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SENSITIVITIES VIA ROUGH PATHS

NicorLas MARIE!

Abstract. Motivated by a problematic coming from mathematical finance, the paper deals with
existing and additional results on the continuity and the differentiability of the It6 map associated to
rough differential equations. These regularity results together with the Malliavin calculus are applied
to the sensitivities analysis of stochastic differential equations driven by multidimensional Gaussian
processes with continuous paths as the fractional Brownian motion. The well known results on greeks
in the It6 stochastic calculus framework are extended to stochastic differential equations driven by a
Gaussian process which is not a semi-martingale.
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1. INTRODUCTION

Motivated by a problematic coming from mathematical finance, the paper deals with existing and additional
results on the continuity and the differentiability of the It6 map associated to rough differential equations
(RDEs). These regularity results together with the Malliavin calculus are applied to the sensitivities analysis of
stochastic differential equations (SDEs) driven by multidimensional Gaussian processes with continuous paths
as the fractional Brownian motion.

First of all, some notions of mathematical finance are reminded.

Consider a probability space (€, .A,P), a d-dimensional Brownian motion B and F := (A;;t € [0,7]) the
filtration generated by B (d € N* and T > 0).

Consider the financial market consisting of d + 1 assets (one risk-free asset and d risky assets) over the filtered
probability space (2, A, F,P). At the time ¢ € [0, 7], the deterministic price of the risk-free asset is denoted by
S?, and the prices of the d risky assets are given by the random vector S; := (S}, ..., S%).

In a first place, assume that the process S is the solution of a stochastic differential equation, taken in the sense
of It :

t t
St:x+/u(Su)dqu/a(Su)dBu;xeRd
0 0

where, 1 : R — R? and o : R? — M,4(R) are some (globally) Lipschitz continuous functions.
Let P* ~ P be the risk-neutral probability measure of the market (i.e. such that S* := S/S% is a (F,P*)-
martingale).

Theorem 1.1. Consider an option of payoff h € L?(Q, Ar,P*). Then, there exists an admissible strategy o
such that :
S .

h| A; | P*-a.s.

vt € 0,T], Vi(y) = E* (
SO

where V() is the associated wealth process.

Theorem 1.1 is a consequence of the stochastic integral representation of the discounted claim (see N.H. Bing-
ham and R. Kiesel [1], Lemma 6.1.2 and Theorem 6.1.5).

With the notations of Theorem 1.1, Vi (p) = E*(S%/S0h). It is the price of the option, and when h := F(Sr)
with some function F : R? — R, it is possible to get the existence and an expression of the sensitivities of
Vr () to perturbations of the initial condition and of the volatility function o for instance :

A = 0,E* [F(S7)] and V := 0,E* [F(ST)].

In finance, these sensitivities are called the greeks. For instance, A involves in the A-hedging which provides
the admissible strategy of Theorem 1.1 (see [13], Subsection 4.3.3). However, these quantities don’t involve in
finance only. They could also be used in pharmacokinetics as mentioned at [19], Section 5.

The greeks have been deeply studied by several authors. In [§], E. Fournié et al. have established the existence
of the greeks and have provided expressions of them via the Malliavin calculus by assuming that o satisfied
a uniform elliptic condition (see Theorem 1.2). In [11], E. Gobet and R. Miinos have extended these results
by assuming that o only satisfied a hypoelliptic condition. On the computation of greeks in the Black-Scholes
model, see P. Malliavin and A. Thalmaier [17], Chapter 2. On the sensitivities in models with jumps, see
N. Privault et al. [23] and [7]. Finally, via the cubature formula for the Brownian motion, J. Teichmann has
provided some estimators of the Malliavin weights for the computation of greeks (see J. Teichmann [26]). On
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the regularity of the solution map of SDEs taken in the sense of 1td, see H. Kunita [12].
At the following theorem, ¢ is the divergence operator associated to the Brownian motion B (see D. Nualart [22],
Section 1.3).

Theorem 1.2. Assume that b and o are differentiable, of bounded and Lipschitz continuous derivatives, and
F € L2(Rd,R+)
(1) If o satisfies the uniform elliptic condition (i.e. there exists € > 0 such that for every a,b € R%
bToT(a)o(a)b > e||b||?), then A exists and

A =E* [F(S)5(h*)]

where, h® is an adapted d-dimensional stochastic process.
(2) Let & :RY — My(R) be a function such that for every € belonging to a closed neighborhood of 0, o + &G
satisfies the uniform elliptic condition. Then V exists and

V= E* [F(Sr)5(h")]

where, hY is an (anticipative) d-dimensional stochastic process.

See [8], propositions 3.2 and 3.3 for a proof.

Under some technical assumptions stated at Subsection 2.3, the main purpose of this paper is to extend Theorem
1.2 to the following SDE, taken in the sense of rough paths introduced by T. Lyons in [15] :

t t
Xt:x—i-/M(Xs)ds+/a(Xs)dWs;x6Rd
0 0

where, W is a centered d-dimensional Gaussian process with continuous paths of finite p-variation (p > 1), and
the functions p and o satisfy the following assumption.

Assumption 1.3. u and o are [p] + 1 times differentiable, bounded and of bounded derivatives.

Subsections 2.1 and 2.2 deal with existing and additional results on the continuity and the differentiability of
the It6 map associated to rough differential equations. In particular, the continuous differentiability of the Itd
map with respect to the collection of vector fields is proved, and completes the existing results of regularity
with respect to the initial condition and to the driving signal (see P. Friz and N. Victoir [10], chapters 4 and
11). In order to apply the (probabilistic) integrability results coming from T. Cass, C. Litterer and T. Lyons [3],
some tailor-made upper-bounds are provided for each derivative. Subsection 2.3 reminds some definitions and
results related to the good geometric rough path over a Gaussian process having a covariance function satisfy-
ing the technical Assumption 2.9, called enhanced Gaussian process by P. Friz and N. Victoir. The results of
subsections 2.1 and 2.2 are applied together with the results coming from [3] in order to show the (probabilistic)
integrability of the solution of a Gaussian RDE and their derivatives. The main problem is solved at Section 3
by using the results of Section 2 together with the Malliavin calculus. Some simulations of A and V are provided
at Subsection 4.2.

The fractional Brownian motion (fBm) introduced in [18] by B.B. Mandelbrot and J.W. Van Ness has been
studied by several authors in order to generalize the Brownian motion classically used to model the prices
process of the risky assets. For instance, the regularity of the paths of the process and its memory are both
controlled by the Hurst parameter H of the fBm. However, the fBm is not a semi-martingale if H # 1/2
(see. [22], Proposition 5.1.1). In [24], L.C.G. Rogers has shown the existence of arbitrages if the prices process
of the assets is modeled by a fBm. In order to bypass that difficulty, several approaches have been studied.
For instance, in [4], P. Cheridito assumed that the prices process was modeled by a mixed fractional Brownian
motion which is a semi-martingale depending on a fBm. At Subsection 4.1, the prices of the risky assets are
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modeled by a fractional SDE, in which the volatility is modeled by another one. The results of Section 3 are
applied in order to show the existence and provide an expression of the sensitivity of the price of the option
with respect to the collection of vector fields of the equation of the volatility.

The paper uses many results on rough paths and rough differential equations coming from [10] and, T. Lyons
and Z. Qian [16]. The paper also uses results of Malliavin calculus coming from [22].

The notations, short definitions and results used throughout the paper are stated below. However, the original
results of the literature are cited throughout the paper.

Notations (general) :

e R¢ and R? (e,d € N*) are equipped with their Euclidean norms, both denoted by ||.||.

e The canonical basis of R? is denoted by (e1,...,eq). With respect to that basis, for k = 1,...,d, the
k-th component of any vector u € R? is denoted by u*.

e The closed ball of R? with respect to ||.||, of center a € R? and of radius r > 0, is denoted by B(a, ).

e The usual matrix (resp. operator) norm on M, 4(R) (resp. £(R%R%)) is denoted by ||.||m (resp. || z)-

e Consider 0 < s < t < T. The set of all the dissections of [s,?] is denoted by Ds;. In particular,
DT = DO,T~

o A :={(u,v) ER?:0<u<v<T}

e The space of continuous (resp. continuously differentiable) functions from [s,#] into R? is denoted by
CO([s, t];RY) (resp. C([s,t];RY)) and equipped with the uniform norm ||.||sc.s.s-

e Differentiability means differentiability in the sense of Fréchet (see H. Cartan [2], Chapter 1.2).

e Consider two Banach spaces E and F. Let ¢ : E — F be a map derivable at point € E, in the
direction h € E. The derivative of ¢ at point x, in the direction h, is denoted by :

in F.

o ple+eh) — ()
Dupla)i= ly 5

Consider three Banach spaces E, F and G, and a differentiable map ¢ : £ x FF — G. At point
(x,y) € E x F, the Fréchet derivative of p(z,.) (resp. ¢(.,y)) is denoted by 9, f(z,y) (resp. dzp(x,y)).

Notations (rough paths) :

e Consider p > 1 and « €]0,1]. The space of continuous functions of finite p-variation (resp. a-Holder
continuous functions) from [s,¢] into R is denoted by

|D|-1

(Cp-var ([S7t];Rd) ={yec lox ([s,t];Rd) : 5 {SU}%D Z ||ka+1 - yT}ch < 00
=1Tk st =1

(resp. CM9([s,¢];R?), which is a subset of C'/*Var([s ¢];RY)) and is equipped with the p-variation
distance dp-var;s,; (resp. the a-Holder distance dg-ns1;s,t). See [10], chapters 5 and 8 about these spaces.
e Consider N € N* and y : [0,7] — R? a continuous function of finite 1-variation. The step-N tensor
algebra over R? is denoted by
TNRY) =R®R* @ - & (RN,

the step-N signature of y is denoted by

SN(y): (17/dyr7"'7/ dyT1®"'®dyT‘N>7
0 0<r; < ---<ry<.
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and the step-N free nilpotent group over R is denoted by
GN(RY) = {Sn(y)1;y € C([0,1;RY)} .

See [10], Chapter 7.
e For k=0,...,N, the (k + 1)-th component of any X € TV (R%) is denoted by X*.

e The space of geometric p-rough paths is denoted by

dp—var;T
Gy (RY) = {Sp(y);y € CHvar([0,T]; RY) ) :

and is equipped with the p-variation distance dp var;7, or with the uniform distance doo,r, associated to
the Carnot-Carathéodory distance. See [10], Chapter 9.

The closed ball of GQ, 7(R?) with respect to dy yar.T, of center Y € GQ, 7(R?) and of radius r > 0, is
denoted by B, r(Y,r).

For every Y € GQp r(R?), wy,p : (s,t) € Ap — [[Y]D
properties of the controls.

Consider ¢ > 1 such that 1/p+1/¢ > 1, Y € GQ, r(R?) and h € G, r(R®). The geometric p-rough
path over (Y, h') provided at [10], Theorem 9.26 is denoted by Sp,(Y @ h). The translation of Y by
h provided at [10], Theorem 9.34 is denoted by T3,Y".

Consider v > 0. The space of collections of y-Lipschitz (resp. locally y-Lipschitz) vector fields on R®
is denoted by Lip”(R¢;R?) (resp. Lip] .(R°R?)) (see [10], Definition 10.2). Lip? (R%;R?) is equipped
with the y-Lipschitz norm ||.|[;ip» such that, for every V € Lip”(R¢; R?),

var:s,t 18 @ control. See [10], Chapter 1 about some

IVllig = max {1V lloe, 1DV llogs -, DYV g, DDAV 1311}

The closed ball of Lip” (R R?) with respect to |.||ip7, of center V' € Lip” (R¢; R?) and of radius r > 0,
is denoted by Brip(V,r).
Consider € > 0, a compact interval I included in [0,7], a control w : A7 — R, and Y € GQZLT(Rd).
Put

|D]-1

M 1w = sup E W (T Tht1) 5
D={rx} € Dr
w(rg, 1) <€

I
—

ME,LP(Y) = Me,[,wy,p and
Neip(Y) :=sup{n eN:7, <sup(l)}
where, 1 := inf(I) and for every n € N,

Tnyr:i=inf {t € I : ||V} ... , >¢candt>7,} Asup(]).

In the sequel, I :=[0,T].

Consider v > p and V € Lip] .(R¢; R?) satisfying the p-non explosion condition (i.e. V and DIV are
respectively globally Lipschitz continuous and (y — [p])-Ho6lder continuous on R¢). The unique solution
of dX = V(X)dW with the initial condition Xy € GP/(R®) or X, € R®, is denoted by 7y (0, Xo; W).
By [10], Exercice 10.55, if V' is a collection of affine vector fields and w : A7 — R is a control satisfying
Wl pvars.e < w'/P(s,t) for every (s,t) € A, there exists a constant C; > 0, not depending on X, € R®
and W, such that :

17y (0, 203 W)l i < Cr(1 + [Jaro ) Mrore.

[ooH
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By [10], Theorem 10.36, if V € Lip”(R®;R?), there exists a constant Cy > 0, not depending on X, €
GIPI(R¢), V and W, such that for every (s,t) € A,

730, Xo3 Wllpsarss < Ca (IV gt W llparso ¥ IV W s WD ) -

p-var;s,t

By [10], Theorem 10.47, if V' E_Lip”(]Re;Rd), there exists a constant C3 > 0, not depending on V' and
W, such that for every (s,t) € Arp,

H v < OVt ([Wllpmeasse [ ) -

p-var;s,t

Notations (Gaussian stochastic analysis) :

e For every t € [0,T), [0,¢] is equipped with the Borel o-algebra B; generated by the usual topology on
[0, ].

e R? is equipped with the Borel o-algebra generated by the usual Euclidean topology on R?, and G?! (RY)
is equipped with the Borel o-algebra generated by the Carnot-Carathéodory topology on G (R%).
These o-algebras are both denoted by B.

e Let W be a d-dimensional centered Gaussian process with continuous paths. Its Cameron-Martin space
is denoted by

H':={heC°([0,T];R) : 3Z € Ws.t. Vt € [0,T], by = E(W,2)}

with

L2
W :=span {W;,t € [0, T}
(see [10], Subsection 15.2.2 and Section 15.3), its reproducing kernel Hilbert space is denoted by H, and
the Wiener integral with respect to W defined on H is denoted by W' (see [22], Section 1.1).

e The Malliavin derivative associated to W is denoted by D for the R%-valued (resp. H-valued) random
variables, and its domain in L?(Q2) (resp. L?(Q; H)) is denoted by DV2 (resp. DY2(H)) (see [22], Section
1.2).

e For the R%valued random variables, the divergence operator associated to D is denoted by ¢, and its
domain in L?(Q; H) is denoted by dom(4) (see [22], Section 1.3).

e The vector space of the Re-valued (resp. H-valued) random variables locally derivable in the sense of
Malliavin is denoted by D\>? (resp. Di-%(H)) (see [22], Subsection 1.3.5).

loc loc

2. REGULARITY OF THE ITO MAP : EXISTING AND ADDITIONAL RESULTS

This section deals with the regularity of the It6 map associated to RDEs. On one hand, the results on the
continuity and the differentiability of the It6 map with respect to the initial condition and to the driving signal
coming from [10], Chapter 11 are stated. In addition, the continuous differentiability of the It6 map with respect
to the collection of vector fields is proved. On the other hand, in order to apply the integrability results coming
from [3], some tailor-made upper-bounds are provided for each derivative.

First, the existing continuity results of the It6 map and of the rough integral are synthesized.

Theorem 2.1. Consider R >0 :
(1) The Ito map (Xo, W, V) — 7y (0, Xo; W) is uniformly continuous from

GP(R®) x B, (1, R) x Lip” (R R?) into GQ, r(RY).
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(2) The map
T (W, V) —s / V(W)W
is uniformly continuous from

B,r(1,R) x Lip” " (R4 RY) into GQ, 7(RY).

In each case, the uniform continuity holds true if B, (1, R) and GQ,1(R?) are equipped with the uniform
distance doo,T.

See [10], corollaries 10.39,40,48 for a proof.

Remark. Consider 7 € R®, W € GQ, r(R?) and V := (Vi,...,Vy) a collection of affine vector fields on
Re. By [10], Theorem 10.53, my (0, zo; W), belongs to the ball B(0; R(zo, W)) of R® for every t € [0,T], where

R(zg, W) := C(1 + ||zo]|)eC N Ipvar
and C > 0 is a constant not depending on xy and W. Moreover, for every Ty € R¢ and every W e GQ, r(RY),
7ol < llzoll and [[Wilpvarr < [Wlp-varr = R(io, W) < R(zo, W).
So, if V € Lip” (R¢;R%) is the collection of vector fields satisfying V =V on B(0; R(z, W)), then
v (0,.) = my(0,.) on the set B(0, ||zo]) X By, 7 (1, [[W|pvar;T)-
Therefore, by Theorem 2.1, the map 7y (0, .) is uniformly continuous from
B(0, [[zoll) x By (L, [Wl[p-var;r) into CP([0, T RY).

The uniform continuity holds true if B, 7(1, [|W| p-var;r) and CP¥**(]0,T];R®) are equipped with the uniform
distance doo,7.

The following technical corollary of [10], Theorem 9.26 allows to apply the integrability results of [3] to differ-
ential equations having a drift term.

Corollary 2.2. Consider p > q > 1 such that 1/p+1/q>1,Y € G, r(RY), h € Gy 1(R®) and e > 0. There
exists a constant C > 0, depending only on p and q, such that :

M 1S (Y @ B)] < CllIAllgparr + Me,15(Y)].
Proof. On one hand, for every (s,t) € Ar,

wap(&t) = ||Y||p—var;s,t < ||S[p](Y D h)”p—var;s,t'
On the other hand, since p/¢ > 1 and, wy,, and wy, 4 are two controls :

0 = Y8+ Ry = v + 2

is also a control.
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Then, by [10]7_ Proposition 7.52, there exists a constant C' > 1, depending only on p and ¢, such that for
every (s,t) € Ar,

St (Y & h)Hp_var;s’t < Cw(s, t).
In conclusion,
|D]-1
Merp [Sp(Y @R)] < C sup > Wk, resa)

D={n} € Dr 13
w(rksTe1) <€

< ORI iz + M1, (V)]

g-var;

by the super-additivity of the control wi/ ;’. O

2.1. Differentiability of the It6 map with respect to o and V

In order to prove the continuous differentiability of the It6 map of RDEs with respect to the collection of
vector fields, it has to be shown for ODEs first.

Proposition 2.3. Consider v > 1, o € R and a continuous function w : [0,T] — R? of finite 1-variation.
The map V +— 7y (0, x0; w) is continuously differentiable from

Lip” (R4 R?) into C1"(]0, T]; R®).

Proof. In a first step, the derivability of the It6 map with respect to the collection of vector fields is established
at every points and in every directions of Lip? (R%;R®). In a second step, via [10], Proposition B.5, the contin-
uous differentiability of the partial It6 map is proved.

Step 1. Consider V,V € Lip” (R%;R%), £ €]0,1], 2V := my (0, z¢;w) and yV’V the solution of the following
ODE :

. t . t
" = [V M.+ [ V). 1)
0 0
For every t € [0, 7],
gVHeV gV ; v x¥+5‘7 —V(zY -
e Sy A / ( ) VI >—<DV($¥),y¥’V> dws +
£ o €
t g ~
| [Py = viad)] du.
0
= Pie) + Qi(e) + Re(e)
where,
t ~ ~
Pe) = et / V@Y ") —val) — (DV(), 2 7 —a¥)) dus,
0
t ~ ~
Qi(e) = / {‘N/(x;““av) — V(x;/)] dw, and
0

t - ~
Rie) = [ OVEY)e @ —al) - T,
0
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Firstly, since V' is continuously differentiable on R, by [10], Lemma 4.2 :

1P < e Mwlhivanr sup V(@ ™) = V(a)) = (DV(z)), 2,/ — )|

tel0,T
< 77(5)5_1||w||1-var;T||xV+EV - xVHOO;T
where, n(¢) — 0 when ¢ — 0.
By [10], Theorem 3.18 :
IP(E)llocsr < Ma(e) = 2(e)e ™ M2 My |V || oo ] 1-varsr (2)
with
My = [Vilipy + [V hipr = [V 4 eVlipr VIV [|1ipr
and Mg = ||w||1_var;T.

Secondly, since V is continuously differentiable and of bounded derivative on R¢, it is a collection of Lips-
chitz continuous vector fields. Then, by [10], Theorem 3.18 :

1QE)loosr < Ma(e) := 26 M2 My ||V |F 1 10l 1-varyr- ®3)
Thirdly,
t xv+e\7 _ gV -
IR < Vil [ | 5= = o7 (@
Therefore, by inequalities (2), (3) and (4) :
V4eV 1% _ t|  V4eV 1 -
x -z x) -z
I < M) M)+ Vi || g
0

In conclusion, by the Gronwall lemma :

VeV _ .V _
A A < [Ma(e) + Ma(e)] eV hior Il

3
oo, T
— 0.
e—0

Step 2. The solution of Equation (1) satisfies :
DyaV = m4(0,0;.) 0 JEy 5 (), ] o (mv (0,205 .), ) (w)

where, A : R® — L(L(R?) x R;R®) and Fy, i : R® x R? — L(R® x R%; L(R®) x R®) are two collections of vector
fields, respectively defined by :

A(a)(L,b) L.a+band
Fyy(a,a)(0,b) = ((DV(a),)V;V(a)t)

for every a,b € R®, a’,b’ € R? and L € L(R®).
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Firstly, by the second point of Theorem 2.1, the map J is uniformly continuous on every bounded sets of
C ([0, T); R x RY) x € ([0, T); R® x RY) .
Secondly, the map (V,V,a) — Fy, y(a) is uniformly continuous on every bounded sets of
Lip” (R%R?) x Lip” (R%R?) x R® x R
by construction.

Thirdly, the maps 74(0,0;.) and V +— 7y (0, z0; w) are respectively uniformly continuous on every bounded
sets of

Cr ([0, T]; £L(R®) x R¢) and Lip” (R RY)
by Theorem 2.1 and its remark.

Therefore, by composition, the map (V, f/) — D(/a:v is uniformly continuous on every bounded sets of
Lip” (R%RY) x Lip” (R%R?).
In conclusion, by [10], Proposition B.5, the map V — 7y (0, 2o; w) is continuously differentiable from
Lip” (R%; RY) into C1va7 ([0, T]; R®).

O

Theorem 2.4. Consider W € GQ, r(R?) :

(1) Let V :=(V4,...,Vy) be a collection of ~-Lipschtiz vector fields on R®. The map xo — wy (0, x0; W) is
continuously differentiable from

R¢ into CP" ([0, T]; R®).

For every t € [0,T], the Jacobian matriz of wy (0,.; W), at point xy € R is denoted by Jfggv.

Moreover, for every € > 0, there exists a constant C1 > 0 only depending on p, v, € and |V ||upv,
such that for every xy € R€,

”Jzo,W

<0 ”oo;T < CleclM%I,p(W).

(2) For every t € [0,T], in’gw is an invertible matrixz. Moreover, for every € > 0, there exists a constant
C2 > 0 only depending on p, v, € and |V ||ipv, such that for every xy € RE,

25" ey < CaeCoers D,
(3) Consider xg € R¢. The map V — my (0, z0; W) is continuously differentiable from
Lip” (R4 R?) into CP([0, T); R®).

Moreover, for every R > 0 and V.V e Bripv (0, R), there exists two constants n > 0 and C3 > 0,
depending (continuously) on R but not on W, such that :

Havﬂ'v(o, X0, W)VHOO,T < Cg@CSM”'I’p(W).
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Proof. See [10], theorems 11.3-6 for a proof of the continuous differentiability of the It6 map with respect to the
initial condition, and see [3], Corollary 3.4 about the upper-bound provided at the first point for ||Jﬁﬂ’§w||oo;T ;

xo € R,

Let I be the identity matrix of M, (R). The proofs of the points 1 and 2 are similar because if w : [0, T] — R
is a continuous function of finite 1-variation, then

t
Jory = I+/(DV[WV(O7960;W)S]7J:&g’)dws and
0
t
(o)t = 1o / (DV ]y (0, 20; W),], (J72) "y,

as mentioned at the proof of [10], Proposition 4.11.

The proof of the third point is detailed. In a first step, the continuous differentiability of the It6 map with
respect to the collection of vector fields is proved. In a second step, in order to apply the integrability results
coming from [3], a tailor-made upper-bound for the derivative of the It6 map with respect to V' is provided.

Step 1. Since W € GQ,, r(R?), there exists a sequence (w",n € N) of functions belonging to C1-v2*([0, T]; R?)
and satisfying :
lim dp-var;T [S[p] (wn)o’,,W] =0. (5)

n— 00

Consider n € N, W™ := S, (w")o,., o € R®, a := (w0,0),

a 2P

[p]!

Xg = (1,a,..., ) € TP (ReHY)

and V,V € Lip” (R¢; RY).
By Proposition 2.3, the map 7 (0, zo; w") is continuously differentiable from
Lip? (R%; R?) into C'¥2* ([0, T]; R®).
In particular, Oy my (0, 2o; w")f/ = (W™, V, V) with
o, V, f/) :=ma(0,0;.) 0 J(.; Fv,f/) ompm, (0, Xo;.)
where,

A:R® — L(L(R®) x R%R9),
Fyp iR xR? — L(R® xR L(R®) x R®) and
Fy:R® — LER%LRC x RY)

are three collections of vector fields, respectively defined by :

A(a)(L,b) = L.a+b,
Fyy(a,d)d,V) = ((DV(a), ' V(a)b') and
Fy(a) = (V(a)t',V)
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for every a,b € R®, a’,b’ € R? and L € L(R®).

Consider ¢ €]0,1]. By the Taylor formula applied to 7 (0, z¢; W™) between V and V + eV, and [10], Defi-
nition 10.17 :

Ty o7 (0, 20; W) — 7y (0, 203 W) = le O(W™, V +6V,V)do (6)
n o0 O

uniformly.

Via the Lebesgue theorem and [10], Proposition B.1, let show that the derivative of 7 (0, zo; W) at point V, in
the direction V, exists in CPV*"([0, T]; R®) equipped with the norm ||.||p-var;r and coincides with (W, V, V).

On one hand, by the continuity results of Theorem 2.1 :
V0 €]0,1], (W™, V + 0V, V) —— o(W,V + 0V, V)
in CP™2(]0,T7; R®) equipped with ||.||co:7-

On the other hand, by applying successively [10], theorems 10.47 and 10.36, for every 6 €]0,1] and every
(S,t) 6 AT?

Wi (s,t;n;0) = H/FV%W, [vam(o,Xo;W")} drp, (0, Xo; W™)
p-var;s,t
< w%/p(&t;n)
with
wy/P(s,t5m) == w3 (s, 650) V ws(s, 1) V W (s, 8 )
and

ws(s, t;n) = || W7

p-var;s,t

where 7; > 0 is depending on V and V, but not on W” and 6.

By [10], Exercice 10.55, there exists a constant Cy > 0, not depending on W™ and 6, such that :

|D]-1

lewm v +ov,0)|| < ciexp |y sup S walrg, resiin)
ooiT D={r} € Dr ;.

L wa (T, rey1sn) <1 |

- - z

= Cyexp |Cy sup Z w3 (rg, re+1;1) |
D = {ry} € Dy k=1

L w3 (T, reg1in) <1 |

because
wa(.;m) = ws(;n) when wa(sn) < 1.

By the super-additivity of the control ws(.;n) :

[t v+ov. )| < Caem Ot i,
oo T
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In the right-hand side of that inequality, since 1; and C4 are not depending on W™ and 6, and since

sup WP ..p < o0
neN*

by (5) :
sup supHgO(W",V-&-m/yV)H <00
0c[0,1] neN oo T

in CP™([0,T7; R®) equipped with ||.||co:7-

Therefore, by the Lebesgue theorem and Inequality (6) :
€
7TV+5\7(07 2o; W) — 7y (0, 20; W) = / (W, V + 0V, V)do.
0

Since 0 — (W, V + 6V, V) is continuous from
[0,1] into CPV*([0, T]; R®) (equipped with ||.||p-var;7)

by Theorem 2.1 ; by [10], Proposition B.1, the derivative of 7 (0, xo; W) at point V, in the direction V, exists
in CP™*(]0,T7; R®) equipped with ||.||p-var;r and coincides with (W, V, V).

Finally, as at the second step of the proof of Proposition 2.3, via [10], Proposition B.5 and Lemma 4.2, the map
7 (0, zo; W) is continuously differentiable from

Lip” (R%RY) into CPV ([0, T); R®).
Step 2. Consider R > 0 and V,V € Br;,» (0, R).

By applying successively [10], theorems 10.47 and 10.36, for every (s,t) € Ar,

WP(s,1) o= H [ Fu e 0, X0 W), (0,0

p-var;s,t

< w/P(s,t)

with
w;/p(s,t) = wé/p(s,t) Vwe(s,t) Vwk(s,t)
and
we(s,t) 1= N2 W[} varss.¢

where 75 > 0 is depending on R (continuously), but not on W.

By [10], Exercice 10.55, there exists a constant C5 > 0, not depending on R and W, such that :

|D|—1

Ha\/ﬂ'v(o, T0; W)VH < Csexp |Cs sup Z Wy (Ty Tt 1)
oo;T D={rg} € D;

L ws (ks Tht1) <1 J

- - Z

= Csexp | sup > welrk,rran) |

D = {ry} € Dy k—1

L we (ks Tht1) <1 J
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because
ws = wg when ws < 1.
However,
|D|-1
sup Z w6 (Tks Th1) = 2 M, -1 1 (W).
D={r,} € Djp k=1 2
we (ks TR41) <1

Therefore,

H@vwv(o,xo;W)VH < Cze@Mnrp ()

oco;T

with C5 := C5(1V n2) and 1 :=n; . -

Notations. In the sequel, the matrices J*,' and (J")~! will be respectively denoted by Ji/_, and J}¥ , for

the sake of simplicity. Moreover, for every (s,t) € Ap, put

W W W W W W
Js<—t T Js<—0JO<—t and Jt<—s T Jt<—OJO<—s'

Then,
Jeldille= LIl =1

At the following corollary, the upper-bounds provided at the previous theorem are extended to RDEs having a
drift term.

Corollary 2.5. Consider m € N*, p > g > 1 such that 1/p+1/q¢ > 1, h: [0,T] = R™ a continuous function
of finite q-variation, W € GQ, 7 (R?) and W" := S, (W@ h) -

(1) Let V := (V1,...,Varm) be a collection of ~v-Lipschitz vector fields on R¢. For every € > 0, there exists
a constant Cy > 0 depending only on p, q, v, € and ||V||upv, such that for every xo € R,

17 o lowir < Crexp [ [0 iy + Moot (W)

q-var;

(2) Consider zg € R¢. For every R > 0 and V.V e BrLipv (0, R), there exists two constants € > 0 and
Cs5 > 0, depending on R but not on h and W, such that :

vy (0,203 W").V locit < Coexp |Co [IRI] v + Mot p(W)] ]
Proof. By Corollary 2.2, there exists a constant C'5 > 0, depending only on p and ¢, such that for every € > 0,

Me1p(W") < Gy [[BI] iy + Mot p(W)]

Therefore, by Theorem 2.4 :

(1) Let V € Lip”(R*R%™) be arbitrarily chosen. For every ¢ > 0, there exists a constant Cy > 0
depending only on p, 7, € and ||V ||1ip7, such that for every zy € R¢,

CyeCeMerp(W")

Cy exp {Cl {HhHZq)-var;T + MEJ”’(W)H

h
17 o <
<

with Cq := 04(1 V 03)
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2) Let zg € R® be arbitrarily chosen. For every R > 0 and V, V € Brip» 0, R), there exists two constants
p
e >0 and Cs > 0, depending on R but not on W", such that :
||6v7Tv(O7LL‘0;Wh).‘~/HOO;T < C5€CE’ME’I”’(W}L)
<

Cyexp [02 |:||hH§-var;T + ME*I”’(W)”

with C5 := 05(1 \Y 03)

2.2. Differentiability of the It6 map with respect to the driving signal
First of all, the notion of differentiability introduced by P. Friz and N. Victoir on G, 7(R?) is reminded.

Definition 2.6. Consider a Banach space F, p > q > 1 such that 1/p+ 1/q > 1, and an open set U of
GQp1r(RY). The map ¢ : GQ, 7 (R?) — F is continuously differentiable in the sense of Friz-Victoir on U if and
only if, for every Y € U, the map

h e CT([0,T);RY) — o(ThY) € F

s continuously differentiable.

With the notations of Definition 2.6, if ¢ is continuously differentiable from U into F in the sense of Friz-Victoir,
then
VY € U, Y : h € 04 ([0,T); RY) — oY (h) = p(T,Y)

is derivable at every points and in every directions of C4v ([0, T]; R%).
Notation. For every continuous function h : [0, T] — R? of finite g-variation,

DiVe(Y) = Dyy¥(0)
o(TorY) — o(ToY)

= lim .
e—0 £

In the sequel, D¥V is called the Friz-Victoir (directional) derivative operator.

Theorem 2.7. Consider a collection V = (Vi,...,Vy) of vy-Lipschitz vector fields on R® and xg € R®. The
map W — 7y (0, 20; W) is continuously differentiable from

GQ,. 7 (RY) into CP"([0, T]; R®)
in the sense of Friz-Victoir.

Moreover, for every W € GQ, r(R?) and every continous function h : [0,T] — R? of finite q-variation,
DEV g (0, 20; W) = / TV V [rv(0,20; W),] dhs.
0
(Duhamel principle).

Consider W € GQ, 7(R?) and a control w : Ar — R satisfying :

V(s,t) € Ar, Wl p-vars,t < wl/”(s,t).
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(1) There exists a constant C; > 0, not depending on W and w, such that for every continous function
h:[0,T] — R? of finite g-variation,

|DF Y7y (0,20 W)loosr < Crexp [Cr(IANY yqrig + Mi1)] -

(2) There exists a constant Co > 0, not depending on W and w, such that for every continous function
h:[0,T] — R? of finite g-variation,

|DE Yy (0,20 W)lp-sarsr < Coexp [ C I arir +w(0,T)] | -
Proof. See [10], theorems 11.3-6 and Exercice 11.9 for a proof of the first part.

Consider a continuous function h : [0,7] — R? of finite g-variation, W" := Sy,;(W @ h), a := (2, 0,0) and

a®p]
Xo = (m) e TPl (Re+2)
ol (R)
By [10], Theorem 11.3 :
DEVry (0, 20; W) = 7.4(0,0;.) 0 I(., F) 0 7 (0, Xo ) (W")
where,
A:R® — L(L(R®) x R R,
F:R*xRIxR? — L(R® x R x R% L(R®) x R®) and
G:R* — L(RYxR%LR® x RY x RY)
are three collections of vector fields, respectively defined by :

A(a)(L,b) := L.a+b,
F(a,a’,a")(b,t',b") ((DV (a), .)b'; V(a)b”) and
G(a)(V',b") (V(a)t', v/, b'")

for every a,b € R®, a’,b/,a”, " € R? and L € L(R®).

By applying successively [10], theorems 10.47 and 10.36, for every (s,t) € Ar,

WP(s,) = H / (s (0, Xos W")] drrgs (0, Xo: W)

p-var;s,t
< (5 t)
with
w;/p(s,t) = wgl,/p(s,t) Vws(s,t) Vwh(s,t)
and, by [10], Proposition 7.52 :

wS(Svt) = [Hh”q varst+w(8 t)] 62||V\Vh||p var;s,t

where, €1,e5 > 1 are two constants not depending on W, w and h.
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On one hand, by [10], Exercice 10.55, there exists a constant C3 > 0, not depending on W, w and h, such
that :

|D]-1
HDEVﬂ'V(O,mO;W)HwT < Czexp |Cs sup Z wa (T, Tht1)

’ D={r} € Dr ;4
L wa (P> Tet1) <1 J
[ IDI-1 ]
= Csexp |C3 sup Z W3 (T Thy1)

D={r} € D 1
L w3 (Te,rpy1) <1 _

< Crexp [C1 (bl surir + Mir)]
with C7 := C3e1, because
wo = w3 when wy < 1 (7)

and
V(s,t) € Ar, w(s,t) < ws(s,t).

On the other hand, by_[lO]7 Theorem 10.53, there exists a constant Cy > 0, not depending on W, w and h, such
that for every (s,t) € Ar satisfying wa(s,t) < 1,

Ca [1 + ”Dh Wv(O,xo;W)SH] wzl/p(s t)e Cawa(s,t)
Cy [1 + | DEV 7y (0, o; )Hooﬂ WS/P(S te Caws(0,T)

| DFY v (0,20 W)s e <
<
by (7).

Therefore, by the super-additivity of the control ws, there exists a constant C3 > 0, not depending on W,
w and h, such that :

| DY 7y (0, 203 W) vt < Caexp [Ca [IRI] ez +0(0,T)] |
U

At the following corollary, the upper-bounds provided at the previous theorem are extended to RDEs having a
drift term.

Corollary 2.8. Consider m € N*, p > q¢ > 1 such that 1/p+1/q > 1, r € [1,p[ such that 1/p+ 1/r > 1,
g : [0,T) — R™ a continuous function of finite r-variation, W € GQ, r(R?), W9 := S,,(Wa g), V =
V1, ..., Viagm) a collection of ~-Lipschitz vector fields on R® and xg € R¢. There exists a constant C' > 0, not
depending on g and W, such that for every continuous function h : [0,T] — R¥™ of finite q-variation,

IDE Yy (0,20 W) iz < Cexp [C (1R iz + 1917 sy + Mt (W)] ]

Proof. Let h : [0,T] — R%™ be a continuous function of finite g-variation. By Corollary 2.2, there exists a
constant C7 > 0, depending only on p and r, such that :

Mi1p(W9) < C1 (910 arir + Mr1p(W)] -
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Then, by Theorem 2.7, there exists a constant Co > 0, not depending on WY and h, such that :

D5V 7wy (0, 20; W9)[laer < Caexp [02 [”hHg-var;T + Ml,I,p(Wg)”

< C’exp [C [HhHP r+ ”gHP T+ Ml,l,p(W)H

g-var; r-var;

with C := Cy(1V CY). O

2.3. Application to the Gaussian stochastic analysis

Consider a d-dimensional stochastic process W and the probability space (92, 4,P), where Q is the vector
space of continuous functions from [0, 7] into R, A is the o-algebra generated by cylinder sets of 2, and P is
the probability measure induced by the process W on (2, A).

In order to prove Corollary 2.15 which is crucial at Section 3, the existing results on Gaussian rough paths
proved by P. Friz and N. Victoir in [9], and by T. Cass, C. Litterer and T. Lyons in [3] have to be stated first.
Consider the two following technical assumptions on the stochastic process W.

Assumption 2.9. W is a d-dimensionnel centered Gaussian process with continuous paths. Moreover, its
covariance function cy is of finite 2D p-variation with p € [1,2[ (see [10], Definition 5.50).

Assumption 2.10. There exists p > q > 1 such that :

11
E+;>1mMH“aCW”@JmRﬁ

Example. By [10], Proposition 15.5, Proposition 15.7 and Exercice 20.2, the fractional Brownian motion of
Hurst parameter H €]1/4,1/2] satisfies assumptions 2.9 and 2.10.

Theorem 2.11. Consider a stochastic process W satisfying Assumption 2.9, and p > 2p. For almost every
w € Q, there exists a geometric p-rough path W(w) over W(w) satisfying :
(1) There exists a deterministic constant C > 0, only depending on p, p and |cw || p-var[o, 12, such that :

EGmwmwg)<w.

(generalized Fernique theorem).
(2) Let (W™, n € N) be a sequence of linear approzimations, or of mollifier approzimations, of the process W.
W is the limit in p-variation, in L™ (Q) for every r > 1, of the sequence (Ss(W™),n € N) (universality).
W is the enhanced Gaussian process over W.

See [10], Theorem 15.33 for a proof.

Proposition 2.12. Consider a stochastic process W satisfying assumptions 2.9 and 2.10, W the enhanced
Gaussian process over W, and the Cameron-Martin’s space H* C Q0 of the process W. Then,

Vw € Q, Vh € HY, W(w + h) = T,W(w).

See [10], Lemma 15.58 for a proof.

Proposition 2.13. For every geometric p-rough path Y and every € > 0,

ME’],p(Y) <e€ [2N€’[’p(Y) + 1] .
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See [3], Proposition 4.6 for a proof.

Theorem 2.14. Consider a stochastic process W satisfying assumptions 2.9 and 2.10, and W the enhanced
Gaussian process over W. Then,
VC, e, r >0, CeCNetn(W) ¢ L"(Q).

See [3], Theorem 6.4 and Remark 6.5 for a proof.

Corollary 2.15. Consider g € R®, V := (V4,...,Vgy1) and V= (ffl, ey Vd+1) two collections of vy-Lipschitz
vector fields on R®, a stochastic process W satisfying assumptions 2.9 and 2.10, W the enhanced Gaussian
process over W, W9 := S,,(W @ g) with g := Idp 1), and a continuous function h : [0,T] — R of finite
q-variation.

1T llocsrs 19y 7y (0, 203 W9).V [l and | D Vry (0, 3 W9) i
belong to L"(QY) for every r > 0.

Proof. Tt is a straightforward consequence of corollaries 2.5 and 2.8, of Proposition 2.13 (deterministic results),
and of Theorem 2.14 (probabilistic result). O

3. SENSITIVITY ANALYSIS OF (GAUSSIAN ROUGH DIFFERENTIAL EQUATIONS

This section solves the problem stated in the introduction of the paper by using the deterministic results on
RDEsS of subsections 2.1 and 2.2, the probabilistic results on Gaussian RDEs of Subsection 2.3 and the Malliavin
calculus.

Assume that W, p and o defined in the introduction satisfy the following assumption.

Assumption 3.1. The process W satisfies assumptions 2.9 and 2.10, and
Cs ([0, T);RY) c H'.
Moreover, there exists a constant C > 0 such that :
vh e Cq ([0, T1;RY), [Ihlla < Cllhllocsr-

The functions u and o satisfy Assumption 1.8 and, for every a € R%, o(a) is an invertible matriz. Moreover,
the function o= 1 : RY — M4(R) is bounded.

Example. The fractional Brownian motion B¥ of Hurst parameter H €]1/4,1] satisfies Assumption 3.1.
Indeed, it has been stated at Subsection 2.3 that B satisfies assumptions 2.9 and 2.10. Moreover, by the first
point of L. Decreusefond and S. Ustunel [5], Theorem 3.3 :

Cy ([0,T);RY) c H'.
Consider h € C¢([0, T]; R?). By the second point of [5], Theorem 3.3 :

1Bl = 1 Ta () = Al 2o,
< TY2||hl|osir-

Assume also that the function F : R? — R satisfies the following assumption.

Assumption 3.2. The function F is continuously differentiable from R? into R. Moreover, there exists two
constants C > 0 and N € N* such that, for every a € R?,

[F(a)] < C(A+ [lal)™ and [ DF(a)]z < C1+ [la])™.
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The following results are solving, at least partially, the problem stated in the introduction of the paper.

Notations :

e Under Assumption 3.1, the enhanced Gaussian process over W is denoted by W, W9 := S,,(W @ g)
with g :=Idjg,7), and V := (V1,..., Vgy1) is the collection of vector fields defined by :

V(a)(b,c) := pla)c+ o(a)b

for every a,b € R and ¢ € R.

e Let S, C Lip”(R%R?) be the space of functions from R? into My(R), [p] + 1 times differentiable,
bounded and of bounded derivatives.

e For every z € RY E[F(Xr)] is denoted by fr(z,0).

Lemma 3.3. Let [ = (I',...,I%) be the map from H into H' such that :
I'(h) :=E[W'(h")W'] € H'

foreveryhe€ H:=H, @®---®Hg andi=1,...,d. I is an isometry from H into H'.

Proof. On one hand, the linearity of I : H — H' is a straightforward consequence of the linearity of W : H —
L%(Q).

On the other hand, by construction of W and of the scalar products on H and H' :

d
(), L) = Y _(B[W AW ]E[W (g )W)y
d
= SE[WHW(G)] = (hg)u
for every functions h,g € H. O

The following lemma extends [10], Proposition 20.5 to Gaussian RDEs having a drift term.

Lemma 3.4. For every zo € R? and almost every w € Q, the map h — my[0,20; W9 (w + h)] is continuously
differentiable from

H' into CP" ([0, T]; R?) .
For every t € [0,T], my (0, z0; W9), € D-? and for every h € H!,

loc

(Dry (0,20; W), I (W) = D{)/0ymv (0, 03 W),

t
/ TV o [y (0, 20; W9),] dh.
0

Proof. By Proposition 2.12, for almost every w € Q and every h € H',

W9 (w + h) = S[p] [W(w + h) &b g]
S [T W(w) & g]

= Tin0)Sp[W(w) @ g
= TihoW(w).
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Then, almost surely :

7y [0, 20; WI(. + h)] = 7y [0, 205 T(p,,0) W] (8)
By Assumpution 2.10 and Corollary 2.8, h > 7y [0, zo; T(p,0)W?] is continuously differentiable from

tc o™ ([0, T]);RY) into CP* ([0, T);RY) .
Then, by Equality (8), the map h +— 7y [0, zo; W9(. + h)] is also continuously differentiable from

H' into C*¥* ([0,T];RY)
and for almost every w € Q and every h € H',
th\’/o)wv [0, 20; W9 (w)] = Dp F*(0)

with F* := 7y [0, 2g; W9 (w + .)].

By the Duhamel principle (see Theorem 2.7), for every t € [0,T] and every h € H?,

t
DF;XO)WV(O,xo;Wg)t = /J?YEJSV[WV(O,%;WQ)S](th,O)
0

t
/ JtW:SJ [y (0, xo; W) 4] dhs.
0

In conclusion, by [22], Proposition 4.1.3 and Lemma 4.1.2, 7y (0, xo; W9), is continuously H '-differentiable and
then locally derivable in the sense of Malliavin, with

(D7y (0, 20; W), I7H(h)) g = DpF“(0).

Theorem 3.5. Under assumptions 3.1 and 3.2 :
(1) The function fr(.,c) is differentiable from R? into R and, for every z,v € R?,

O fr(w,0)v =E[(D(F o X7),I " (h""))u]

where

== / Lxz) g% Juds.

(2) For every x € R%, the function fr(z,.) is differentiable from'S, into R and, for every o,& € S, satisfying
Assumption 3.1, i
O fr(z,0).6 =E[(D(F o X$),I ' (h"?))y]
where

- / LX) W 10, X5 Gds.

Proof. (1) On one hand, for every € €]0,1], > 0 and z,v € R%, by the Taylor formula, and the first point
of Corollary 2.5 ; there exists a constant C7 > 0, depending only on p, v,  and ||V ||1ip~, such that :

[F(X7") — F(XF)]
3

1
/ (DF(X%*‘%“),DX;E*OE'“.v)d&‘
0

1
< Cyljo]jeCrMnrn() / | DF(XEH0=)| do.
0
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Moreover, since I satisfies Assumption 3.2, there exists two constants Co > 0 and N € N*, depending
only on F, such that for every 6 € [0,1],

|DF (57) | < Ca (14 g+ )™

I

Then, by the triangle inequality together with [10], Theorem 10.36, there exists a constant C5 > 0, not
depending on z, v, 6, €, V and W, such that :

IDE(XT)e < Coll + |z + |loll +
CV3H|Vv||1ip'Y_1 ”WQHP-Var%T v ”V”ﬁp’vfl ng“p-var;T]]N'

Since W satisfies assumptions 2.9 and 2.10, by Corollary 2.15, the generalized Fernique theorem (see
Theorem 2.11) and the Cauchy-Schwarz inequality :

|F(X7") — F(X7)]
9

e €]0,1] —

is bounded by an integrable random variable not depending on €. Therefore, by the Lebesgue theorem,
fr(.,0) is differentiable on R¢ and

Va,v € RY, 0, fr(z,0).v = E[(DF(X%), 0, X%.v)]. 9)

On the other hand, consider =, v € R%. By construction, the paths of the process h** are continuously
differentiable from [0,7] into R? and hgy® = 0. Then, since W satisfies Assumption 3.1, h%? is a
H'-valued random variable. By the Duhamel principle (see Theorem 2.7) :
T g
Do Xt = [ T (xan
= 0, X7.wv.

Therefore, by Equality (9), Lemma 3.4 and [22]|, Proposition 1.2.3 (the chain rule of the Malliavin
derivative) :

Oufr(z,0)v = E[DF(XF).Dip o X7
= E[DF(X{).(DX%, 7' (h""))n]
= E[D(FoXf), I (h""))n].
Let # € R? be arbitrarily fixed. On one hand, for every ¢ €]0,1] and 0,5 € S,, by the Taylor formula :

|F(X77°7) — F(X7)]
9

1
/ (DF(X5T0%), DX3197 5)dh
0

N

1
02/ (1+HX701+056H)NHDXU+986 do.
0

'O-Hoo;T

At [10], Theorem 10.36, the constant involving in the upper-bound does not depend on the signal and
on the collection of vector fields. At the second point of Corollary 2.5, the two constants involving in
the upper-bound depend continuously on the ~-Lipschitz norm of the collection of vector fields. Then,
there exists a constant Cy4 > 0, depending on ¢ and & but not on € and W, such that for every 6 € [0, 1],
< CyeCrMeq.1.0(W)

IDX7%.5| o
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and
1511 < Ca (I garir V IW2 I i)

p-var;T

Since W satisfies assumptions 2.9 and 2.10, by Proposition 2.13, Theorem 2.14, the generalized Fernique
theorem (see Theorem 2.11) and the Cauchy-Schwarz inequality :

|F(X77°7) — F(Xg)]
3

e €]0,1] —

is bounded by an integrable random variable not depending on €. Therefore, by the Lebesgue theorem,
fr(z,.) is differentiable on S, and

Vo,6 €Sy, Oy fr(z,0).6 =E[(DF(X7),0,X%.5)]. (10)

On the other hand, consider 0,6 € S, satisfying Assumption 3.1. By construction, the paths of the
process h?°? are continuously differentiable from [0, 7] into R? and h{'® = 0. Then, h?? is a H'-valued
random variable. By the Duhamel principle (see Theorem 2.7) :

T
DEY., o X§ = / TP o (X9)dhT?
= 0,X5.5.

Therefore, by Equality (10), Lemma 3.4 and [22], Proposition 1.2.3 (the chain rule of the Malliavin
derivative) :

Os fr(z,0).6 = E[DF(X$).D{ls 0 X7
= E[DF(X%MDX%,I‘lgh”’&»H]
= E[(D(FoX7), I (h""))u].

O

Remark. In order to extend the formulas of Theorem 1.2 under the assumptions of Theorem 3.5, it is sufficient
to show that I-1(h®?) and I~1(h"%) belong to D?(H) C dom(d). To do that, it is necessary to prove that

| DFY 0, X% 0oz and || DfY 0y X6 || o1

belong to L"(2) for every h € H' and r > 0, by using that DV9,X*.v and DEVO,X7.5 are successive
compositions of the Ité6 map. If p > 2, it is difficult for two technical reasons :
e At Definition 2.6, Y and h cannot be both of finite p-variation. Indeed, the direction i has to be
smoother than the geometric rough path Y.
e The upper-bounds obtained at Section 2 for 9, X*.v, 3, X°.5 and D}V X with the uniform norm, tailor-
made to apply the integrability results coming from [3], don’t hold true with the p-variation norm
(see [9], Lemma 10.63 and Remark 10.64).
If p € [1,2], u and o are three times differentiable, bounded and of bounded derivatives, o(a) is an invertible
matrix for every a € R%, and 0=1 : R? — M4(R) is bounded, the statement of Theorem 3.5 holds true in the
sense of Young, I~1(h*?) and I~1(h?%) belong to DV2(H), and

Oufr(z,o)v = E[F(XF)s[I7'(h"")]] and
O fr(w,0).6 = E[F(XF)5 I (r"7)]].
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See [20], Proposition 1.54 and Corollaire 2.23. Since the derivative of F don’t involve anymore in these expres-
sions of 9, fr(x,o).v and O, fr(z,0).5, by a usual regularization procedure, F has only to be measurable such
that

Va € RY, [F(a)| < C(1+ |la])™
with C' > 0 and N € N*.

4. APPLICATION TO MATHEMATICAL FINANCE AND SIMULATIONS

In a first subsection, Theorem 3.5 is applied to the calculation of sensitivities in a financial market model with
stochastic volatility, such that each equation is driven by a fractional Brownian motion of Hurst parameter
belonging to ]1/4,1[. In a second subsection, still with a fractional Brownian signal, some simulations of the
sensitivities with respect to the initial condition and to the collection of vector fields are provided when the
Hurst parameter of the fBm belongs to ]1/2, 1].

4.1. Calculation of sensitivities in a fractional stochastic volatility model

In this subsection, the prices process of the risky assets is the solution of a fractional stochastic volatility
model (taken in the sense of rough paths), and the sensitivity of the price of an option to some perturbations
of the volatility is calculated by using Theorem 3.5.

Consider a stochastic process W, and p : RY — R%, k : R — Ri, 0,9 : R* - My(R) and F : R — R,
five functions satisfying the following assumption.

Assumption 4.1. There exists two independent d-dimensional fBm B™ and BH2, of Hurst parameters H, €
11/4,1[ and Hy €]1/4,1] respectively, such that W = (BH1 BHz).

The functions p, o and 9 satisfy Assumption 3.1 for p:=1/(Hy —e)V 1/(Ha —e) < 4 and & > 0 as close as
possible to 0. The functions k and F are such that F o k satisfies Assumption 3.2.

Consider the financial market model consisting of d risky assets, of prices S; at the time ¢ € [0, 7] such that

Sy = k(Yy)
dY, = p(Y)dt+o(Z)dBM Y, eR? |
dZ; = 9(Z)dB["? ; Zy € R?

and an option of payoftf F(St) := (F o k)(Yr) over these assets.

Consider X := (Y,Z), W the enhanced Gaussian process over W, and V := (Vi,...,Va441) the collection
of 7-Lipschitz vector fields on R{ @ RY (7 > p) defined by :

Va,b e RE@RY, Ve e R, V(a)(b,c) := Vi(a)e+ Va(a)b
where,
_ (Ko TRa __ [ooTpe 0
Vl.—< 0 ) andVg.—( 0 2 1907TR¢21>’
and 7ga is the canonical projection from R{ @ R¢ into RY for i = 1,2.

Precisely, X = my (0, Xo; W9) with W9 := Sy, (W @ g) and g := Id 7.
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Corollary 4.2. With the notations of Theorem 3.5, under Assumption 4.1, fr is differentiable from S, into
Ry, and for every ¥,9 € S, satisfying Assumption 5.1 :

0ufr(9)0 = E [(D(F o S); (I} o )W), (It 0wy ) (7))

where, fori = 1,2, H} is the Cameron-Martin space of B, Ty 18 the canonical projection from Hi® Hj into
Hl

70

and

3 1 : g ~
RV = - / Vo (XD) JIE 109 X A ds.
0

Remark. By the final remark of Section 3, if Hy, Hy €]1/2,1[, under some ~additionad assumptions on pu, o and
¥, the statement of Corollary 4.2 holds true in the sense of Young, I~ (h??) belongs to DV2(H), and

0 fr(9)0 = E [F(SP) [, (It 0w )(W*0)] + 611, [(Igk o my) (070)] ]
with F o k only measurable such that
Ya € R, |(Fok)(a)| < C(+ ||la)

with C' > 0 and N € N*. Moreover, by Corollary A.4 and its remark :

on, [Tz} o 7 ) (077)] = 6172 [[(0m D712 0 (05 DY) 0 gy | (0]
fori=1,2.

4.2. Simulations

In order to simulate the sensitivities studied in this paper, the results of [14] on the convergence of the explicit
Euler scheme of differential equations driven by a a-Hdlder continuous function from [0, 7] into R? (« €]1/2, 1])
have to be reminded first.

Proposition 4.3. Consider o € R, w : [0,T] — R? a a-Hélder continuous function with o €]1/2,1[, and
V= (V1,...,Vy) a differentiable collection of vector fields on R? such that its derivative is ~y-Hélder continuous
from R into itself (v €]0,1[ and v+ 1 > 1/a). There exists a constant C > 0 such that for every n € N*,

l2” — 7y (0, 20; W) | i < O 277
where, x™ is the step-n explicit Euler scheme of my (0, xo; w) with respect to the dissection D" := {rj!} € Dr :
S e
n .__ n + _an .
xy = Z [a:k + T (t—ry) 1[’“277’Z+1[(t) ;t€10,7]

with

fork=0,....n—1.

See [14], Proposition 5 for a proof.
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Corollary 4.4. Consider xo € R, a 1-dimensional fractional Brownian motion B of Hurst parameter H €
11/2,1], 1 and o two functions from R into R satisfying Assumption 1.3 with p := 1/(H —¢) <2 ande >0
as close as possible to 0, V' the vector field on R such that V(a)(b,c) := p(a)e + o(a)b for every a,b,c € R,
X =7y (0,20; BH), Y := 0, X%.1 and Z := 9,X°.G for 6 € S, arbitrarily chosen. For everyr > 1,

. n_ T — 1 n _ T — 1 n__ T —
Jim B (X" = X p) = lim E(JY" = Yr) = lim E (12" - ZIr) =0
where, for everyn € N*, X" Y™ and Z™ are respectively the explicit Euler schemes of X, Y and Z with respect
to the dissection D™ := {r}!} € Dr. Moreover, the rate of convergence of each sequence is nr(1=2/p),

Proof. The processes Y and Z satisfy respectively :
Y =m4,(0,1; W) and Z = 7a, [0,0; (W7, W)]

where,

Wh = / fu(X,)ds + / & (X,)dBH and W% .= / G (X,)dBH
0 0 0
and, A; and A, are the two collections of affine vector fields on R defined by :

Va,b,c € R, Aj(a)b:= ab and Ay(a)(b,c) :=ab+c.

Since the paths of B are almost surely 1/p-Holder continuous by the Kolmogorov continuity criterion, by [10],
Theorem 6.8, the paths of W7 and W are also almost surely 1/p-Holder continuous. Then, X, Y and Z
satisfy the conditions of Proposition 4.3, and there exists a random variable C' > 0 such that for every n € N*,
Cn'~2/? is an upper-bound of

X" = Xllogir s V" =Yooy and [[ 2" = Z]| .-

By reading carefully the proof of [14], Proposition 5, C' belongs to L"(Q2) for every r > 1 by the Fernique
theorem. Therefore, for every r > 1,

E(|X" — X|%.p) < E(C)n"=2n 0,
’ n— o0
E(|Y" - Y|lr) < E(C")n"172/") —— 0 and
’ n—o0
E(|2" = Zlsr) < E(CTnTOTP ——0
because p < 2. _

Remark. About the approximation of the solution of SDEs driven by a fBm, see also A. Neuenkirch and I.
Nourdin [21].

Let n € N* be arbitrarily fixed. With the assumptions and notations of Corollary 4.4, at each iteration of
the step-n explicit Euler schemes, the value of Bﬁ;l — BE is computed via the Wood-Chang algorithm (see T.

Dieker [6] about some simulation methods of the fBm).

Let F : R — R be a function satisfying Assumption 3.2. With the notations of Section 3, in order to ap-
proximate 0, fr(z,0).1 (resp. Oy fr(x,0).5),

E [F (X2) YT"} (resp. E [F (X2) Z;ﬁ} )
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is estimated by the empirical mean ©7,(Y) (resp. ©7,(2)) of the m-sample from the distribution of FY =
F(X2)YR (resp. FZ := F(X})Z%). By Corollary 4.4, F¥ and FZ belong to L?(Q2). Then,

(1) By the strong law of large numbers :

2y gn(Y) ::E[F(X;)YT"} and

on(2) =2 ¢"(2) ;:E[F(X;)Zﬂ.

(2) By the central limit theorem and the Slutsky lemma :

\/EG’;L(Y) —6"(Y) D

st (Y) —— N(0,1) and
on(Z)-0"(Z) o
vr sp(Z) —— N(0,1)

where, s7 (V) (resp. s(Z)) is the empirical standard deviation of the m-sample from the distribution
of F¥ (resp. F?).
At the level « €]0, 1], the second point provides the following confidence intervals :

P65 (Y) - L\/%STJL(Y) <OMY) < O(Y) + 2

and

where, ®(t,) =1 — /2 and @ is the distribution function of N(0,1).

Example. Assume that T := 1, H := 0.6, n := 2% m =500, u =0, 0 : a — 1+ e‘a2, g a
1+ 7/2+ arctan(a), F:a~ a? and z:=1 :
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IC sensitivity estimator Volatility sensitivity estimator

-10

Ly S T S
f f f f f f f f 1 -10
0 50 100 150 200 250 300 350 400 450 500

I I I I I I I I
T T T T T T T T 1
0 50 100 150 200 250 300 350 400 450 500

— IC sensitivity estimator — Volatility sensitivity estimator
—— 0.05- Confidence interval —— 0.05- Confidence interval

FiGure 1. Estimators convergence

’ Statistics Values ‘
on (V) 1.042
0.05-confidence intervals [0.851;1.232]
Length of the confidence interval 0.381
on (2) 7112
0.05-confidence intervals [6.071; 8.154]
Length of the confidence interval 2.083

APPENDIX A. FRACTIONAL BROWNIAN MOTION

Essentially inspired by [22] and [5], this appendix provides the basics on the fractional Brownian motion, and
the explicit expression of the associated isometry I~' defined at Lemma 3.3.

Definition A.1. A fractional Brownian motion of Hurst parameter H €]0,1] is a centered Gaussian process
BH of covariance function Ry defined by :

1
Ry (s,t) := 5(52H + 2 |t —s]2H) 5 5,6 €[0,T).

Let B be a fractional Brownian motion of Hurst parameter H €]0, 1[. Its reproducing kernel Hilbert space is
denoted by #, the Wiener integral with respect to B is denoted by B, and the isometry provided at Lemma
3.3 is denoted by Ij.

Definition A.2. Consider ¢ : Ry — R and o €]0,1] :
(1) If t
1
“(p)(t ::—/ t—5)* Lp(s)ds
(0= s [ €=t

exists for every t € Ry, 1%(yp) is the a-fractional integral of .
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D)) =3 TA—a) */ (t—s)"%p(s)ds if a€0,1]

=9 I'l—a)  dtJj,
ot) if a=1

exists for every t € Ry, D*(p) is the a-fractional derivative of .
(3) If they are both defined :

(%o D*)(p) = (D" 0 1%)(p) = ¢

On the fractional operators, see S. Samko et al. [25].

Notation. & is the set of functions from [0, 7] into R of the form

Zakl[o,sk] ;n €N (s1,...,8,) €[0,7T]", (a1,...,a,) € R™
k=1

Theorem A.3. Let K}, be the operator defined on € by :
V(s,t) € Ar, Ki(10,4)(s) = Ku(t,s)10,(s)

where,

(t—s)H-12_ /1 1 1 t
Kyt,s)=———F|(-—-HH--H+-,1—-|1
H( 75) P(H+1/2) 2 ) 27 + 27 s [07t[(5)
and F is the Gauss hyper-geometric function.

(1) Let Jy : L*([0,T]) — H' be the map defined by :

Vh e L2([0,T)), Jg (h) := / h(s) K (., 5)ds.
0

For every h € H,

J (h) _ 1o (90;11[1/2_1_[) © (‘PHh) Zf H < 1/2
V7 Po(erl™Y2) o (ogth) if H>1/2

where, op is the map defined by p(a) = aH_1/21a>0 for every a € R.

(2) The operator Kj; can be extended as an isometry from H into the closed subspace G := Kj(H) of
L*([0, T]).
(3) The process B := BH[(K};) " (1y,))] is a standard Brownian motion, and

t
vt € [0,T], BtH:/ Ky (t,s)dBs.
0

(4) The divergence operator 6g associated to B satisfies g = 01720 Kj;.

See [5], Theorem 2.1 and Corollary 3.1, and to [22], Proposition 5.2.2 for a proof.

Remark. At [5], Theorem 3.3, L. Decreusefond and S. Ustunel proved that :

H! = {JH(h);h e LQ([O,T])} .
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Corollary A.4. The isometry Iy satisfies Iy = Jg o Kj;. In particular,

o1 ) o (e DVE ) o (o D) if H < 1/2
" (K)o (paDH12) o (o' DY) if H>1/2

Proof. On one hand, by the isometry property of the Itd stochastic integral together with the third point of
Theorem A.3, for every s,t € [0, T],

sAt
/ Ky (t,u)Kg (s, u)du = E(BE BH).
0
So, by the definitions of B¥ and I :

sAt
| Kir(om Ko, udu =B [B" (10,0) 2]
0
Then, the construction of Iy at Lemma 3.3 implies that :

Tr(10,4) = (Ju o Kpp)(1po,4)-
That equality can be extended on H by a classical continuity argument.

On the other hand, since K}; : H — G and Iy : H — H' are two invertible maps, the restriction (Ju)ig =
Iy o (K3)~! is also invertible. Then, by the first point of Theorem A.3 :

I*l _ (KI*{)_l o (QO]_-[lDl/Q_H) ° (QOHDQH) if H < 1/2
& (K3) ™ o (puDH=2) 0 (o' DY) if H>1/2

Remark. By the fourth point of Theorem A.3 and Corollary A.4 :
(SHOII}1 = (51/20(‘][{)'@1.
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