover, these upper-bounds are not depending on θ and ε.

Therefore, by Lebesgue's theorem, f τ is derivable at point x and, ḟτ (x) = x -β E e -Keτ Ḟ (C x τ )(x 1-β + Wτ ) γ .