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, in Itô's stochastic calculus framework, Aubin and Da Prato established a necessary and sufficient condition of invariance of a nonempty compact or convex subset C of R d (d ∈ N * ) for stochastic differential equations (SDE) driven by a Brownian motion. In Lyons rough paths framework, this paper deals with an extension of Aubin and Da Prato's results to rough differential equations. A comparison theorem is provided, and the special case of differential equations driven by a fractional Brownian motion is detailed.

Introduction

The invariance of a nonempty closed convex subset of R d (d ∈ N * ) for a (ordinary) differential equation was solved by Nagumo in [START_REF] Nagumo | Uber die Lage der Integralkurven Gewönlicher Differentialgleichungen[END_REF], see also [START_REF] Aubin | A Survey of Viability Theory[END_REF] for a simple proof. It was obtained by Aubin and Da Prato in [START_REF] Aubin | Stochastic Viability and Invariance[END_REF] for stochastic differential equations. More explicit results in the special case of polyhedrons have been established in Milian [START_REF] Milian | Stochastic Viability and a Comparison Theorem[END_REF]. In [START_REF] Cresson | Validating Stochastic Models : Invariance Criteria for Systems of Stochastic Differential Equations and the Selection of a Stochastic Hodgkin-Huxley Type Model[END_REF], Cresson, Puig and Sonner have introduced a stochastic generalization of the well-known Hodgkin-Huxley neuron model satisfying the assumptions of the stochastic viability theorem of Milian [START_REF] Milian | Stochastic Viability and a Comparison Theorem[END_REF]. On the viability and the invariance of sets for stochastic differential equations, see also Milian [START_REF] Milian | A Note on Stochastic Invariance for Itô Equations[END_REF], Gautier and Thibault [START_REF] Gautier | Viability for Constrained Stochastic Differential Equations[END_REF], and Michta [START_REF] Michta | A Note on Viability Under Distribution Constraints[END_REF].

In [START_REF] Aubin | The Viability Theorem for Stochastic Differential Inclusions[END_REF], the results of [START_REF] Aubin | Stochastic Viability and Invariance[END_REF] were extended by Aubin and Da Prato to the stochastic differential inclusions. The case of stochastic controlled differential equations was studied by Da Prato and Frankowska in [START_REF] Da Prato | Invariance of Stochastic Control Systems with Deterministic Arguements[END_REF] or more recently by Buckdahn, Quicampoix, Rainer and Teichmann in [START_REF] Buckdahn | Another Proof for the Equivalence Between Invariance of Closed Sets with Respect to Stochastic and Deterministic Systems[END_REF]. An unified approach which provides a viability theorem for stochastic differential equations, backward stochastic differential equations and partial differential equations is developed in Buckdahn et al. [START_REF] Buckdahn | Viability of Moving Sets for Stochastic Differential Equation[END_REF].

The invariance of a subset of R d for a stochastic differential equation driven by a α-Hölder continuous process with α ∈ (1/2, 1) has been already studied by several authors in the fractional calculus framework developed by Nualart and Rascanu in [START_REF] Nualart | Differential Equations Driven by Fractional Brownian Motion[END_REF]. In Ciotir and Rascanu [START_REF] Ciotir | Viability for Differential Equations driven by Fractional Brownian Motion[END_REF] and Nie and Rascanu [START_REF] Nie | Deterministic Characterization of Viability for Stochastic Differential Equation Driven by Fractional Brownian Motion[END_REF], the authors have proved a sufficient and necessary condition for the invariance of a closed subset of R d for a stochastic differential equation driven by a fractional Brownian motion of Hurst parameter H ∈ (1/2, 1). In [START_REF] Melnikov | Stochastic Viability and Comparison Theorems for Mixed Stochastic Differential Equations[END_REF], Melnikov, Mishura and Shevchenko have proved a sufficient condition for the invariance of a smooth and nonempty subset of R d for a stochastic differential equation driven by a mixed process containing both a Brownian motion and a α-Hölder continuous process with α ∈ (1/2, 1).

The rough paths theory introduced by T. Lyons in 1998 in the seminal paper [START_REF] Lyons | Differential Equations Driven by Rough Signals[END_REF] provides a natural and powerful framework to study differential equations driven by α-Hölder signals with α ∈ (0, 1]. The theory and its applications are widely studied by many authors. For instance, see the book of Friz and Victoir [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], the nice introduction of Friz and Hairer [START_REF] Friz | A Course on Rough Paths, With an Introduction to Regularity Structures[END_REF], or the approach of Gubinelli [START_REF] Gubinelli | Controling Rough Paths[END_REF].

The main purpose of this article is to extend the viability theorem of Aubin and Da Prato [START_REF] Aubin | Stochastic Viability and Invariance[END_REF] and to provide a comparison theorem for the rough differential equations. The paper deals also with an application of the viability theorem to stochastic differential equations driven by a fractional Brownian motion of Hurst parameter greater than 1/4.

Let T > 0 be arbitrarily chosen, and consider the differential equation At Section 2, some definitions and results on rough differential equations are stated in order to take Equation [START_REF] Arcones | On the Law of the Iterated Logarithm for Gaussian processes[END_REF] in that sense. Section 3 deals with a viability theorem for Equation [START_REF] Arcones | On the Law of the Iterated Logarithm for Gaussian processes[END_REF] taken in the sense of rough paths (see Friz and Victoir [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF]) and a convex or compact set. At Section 4, a comparison theorem for the rough differential equations is proved by using the viability results of Section 3. At Section 5, the viability theorem is applied to stochastic differential equations driven by a fractional Brownian motion of Hurst parameter greater than 1/4. Finally, Appendix A is a brief survey on convex analysis.

For the sake of readability, all results are proved on [0, T ], but they can be extended on R + via some usual localization arguments.

The results established in this paper could be applied in stochastic analysis itself, and in other sciences as neurology. On the one hand, in stochastic analysis, one could study the viability of rough differential inclusions as in Aubin and Da Prato [START_REF] Aubin | The Viability Theorem for Stochastic Differential Inclusions[END_REF] in Itô's calculus framework, or could also compare the viability condition for rough differential equations to the reflecting boundary conditions for Ito's stochastic differential equations (see Lions and Sznitman [START_REF] Lions | Stochastic Differential Equations with Reflecting Boundary Conditions[END_REF]). On the other hand, together with J.M. Guglielmi who is neurologist at the American Hospital of Paris, we are studying a fractional Hodgkin-Huxley neuron model, that extends the model of Cresson et al. [START_REF] Cresson | Validating Stochastic Models : Invariance Criteria for Systems of Stochastic Differential Equations and the Selection of a Stochastic Hodgkin-Huxley Type Model[END_REF], in order to model injured nerves membrane potential in some neuropathies.

The following notations are used throughout the paper.

Notations (general) :

• The Euclidean scalar product on R d is denoted by ., . , and the Euclidean norm on R d is denoted by . . The canonical basis of R d is denoted by (e k ) k∈ 1,d . For every x ∈ R d , its j-th coordinate with respect to (e k ) k∈ 1,d is denoted by x (j) for every j ∈ 1, d .

• For every x 0 ∈ R d and r ∈ R + , B d (x 0 , r) := {x ∈ R d : x -x 0
r}. • The interior, the closure and the frontier of a set S ⊂ R d are respectively denoted by int(S), S and ∂S.

• For every k ∈ 1, d , D k := {x ∈ R d : x (k) 0}.
• For a nonempty closed set S ⊂ R d , and every x ∈ R d , Π K (x) denotes the set of best approximations of x by the elements of K :

(2)

Π S (x) := x * ∈ S : x -x * = inf y∈S x -z . • The distance between x ∈ R m and a nonempty closed set S ⊂ R d is d S (x) := inf y∈S x -y .
• • The space of the continuous functions l from (0, t 0 ) into ]0, ∞[ with t 0 > 0, and such that lim

t→0 + t β l(t) = 0 ; ∀β > 0,
is denoted by S t0 . Notations (rough paths). See Friz and Victoir [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Chapters 5, 7, 8 and 9 :

•

∆ T := {(s, t) ∈ R 2 + : 0 s < t T }. • The space of the α-Hölder continuous functions from [0, T ] into R d is de- noted by C α-Höl ([0, T ], R d )
and equipped with the α-Hölder semi-norm . α-Höl,T :

x α-Höl,T := sup

(s,t)∈∆ T x t -x s |t -s| α ; ∀x ∈ C α-Höl ([0, T ], R d ). • The step-N signature of x ∈ C 1-Höl ([0, T ], R d ) with N ∈ N * is denoted by S N (x) : S N (x) t := 1, 0<u<t dx u , . . . , 0<u1<•••<u N <t dx u1 ⊗ • • • ⊗ dx u N ; ∀t ∈ [0, T ].
• The step-N free nilpotent group over R d is denoted by G N (R d ) :

G N (R d ) := {S N (γ) 1 ; γ ∈ C 1-Höl ([0, 1], R d )}.
• The space of the geometric α-rough paths from

[0, T ] into G [1/α] (R d ) is denoted by GΩ α,T (R d ) : GΩ α,T (R d ) := {S [1/α] (x) ; x ∈ C 1-Höl ([0, T ], R d )} d α-Höl,T
where, d α-Höl,T is the α-Hölder distance for the Carnot-Carathéodory metric.

Preliminaries

The purpose of this section is to provide the appropriate formulation of Equation (1) in the rough paths framework. At the end of the section, a convergence result for the Euler scheme associated to Equation ( 1) is stated, and a definition of invariant sets for rough differential equations is provided.

The definitions and propositions stated in the major part of this section come from Lyons and Qian [START_REF] Lyons | System Control and Rough Paths[END_REF], Friz and Victoir [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], or Friz and Hairer [START_REF] Friz | A Course on Rough Paths, With an Introduction to Regularity Structures[END_REF].

First, the signal w is α-Hölder continuous with α ∈ (0, 1]. In addition, w has to satisfy the following assumption.

Assumption 2.1. There exists w ∈ GΩ α,T (R e ) such that w (1) = w.

Let W : [0, T ] → R e+1 be the signal defined by :

W t := te 1 + e+1 k=2 w (k-1) t e k ; ∀t ∈ [0, T ].
By Friz and Victoir [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Theorem 9.26, there exists at least one W ∈ GΩ α,T (R e+1 ) such that W (1) = W .

Let us state the conditions the collection of vector fields of a rough differential equation has to satisfy in order to get at least the existence of solutions.

Notation. For every γ > 0, γ is the largest integer strictly smaller than γ. Definition 2.2. Consider γ > 0, l, m ∈ N * and a nonempty closed set V ⊂ R l . A map f : R l → M l,m (R) is γ-Lipschitz continuous (in the sense of Stein) from V into M l,m (R) if and only if :

(1) f | V ∈ C γ (V, M l,m (R)). (2) f, Df, . . . , D γ f are bounded on V . (3) D γ f is (γ -γ )-Hölder continuous from R l into L(V ⊗ γ , M l,m (R)) (i.e.
there exists C > 0 such that for every x, y ∈ V ,

D γ f (y) -D γ f (x) L(V ⊗ γ ,M l,m (R)) C y -x γ-γ ).
The set of all such maps is denoted by Lip γ (V, M l,m (R)).

The map f is locally γ-Lipschitz continuous from R l into M l,m (R), if for every nonempty compact set K ⊂ R l , f is γ-Lipschitz continuous from K into M l,m (R).
The set of all such maps is denoted by Lip γ loc (R l , M l,m (R)). In the sequel, b and σ satisfy the following assumption.

Assumption 2.3. There exists γ ∈ (1/α, [1/α] + 1) such that :

(1) b ∈ Lip γ-1 loc (R d ) and σ ∈ Lip γ-1 loc (R d , M d,e (R)). (2) b (resp. σ) is Lipschitz continuous from R d into itself (resp. M d,e (R)). (3) D [1/α] b (resp. D [1/α] σ) is (γ -[1/α])-Hölder continuous from R d into L((R d ) ⊗[1/α] , R d ) (resp. L((R d ) ⊗[1/α] , M d,e (R))).
Let f b,σ : R d → M d,e+1 (R) be the map defined by :

f b,σ (x) := d k=1 b (k) (x)e k,1 + e+1 l=2 d k=1 σ k,l (x)e k,l ; ∀x ∈ R d .
In the rough paths framework, dy = f b,σ (y)dW with y 0 ∈ R d as initial condition is the appropriate formulation of Equation (1). 

(W n ) n∈N of elements of C 1-Höl ([0, T ], R e+1 ) such that (3) lim n→∞ d α-Höl,T (S [1/α] (W n ), W) = 0 and (4) lim n→∞ y -y n ∞,T = 0
where, for every n ∈ N, y n is the solution on [0, T ] of the ordinary differential equation dy n = f b,σ (y n )dW n with y 0 as initial condition.

Moreover, if b and σ satisfy the following assumption, the solution of Equation ( 1) is unique and denoted by π f b,σ (0, y 0 , W).

Assumption 2.4. b ∈ Lip γ loc (R d ) and σ ∈ Lip γ loc (R d , M d,e (R)
). Let us now define the Euler scheme for Equation (1) and state a convergence result.

Let D := (t 0 , . . . , t n ) be a dissection of [0, T ] with n ∈ N * . The Euler scheme y n := ( y n t0 , . . . , y n tn ) for Equation (1) along the dissection D is defined by

y n t k := E Wt k-1 ,t k • • • • • E Wt 0 ,t 1 y 0 ; ∀k ∈ 1, n with E g x := x + E f b,σ (x, g) and E f b,σ (x, g) := [1/α] k=1 e+1 i1,...,i k =1 f b,σ,i1 . . . f b,σ,i k I(x)g (k),i1,...,i k for every g ∈ G [1/α] (R e+1 ) and x ∈ R d ,
and where I denotes the identity map from R d into itself.

Theorem 2.5. Let D := (t 0 , . . . , t n ) be a dissection of [0, t] with t ∈ [0, T ] and n ∈ N * . Under the Assumptions 2.3 and 2.4, there exists a constant C > 0 depending only on α, γ, f b,σ and W α-Höl,T such that

π f b,σ (0, y 0 ; W) t -y n t Ct|D| θ-1
where, θ := ( γ + 1)α > 1 and |D| is the mesh of D. [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Theorem 10.30.

See Friz and Victoir

Finally, let us state a definition of invariant sets for Equation (1).

Let S be a subset of R d .

Definition 2.6. A function

ϕ : [0, T ] → R d is viable in S if and only if, ϕ(t) ∈ S ; ∀t ∈ [0, T ].
The following definition provides a natural extension of the notion of invariant set in the rough paths theory setting. Definition 2.7. .

(1) The subset S is invariant for (σ, w) if and only if, for any initial condition y 0 ∈ S, every solution on [0, T ] of the rough differential equation dy = σ(y)dw is viable in S.

(2) The subset S is invariant for (b, σ, W) if and only if, for any initial condition y 0 ∈ S, every solution on [0, T ] of the rough differential equation dy = f b,σ (y)dW is viable in S.

An invariance theorem for rough differential equations

Consider a nonempty closed set K ⊂ R d . For every map ϕ :

R d → M d,m (R) with m ∈ N * , consider K ϕ := m k=1 {x ∈ R d : ∀x * ∈ Π K (x), ϕ .,k (x) ∈ T K (x * ) •• }, (5) 
and then

K b,±σ := K b ∩ K σ ∩ K -σ . (6) 
The invariance of K for (b, σ, W) is studied in this section under the two following assumptions on the maps b and σ, and the signal w. Assumption 3.1. K ⊂ K b,±σ . Assumption 3.2. There exists λ, µ ∈]0, ∞[, β ∈ (0, 2α ∧ 1), t 0 ∈ (0, T ], l ∈ S t0 and a countable set B e ⊂ ∂B e (0, 1) such that {±e k ; k ∈ 1, e } ⊂ B e , B e = ∂B e (0, 1) and

-µ = inf δ∈Be lim inf t→0 + δ, w t t β l(t) sup δ∈Be lim inf t→0 + δ, w t t β l(t) = -λ.
Consider also the following stronger assumption on the maps b and σ :

Assumption 3.3. K b,±σ = R d .
Now, let us state the main result of the paper ; the invariance theorem.

Theorem 3.4. Under the Assumptions 2.1 and 2.3 on b and σ :

(1)

Under Assumption 3.3, K is invariant for (b, σ, W). ( 2 
) When K is convex : (a) Under Assumption 3.1, K is invariant for (b, σ, W). (b) Under the Assumptions 2.4 and 3.2, if K is invariant for (b, σ, W), then Assumption 3.1 is fulfilled. (3) When K is compact and b ≡ 0, under Assumption 3.2, if K is invariant
for (σ, w), then Assumption 3.1 is fulfilled.

Remark 3.5. .

(1) By Remark A.3, for any map ϕ :

R d → M d,m (R) with m ∈ N * , int(K) ⊂ K ϕ . So, in particular, int(K) ⊂ K b,±σ . Therefore, Assumption 3.1 is satisfied if and only if ∂K ⊂ K b,±σ . (2) If K is convex, then K ϕ = m k=1 {x ∈ R d : ϕ .,k (x) ∈ T K (p K (x))}
for every ϕ : R d → M d,m (R) with m ∈ N * , and where p K (x) is the unique projection of x ∈ R d on K.

(3) As in Aubin and Da Prato [START_REF] Aubin | Stochastic Viability and Invariance[END_REF], when K is not convex, the sufficient condition involves all x ∈ R d , and not only all x ∈ K (see the statement of Theorem 1.5 and its remark page 601). (4) Assumption 3.1 for some usual convex subsets of R d :

• When K is a vector subspace of R d , Assumption 3.1 means that b(K) ⊂ K and σ .,k (K) ⊂ K ; ∀k ∈ 1, e .
• When K is the unit ball of R d , Assumption 3.1 means that for every

x ∈ R d such that x = 1,
x, b(x) 0 and σ .,k (x), x = 0 ; ∀k ∈ 1, e .

• Consider the polyhedron

K = i∈I {x ∈ R d : s i , x -a i 0}
where, I ⊂ N is a nonempty finite set, and (a i ) i∈I and (s i ) i∈I are two families of elements of R d such that s i = 0 for every i ∈ I. Here, Assumption 3.1 means that for every x ∈ K and i ∈ I such that s i , x -a i = 0,

s i , b(x) 0 and s i , σ .,k (x) = 0 ; ∀k ∈ 1, e .
These conditions on b and σ are quite natural, and the same as in Milian [START_REF] Milian | Stochastic Viability and a Comparison Theorem[END_REF] or Cresson et al. [START_REF] Cresson | Validating Stochastic Models : Invariance Criteria for Systems of Stochastic Differential Equations and the Selection of a Stochastic Hodgkin-Huxley Type Model[END_REF], where the driving signal of the main equation is a Brownian motion. (5) Assumption 3.2 is close to the notion of "signal rough at time 0" stated at [START_REF] Friz | A Course on Rough Paths, With an Introduction to Regularity Structures[END_REF], Chapter 6. As in Aubin and Da Prato [START_REF] Aubin | Stochastic Viability and Invariance[END_REF], the proof deeply relies on the fact that t ∈ [0, T ] → d 2 K (y t ) has a nonpositive epiderivative (see J.P. Aubin et al. [START_REF] Aubin | Viability Theory : New Directions[END_REF], Section 18.6.2), where y is the solution of dy = f b,σ (y)dW with α = 1 and y 0 ∈ K as initial condition (see Lemma 3.6). Finally, when K is convex and compact, Corollary 3.7 allows to relax the regularity assumptions on b and σ. Lemma 3.6. Let K be nonempty closed subset of R d . Under the Assumptions 2.3 and 3.3 with α = 1, the solution y on [0, T ] of the ordinary differential equation dy = f b,σ (y)dW with y 0 ∈ K as initial condition is viable in K.

Proof. In order to show that y is viable in K in a second step, as in Aubin and Da Prato [START_REF] Aubin | Stochastic Viability and Invariance[END_REF], the following inequality is proved in a first step : [START_REF] Buckdahn | Viability of Moving Sets for Stochastic Differential Equation[END_REF] lim inf

h→0 + d 2 K (y t+h ) -d 2 K (y t ) h 0.
Step 1. For t ∈ [0, T ] and h > 0,

(8) y t+h -y t = b(y t )h + σ(y t )(w t+h -w t ) + R t,h with R t,h := t+h t [b(y s ) -b(y t )]ds + t+h t [σ(y s ) -σ(y t )]dw s . Since y (resp. b) is Lipschitz continuous from [0, T ] (resp. R d ) into R d , there exists C 1 > 0 such that t+h t [b(y s ) -b(y t )]ds C 1 h 2 .
The function w is Lipschitz continuous from [0, T ] into R e , so there exists ẇ ∈ L ∞ ([0, T ], R e ) such that :

w s = w 0 + s 0 ẇu du ; ∀s ∈ [0, T ].
Then,

t+h t [σ(y s ) -σ(y t )]dw s = t+h t [σ(y s ) -σ(y t )] ẇs ds ẇ ∞,T t+h t σ(y s ) -σ(y t ) M d,e (R) ds. Since y (resp. σ) is Lipschitz continuous from [0, T ] (resp. R d ) into R d (resp. M d,e (R)), there exists C 2 > 0 such that : t+h t σ(y s ) -σ(y t ) M d,e (R) ds C 2 h 2 .
Therefore,

(9) R t,h C 3 h 2 with C 3 := C 1 + C 2 ẇ ∞,T .
For y * t ∈ Π K (y t ) and y * t+h ∈ Π K (y t+h ) arbitrarily chosen : 

d 2 K (y t+h ) = y t+h -y * t+h 2 y t+h -y * t 2 = y t+h -y t 2 +
y t+h -y t , y t -y * t C 3 h 2 .
Therefore, by Inequality (10) :

d 2 K (y t+h ) -d 2 K (y t ) C 5 h 2 with C 5 := 2C 3 + C 4 .
This achieves the first step.

Step 2. Consider the function ϕ : [0, T ] → R + defined by :

ϕ(t) := d 2 K (y t ) ; ∀t ∈ [0, T ].
Assume that there exists τ ∈ (0, T ] such that ϕ(τ ) > 0. Since ϕ is continuous on [0, T ], the set {t ∈ [0, τ ) : ∀s ∈ (t, τ ], ϕ(s) > 0} is not empty, and its infimum is denoted by t * . Moreover, if ϕ(t * ) > 0, then there exists t * * ∈ [0, t * ) such that ϕ(t) > 0 for every t ∈ (t * * , t * ]. So, necessarily, ϕ(t * ) = 0.

By Inequality [START_REF] Buckdahn | Viability of Moving Sets for Stochastic Differential Equation[END_REF], for every t ∈ [t * , τ ],

D ↑ ϕ(t)(1) := lim inf h→0 + ,u→1 ϕ(t + hu) -ϕ(t) h 0.
So, by Aubin [START_REF] Aubin | A Survey of Viability Theory[END_REF] :

0 < ϕ(τ ) = ϕ(τ ) -ϕ(t * ) 0. There is a contradiction, then ϕ is nonpositive on [0, T ]. Since ϕ([0, T ]) ⊂ R + , necessarily : ϕ(t) = d 2 K (y t ) = 0 ; ∀t ∈ [0, T ].
In other words, y is viable in K. 1) is proved at the first step, and Theorem 3.4.(2a) is proved at the second step.

Via

Step 1. Assume that α ∈ (0, 1] and K b,±σ = R d . Since K is a closed subset of R d , every solution on [0, T ] of the rough differential equation dy = f b,σ (y)dW with y 0 ∈ K as initial condition is viable in K by Lemma 3.6 together with Equality (4).

Step 2. Assume that α = 1, K is convex and K ⊂ K b,±σ (see [START_REF] Aubin | The Viability Theorem for Stochastic Differential Inclusions[END_REF] for a definition). Let y be the solution on [0, T ] of the ordinary differential equation dy = f b,σ (y)dW with y 0 ∈ K as initial condition. Consider the maps B := b • p K , S := σ • p K and F : R d → M d,e+1 (R) such that :

F (x) := d k=1 B (k) (x)e k,1 + e+1 l=2 d k=1 S k,l (x)e k,l ; ∀x ∈ R d . Since f b,σ (resp. p K ) is Lipschitz continuous from R d into M d,e+1 (R) (resp. K), F is Lipschitz continuous from R d into M d,e+1 (R). So, the ordinary differential equation dY = F (Y )dW with y 0 ∈ K as initial condition has a unique solution Y on [0, T ]. Since K B,±S = R d , Y is viable in K by Lemma 3.6.
Therefore, the solution y of the ordinary differential equation dy = f b,σ (y)dW with y 0 as initial condition coincides with Y on [0, T ] because f b,σ coincides with F on K. In particular, y is viable in K.

Assume now that α ∈ (0, 1]. Since K is a closed subset of R d , every solution on [0, T ] of the rough differential equation dy = f b,σ (y)dW with y 0 ∈ K as initial condition is viable in K by Equality (4). 

y t ∈ K ; ∀t ∈ [0, τ [. So, y is bounded on [0, τ [ by at least one continuous function from [0, T ] into R d because K is a bounded subset of R d .
Therefore, by Friz and Victoir [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Theorem 10.21, y is defined on [0, T ], and by Theorem 3.4.(2), it is viable in K.

3.2.

Necessary condition of invariance : compact case. When K is compact and b ≡ 0, the purpose of this subsection is to prove that under Assumption 3.2, if K is invariant for (σ, w), then Assumption 3.1 is fulfilled (Theorem 3.4.(3)). 

(k) t t β l(t) < ∞.
Proof. By Assumption 3.2 :

min k∈ 1,e lim inf t→0 + w (k) t t β l(t) = min k∈ 1,e lim inf t→0 + e k , w t t β l(t) inf δ∈Be lim inf t→0 + δ, w t t β l(t) = -µ.
Moreover, the function

t ∈ (0, T 0 ] -→ w (k) t
t β l(t) is continuous. So, there exists r > 0 such that :

min k∈ 1,e inf t∈[0,T0] w (k) t t β l(t) -rµ.
Similarly, there exists R > 0 such that :

max k∈ 1,e sup t∈[0,T0] w (k) t t β l(t) Rµ.
This achieves the proof.

Proposition 3.9. Under Assumption 3.2 :

-µ = inf δ∈∂Be(0,1) lim inf t→0 + δ, w t t β l(t) sup δ∈∂Be(0,1) lim inf t→0 + δ, w t t β l(t) = -λ.
Proof. Let δ ∈ ∂B e (0, 1) be arbitrarily chosen. Since B e = ∂B e (0, 1), there exists a sequence (δ n ) n∈N of elements of B e such that :

lim n→∞ δ -δ n = 0.
By Lemma 3.8 :

M := max k∈ 1,e sup t∈[0,T0] w (k) t t β l(t) < ∞.
For every n ∈ N and t ∈ (0, T 0 ],

δ, w t t β l(t) = δ -δ n , w t t β l(t) + δ n , w t t β l(t) δ -δ n • w t t β l(t) + δ n , w t t β l(t) δ -δ n M + δ n , w t t β l(t) .
So, for every n ∈ N, by Assumption 3.2 :

lim inf t→0 + δ, w t t β l(t) δ -δ n M + lim inf t→0 + δ n , w t t β l(t) δ -δ n M -λ ----→ n→∞ -λ.
Since the right hand side of the previous inequality is not depending on δ :

sup δ∈∂Be(0,1) lim inf t→0 + δ, w t t β l(t) -λ.
Moreover, by Assumption 3.2 and since B e ⊂ ∂B(0, 1) :

-λ = sup δ∈Be lim inf t→0 + δ, w t t β l(t) sup δ∈∂Be(0,1) lim inf t→0 + δ, w t t β l(t) .
Therefore, sup δ∈∂Be(0,1)

lim inf t→0 + δ, w t t β l(t) = -λ.
Similarly, inf δ∈∂Be(0,1)

lim inf t→0 + δ, w t t β l(t) = -µ.
Proof. Theorem 3.4.(3). Let y be a solution of the rough differential equation dy = σ(y)dw with y 0 ∈ K as initial condition, and assume that y is viable in K.

Consider s ∈ T K (y 0 ) • and ε > 0. Since K is a nonempty compact subset of R d , by Proposition A.5, there exists δ ε > 0 such that for every x ∈ K ∩ B d (y 0 , δ ε ),

x -y 0 , s ε x -y 0 .

Since y is continuous, there exists

t ε ∈ [0, T ] such that y([0, t ε ]) ⊂ B d (y 0 , δ ε ). So, for every t ∈ [0, t ε ], y t -y 0 , s ε y t -y 0 . Then, lim sup t→0 + y t -y 0 , s t β l(t) ε lim sup t→0 + y t -y 0 t β l(t) .
For every t ∈ [0, T ], by Theorem 2.5 applied with the dissection (0, t) of [0, t], there exists a constant C > 0, depending on T but not on t, such that : where, u : T K (y 0 ) • → R e is the map defined by u(s) := -σ(y 0 ) τ s ; ∀s ∈ T K (y 0 ) • , and σ(y 0 ) τ is the transpose of the matrix σ(y 0 ).

y t -y 0 -σ(y 0 )w t Ct|(0, t)| ( γ +1)α-1 CT ( γ -1)
Assume that there exists s ∈ T K (y 0 ) • such that u(s) = 0, and put

v(s) := u(s) u(s)
∈ ∂B e (0, 1).

By Inequality [START_REF] Coutin | Stochastic Analysis, Rough Path Analysis and Fractional Brownian Motions[END_REF] :

lim inf t→0 + v(s), w t t β l(t) 0.
There is a contradiction with Assumption 3.2 by Proposition 3.9. So, necessarily :

u(s) = 0 ; ∀s ∈ T K (y 0 ) • .
Therefore, since (e k ) k∈ 1,e is a basis of R e : σ .,k (y 0 ), s = 0 ; ∀k ∈ 1, e .

In particular, ±σ .,k (y 0 ) ∈ T K (y 0 ) •• for every k ∈ 1, e . This achieves the proof because y 0 ∈ K has been arbitrarily chosen. 

D ν = {x ∈ R d : x (ν) 0} is invariant for (b, σ, W), then b (ν) (x -x (ν) e ν ) 0 and σ ν,. (x -x (ν) e ν ) = 0 for every x ∈ R d .
Proof. Let y : [0, T ] → R d be the map defined by :

y t := E W0,t y 0 ; ∀t ∈ [0, T ].
For every t ∈ [0, T ], (y 0 , y t ) coincides with the Euler scheme for the rough differential equation dy = f b,σ (y)dW with y 0 ∈ R d as initial condition along the dissection

D t := (0, t) of [0, t].
In a first step, it is proved that if there exists y 0 ∈ D ν such that ( 12)

lim inf t→0 + y (ν) t t β l(t) < 0,
then D ν is not invariant for (b, σ, W). In a second step, it is proved that if there exists y 0 ∈ ∂D ν such that σ ν,. (y 0 ) = 0 or b (ν) (y 0 ) < 0, then y satisfies Inequality [START_REF] Da Prato | Invariance of Stochastic Control Systems with Deterministic Arguements[END_REF].

Step 1. Assume that there exists y 0 ∈ D ν such that :

lim inf t→0 + y (ν) t t β l(t) < 0.
For every t ∈ [0, T ], by Theorem 2.5 applied with the dissection (0, t) of [0, t], there exists a constant C 1 > 0, depending on T but not on t, such that

π f b,σ (0, y 0 ; W) t -y t C 1 t|D t | θ-1 = C 1 t θ with θ := ( γ + 1)α > 1. So, π (ν) f b,σ (0, y 0 ; W) t t β l(t) C 1 t θ-β l(t) + y (ν) t t β l(t) ; ∀t ∈ (0, T 0 ].
Moreover, since θ > 1 > β and l ∈ S t0 :

lim inf t→0 + C 1 t θ-β l(t) + y (ν) t t β l(t) = lim inf t→0 + y (ν) t t β l(t) .
Therefore, by Inequality ( 12) :

lim inf t→0 + π (ν) f b,σ (0, y 0 ; W) t t β l(t) < 0.
In conclusion, there exists t 1 ∈ [0, T 0 ] such that :

π (ν) f b,σ (0, y 0 ; W) t1 < 0.
The path π (ν)

f b,σ (0, y 0 ; W) is not viable in D ν .
Step 2. Let us show that if there exists y 0 ∈ ∂D ν such that σ ν,. (y 0 ) = 0 or b (ν) (y 0 ) < 0, then y satisfies Inequality [START_REF] Da Prato | Invariance of Stochastic Control Systems with Deterministic Arguements[END_REF].

Case 1. Assume that there exists y 0 ∈ ∂D ν such that σ ν,. (y 0 ) = 0. By Lemma 3.8 :

M := max k∈ 1,e sup t∈[0,T0] w (k) t t β l(t) < ∞.
On the one hand, since σ ν,. (y 0 ) -1 σ ν,. (y 0 ) ∈ ∂B e (0, 1) and B e = ∂B e (0, 1), there exists a sequence (u n ) n∈N of elements of B e such that :

lim n→∞ u n - σ ν,. (y 0 ) σ ν,. (y 0 ) = 0.
So, there exists n 0 ∈ N such that for every n

∈ N ∩ [n 0 , ∞[, σ ν,. (y 0 ) -v n λ 4eM σ ν,. (y 0 )
and v n := σ ν,. (y 0 ) u n where, λ is defined in Assumption 3.2. Then, for every

n ∈ N ∩ [n 0 , ∞[, sup t∈[0,T0] 1 t β l(t) | σ ν,. (y 0 ) -v n , w t | eM σ ν,. (y 0 ) -v n λ 4 σ ν,. (y 0 ) . ( 13 
)
On the other hand, by the definition of the Euler scheme for Equation ( 1), there exists C 2 > 0 such that :

|E (ν) f b,σ (y 0 , W 0,t ) -σ ν,. (y 0 ), w t | C 2 (t 2α ∨ t) ; ∀t ∈ [0, T ].
Since l ∈ S t0 and β ∈ (0, 2α ∧ 1) :

lim t→0 + 1 t β l(t) |E (ν) f b,σ (y 0 , W 0,t ) -σ ν,. (y 0 ), w t | ≤ C 2 lim t→0 + t 2α-β l(t) = 0. ( 14 
)
For every n ∈ N ∩ [n 0 , ∞[, by Assumption 3.2, Inequality [START_REF] Friz | A Course on Rough Paths, With an Introduction to Regularity Structures[END_REF] and Equality [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF] together :

lim inf t→0 + y (ν) t t β l(t) = lim inf t→0 + σ ν,. (y 0 ), w t t β l(t) sup t∈[0,T0] 1 t β l(t) | σ ν,. (y 0 ) -v n , w t | + lim inf t→0 + v n , w t t β l(t) λ 4 σ ν,. (y 0 ) -λ σ ν,. (y 0 ) = - 3λ 4 σ ν,. (y 0 ) . So, lim inf t→0 + y (ν) t t β l(t) < 0.
By the first step of the proof, it means that D ν is not invariant for (b, σ, W). In other words, if K is invariant for (b, σ, W), then

σ ν,. (x) = 0 ; ∀x ∈ ∂D ν . (15) 
Case 2. Assume that D ν is invariant for (b, σ, W) and there exists y 0 ∈ ∂D ν such that b (ν) (y 0 ) < 0. By the first case, since D ν is invariant for (b, σ, W), Equation ( 15) is true.

Let t ∈ [0, T ] be arbitrarily chosen.

• If α ∈ (1/2, 1), then y (ν) t = b (ν) (y 0 )t + σ ν,. (y 0 ), w t = b (ν) (y 0 )t. • If α ∈ (0, 1/2], then y (ν) t = b (ν) (y 0 )t + σ ν,. (y 0 ), w t + [1/α] k=2 e i1,...,i k =1 [σ i1 . . . σ i k I(y 0 )] (ν) w (k),i1,...,i k .
Consider k ∈ 2, [1/α] and i 1 , . . . , i k ∈ 1, e . There exists a real family

(ρ i2,...,i k-1 ,l1,...,l k-1 (y 0 )) (l1,...,l k-1 )∈ 1,d k-1 such that : [σ i1 . . . σ i k I(y 0 )] (ν) = d l1,...,l k-1 =1 σ l1,i1 (y 0 )∂ k-1 l1,...,l k-1 σ ν,i k (y 0 )ρ i2,...,i k-1 ,l1,...,l k-1 (y 0 ).
Consider the set

I k-1 := {(l 1 , . . . , l k-1 ) ∈ 1, d k-1 : ∃κ ∈ 1, k -1 , l κ = ν}.
By [START_REF] Gautier | Viability for Constrained Stochastic Differential Equations[END_REF] together with Schwarz's lemma :

∂ k-1 l1,...,l k-1 σ ν,. (x) = 0 ; ∀x ∈ ∂D ν , ∀(l 1 , . . . , l k-1 ) ∈ I k-1 . Then, [σi 1 . . . σi k I(y0)] (ν) = σν,i 1 (y0)∂ k-1 ν,...,ν σν,i k (y0)ρi 2 ,...,i k-1 ,ν,...,ν (y0) + l 1 ,...,l k-1 ∈I k-1 σ l 1 ,i 1 (y0)∂ k-1 l 1 ,...,l k-1 σν,i k (y0)ρ i 2 ,...,i k-1 ,l 1 ,...,l k-1 (y0) = 0.

So, y

= b (ν) (y 0 )t. Since l ∈ S t0 and 1 > β, there exists t 2 ∈ (0, T 0 ] such that :

0 < t 1-β l(t) < 1 ; ∀t ∈ (0, t 2 ].
Therefore,

lim inf t→0 + y (ν) t t β l(t) lim inf t→0 + y (ν) t t b (ν) (y 0 ) < 0.
This achieves the proof because there is a contradiction by the first step of the proof.

Via Lemma 3.10, let us prove that Assumption 3.1 is necessary to get the invariance of K for (b, σ, W).

Proof. Theorem 3.4.(2b). In a first step, it is proved that if the half-space

H a,s := {x ∈ R d : s, x -a 0} with a ∈ R d and s ∈ R d \{0} is invariant for (b, σ, W), then b(x), s 0 
and σ .,k (x), s = 0 ; ∀k ∈ 1, e for every x ∈ ∂H a,s . In a second step, this result is used to show that if K is invariant for (b, σ, W), then K ⊂ K b,±σ .

Step 1. Let y 0 ∈ H a,s be arbitrarily chosen. Since s ∈ R d \{0}, there exists ν ∈ 1, d such that s (ν) = 0. Consider the map U : R d → R d defined by :

U (x) := -(x -a) + (x (ν) -a (ν) -x -a, s )e ν ; ∀x ∈ R d .
The map U is one to one from R d into itself, and

U -1 (x) = -x + a - 1 s (ν) (x (ν) -x, s )e ν ; ∀x ∈ R d . Moreover, U | Ha,s (resp. U | ∂Ha,s ) is one to one from H a,s (resp. ∂H a,s ) into D ν (resp. ∂D ν ) where, D ν is defined in Lemma 3.10. For every x, h ∈ R d , DU (x).h = -h + (h (ν) -h, s )e ν = M U h with M U := -I + e ν,ν - d k=1 s (k) e ν,k .
Consider the maps B : R d → R d and S : R d → M d,e (R) defined by 

B(x) := M U b(U -1 (x)) = (e ν,ν -I)b(U -1 (x)) -b(U -1 (x)), s e ν and S(x) := M U σ(U -1 (x)) = (e ν,ν -I)σ(U -1 (x)) -
U -1 (z t ) = y 0 + t 0 M -1 U dz s = y 0 + t 0 f b,σ (U -1 (z s ))dW s .
Therefore, since d y = f b,σ (y)dW has a unique solution, [START_REF] Gubinelli | Controling Rough Paths[END_REF] π F (0, .; W) = U (π f b,σ (0, U -1 (.); W)).

Assume that H a,s is invariant for (b, σ, W). Since U | Ha,s is one to one from H a,s into D ν , by Equality ( 16), D ν is invariant for (B, S, W). So, by Lemma 3.10 : = -S ν,k (U (x)) = 0.

B (ν) (x -x (ν)
Step 2. Assume that there exists y 0 ∈ ∂K such that y 0 ∈ K b,±σ . Then, there exists s ∈ N K (y 0 ) such that : [START_REF] Hiriart-Urrut | Fundamentals of Convex Analysis[END_REF] b(y 0 ), s > 0 or (∃k ∈ 1, e : σ .,k (y 0 ), s = 0).

Consider the half-space

H y0,s := {x ∈ R d : s, x -y 0 0}.
By the first step of the proof, [START_REF] Hiriart-Urrut | Fundamentals of Convex Analysis[END_REF] implies that there exists t ∈ [0, T ] such that π f b,σ (0, y 0 ; W) t ∈ H y0,s . Moreover, since y 0 ∈ ∂K and s ∈ N K (y 0 ), K ⊂ H y0,s . Therefore, π f b,σ (0, y 0 ; W) t ∈ K. This achieves the proof by contraposition.

A comparison theorem for rough differential equations

In this section, a comparison theorem for rough differential equations is proved by using the viability theorem of Section 3.

Consider a nonempty set I ⊂ 1, d , and

K := {(x 1 , x 2 ) ∈ (R d ) 2 : ∀i ∈ I, x (i) 1 x (i) 2 }.
The following comparison theorem is a consequence of Theorem 3.4. Under the Assumptions 2.1 and 3.2, the two following conditions are equivalent :

(1) For every (y 1 0 , y 2 0 ) ∈ K, i ∈ I and t ∈ [0, T ], (y 1 t ) (i) (y 2 t ) (i) where y j is the solution of the rough differential equation dy j = f j (y j )dW with y j 0 as initial condition for j ∈ {1, 2}.

(2) For every (x 1 , x 2 ) ∈ K and i ∈ I, if x

(i) 1 = x (i) 2 , then b (i) 1 (x 1 ) b (i) 2 (x 2 ) and σ 1 i,k (x 1 ) = σ 2 i,k (x 2 ) ; ∀k ∈ 1, e . Proof. The set K is (isomorphe to) a nonempty closed convex polyhedron of R 2d . Indeed, K ∼ = i∈I {x ∈ R 2d : s i , x 0} 
with s i := e i -e d+i for every i ∈ I. Let F : R 2d → M 2d,e+1 (R) be the map defined by :

F (x 1 , x 2 ) := e+1 l=1 d k=1 [f 1 k,l (x 1 )e k,l + f 2 k,l (x 2 )e d+k,l ] ; ∀(x 1 , x 2 ) ∈ (R d ) 2 .
Since b j and σ j satisfy Assumption 2.3 for j ∈ {1, 2}, B := F .,1 and S := (F .,k ) k∈ 2,e+1 also.

The first condition is equivalent to the invariance of K for (B, S, W), and the second condition means that K ⊂ K B,±S (see Milian [START_REF] Milian | Stochastic Viability and a Comparison Theorem[END_REF], Theorem 2 (proof)). Therefore, these conditions are equivalent by Theorem 3.4.

Invariance for differential equations driven by a fractional Brownian motion

At Subsection 4.1, it is shown that the fractional Brownian motion satisfies assumptions 2.1 and 3.2. Subsection 4.2 deals with the viability of the solutions of a multidimensional logistic equation driven by a fractional Brownian motion of Hurst parameter belonging to (1/4, 1).

Fractional Brownian motion.

In this subsection, it is proved that the fractional Brownian motion satisfies assumptions 2.1 and 3.2. So, the viability theorem proved at Section 3 (Theorem 3.4) can be applied to differential equations driven by a fractional Brownian motion. In particular, it extends the results of Aubin and Da Prato [START_REF] Aubin | Stochastic Viability and Invariance[END_REF].

First of all, let us remind the definition of the fractional Brownian motion. Definition 5.1. Let (B t ) t∈[0,T ] be an e-dimensional centered Gaussian process. It is a fractional Brownian motion of Hurst parameter H ∈ (0, 1) if and only if,

cov(B (i) s , B (j) 
t ) = 1 2 (|t| 2H + |s| 2H -|t -s| 2H )δ i,j
for every (i, j) ∈ 1, e 2 and (s, t) ∈ [0, T ] 2 .

About the fractional Brownian motion, the reader can refer to Nualart [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF], Chapter 5.

Let B := (B t ) t∈[0,T ] be an e-dimensional fractional Brownian motion of Hurst parameter H ∈ (1/4, 1). The associated canonical probability space is denoted by (Ω, A, P).

By Garcia-Rodemich-Rumsey's lemma (see Nualart [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF], Lemma A. Proof. By the law of the iterated logarithm for the 1-dimensional fractional Brownian motion (see Arcones [START_REF] Arcones | On the Law of the Iterated Logarithm for Gaussian processes[END_REF] and Viitasaari [START_REF] Viitasaari | Integration in a Normal World: Fractional Brownian Motion and Beyond[END_REF], Remark 2.3.3) :

P lim inf t→0 + B (1) t t β l(t) = -1 = 1.
Consider x ∈ ∂B e (0, 1). Since ( x, B t ) t∈[0,T ] d = B (1) :

P lim inf t→0 + x, B t t β l(t) = -1 = 1.
Therefore, since B e is a countable subset of ∂B e (0, 1) :

P x∈Be lim inf t→0 + x, B t t β l(t) = -1 = 1.
This achieves the proof.

By Friz and Victoir [START_REF] Friz | Multidimensional Stochastic Processes as Rough Paths : Theory and Applications[END_REF], Proposition 15.5 and Theorem 15.33, there exists an enhanced Gaussian process B : (Ω, A) → GΩ α,T (R e ) such that B (1) = B. So, the signal B satisfies assumptions 2.1 and 3.2.

Let W := (W t ) t∈[0,T ] be the stochastic process defined by : (1) Under Assumption 3.3, K is invariant for (b, σ, W).

W t := te 1 + e k=1 B ( 
( x (i) (1 -x (i) )e i,i ; ∀x ∈ R d .

) When K is compact and b ≡ 0, if K is invariant for (σ, B), then Assump- tion 3.1 is fulfilled. (3) When K is convex, it is invariant for (b, σ, W) if 2 

Appendix A. Tangent and normal cones

This Appendix is a brief survey on convex analysis.

The definitions and propositions stated in this subsection come from Hiriart-Urrut and Lemaréchal [START_REF] Hiriart-Urrut | Fundamentals of Convex Analysis[END_REF], Chapter A, and Aubin et al. [START_REF] Aubin | Viability Theory : New Directions[END_REF], Chapter 18.

First, let us define the polar and bipolar sets of a closed cone.

Definition A.1. .

(1) The polar set of a closed cone K ⊂ R d is the closed cone

K • = {s ∈ R d : ∀δ ∈ K, s, δ 0}.
(2) The bipolar set of K is the closed cone K •• := (K • ) • .

Let us now define the tangent and normal cones to a nonempty closed set S ⊂ R d at x ∈ S.

Definition A.2. .

(1) A vector δ ∈ R d is tangent to S at x if and only if there exists a sequence (x n ) n∈N of elements of S, and a real sequence (t n ) n∈N such that when n → ∞,

x n -x → 0, t n ↓ 0 and x n -x t n -δ → 0.

The set of the tangent vectors to S at x is a closed cone of R d , called the tangent cone to S at x, and denoted by T S (x). (2) A vector s ∈ R d is normal to S at x if and only if, s, δ 0 ; ∀δ ∈ T S (x).

The set of the normal vectors to S at x is the normal cone to S at x, denoted by N S (x). The two last propositions provide some properties of the tangent and normal cones when S is a nonempty closed convex set.

Proposition A.6. The tangent cone T S (x) is a closed convex cone such that S ⊂ {x} + T S (x).

Proposition A.7. A vector s ∈ R d is normal to S at x if and only if, s, y -x 0 ; ∀y ∈ S.

  s )dw s ; t ∈ [0, T ] where, y 0 ∈ R d , b (resp. σ) is a continuous map from R d into itself (resp. M d,e (R)), and w : [0, T ] → R e is a α-Hölder continuous signal with e ∈ N * and α ∈ (0, 1].

  The space of the matrices of size d × e is denoted by M d,e (R). The (euclidean) matrix norm on M d,e (R) is denoted by . M d,e (R) . If d = e, then M d (R) := M d,e (R). The canonical basis of M d,e (R) is denoted by (e k,l ) (k,l)∈ 1,d × 1,e . • Let E and F be two vector spaces. The space of the linear maps from E into F is denoted by L(E, F ). If E = F , then L(E) := L(E, F ). • The space of the continuous functions from [0, T ] into R d is denoted by C 0 ([0, T ], R d ) and equipped with the uniform norm . ∞,T .

( 6 )

 6 Almost all the paths of the e-dimensional fractional Brownian motion satisfy Assumption 3.2 (see Proposition 5.2).At Subsection 3.1, the invariance of K for (b, σ, W) is proved under Assumption 3.3, and under Assumption 3.1 when K is convex. At Subsection 3.2, when K is compact and b ≡ 0, under Assumption 3.2, the necessity of Assumption 3.1 to get the invariance of K for (σ, w) is proved. At Subsection 3.3, when K is convex, under the Assumptions 2.4 and 3.2, the necessity of Assumption 3.1 to get the invariance of K for (b, σ, W) is proved. 3.1. Sufficient condition of invariance. The main purpose of this subsection is to prove the invariance of K for (b, σ, W) under Assumption 3.3, and under Assumption 3.1 when K is convex (Theorem 3.4.(1,2.a)).

  Lemma 3.6, let us prove Theorem 3.4.(1,2). Proof. Theorem 3.4.(1,2a). Theorem 3.4.(

Corollary 3 . 7 .

 37 Under the Assumptions 2.1 and 3.1, if K is a nonempty convex and compact subset of R d , b ∈ Lip γ-1 loc (R d ) and σ ∈ Lip γ-1 loc (R d , M d,e (R)) with γ > 1/α, then all the solutions of the rough differential equation dy = f b,σ (y)dW with y 0 ∈ K as initial condition are defined on [0, T ] and viable in K. Proof. Since f b,σ is locally (γ -1)-Lipschitz continuous from R d into M d,e+1 (R), there exists τ ∈ (0, T ] such that the rough differential equation dy = f b,σ (y)dW with y 0 ∈ K as initial condition has at least one solution y on [0, τ ). Since b and σ satisfy Assumption 3.1, by Theorem 3.4.(2) applied to (b, σ, W) on [0, τ [ :

Lemma 3 . 8 .

 38 Under Assumption 3.2, for T 0 := t 0 ∧ T , M := max k∈ 1,e sup t∈[0,T0]

  w

F

  k (U -1 (x)), s e ν,k for every x ∈ R d . Let F : R d → M d,e+1 (R) be the map defined by : l (x)e k,l ; ∀x ∈ R d . Since U -1 ∈ L(R d ) and b and σ satisfy assumptions 2.3 and 2.4, B and S also. So, by Friz and Victoir [14], Theorem 10.26, Exercice 10.55 and Exercice 10.56, the rough differential equation dz = F (z)dW with U (y 0 ) as initial condition has a unique solution z on [0, T ]. By the (rough) change of variable formula, for every t ∈ [0, T ],

  e ν ) 0 and S ν,. (x -x (ν) e ν ) = 0 for every x ∈ R d . Let k ∈ 1, e and x ∈ ∂H a,s be arbitrarily chosen. Since U | ∂Ha,s is one to one from ∂H a,s into ∂D ν , U (x) ∈ ∂D ν . Therefore, by construction of B and S : b(x), s = -B (ν) (U (x)) 0 and σ .,k (x), s = -d j=1 σ j,k (x)s (j)

Proposition 4 . 1 .

 41 For j ∈ {1, 2}, consider b j : R d → R d and σ j : R d → M d,e (R) satisfying assumptions 2.3 and 2.4, and the map f j : R d → M d,e+1 (R) defined by : f j (x) := (x)e k,l ; ∀x ∈ R d .

  k) t e k+1 ; ∀t ∈ [0, T ]. By Friz and Victoir [14], Theorem 9.26, there exists an enhanced stochastic process W : (Ω, A) → GΩ α,T (R e+1 ) such that W (1) := W . Consider α ∈ (0, H) and a nonempty closed set K ⊂ R d . Proposition 5.3. Under the Assumptions 2.3 and 2.4 on b and σ :

4 . 5 . 4 . 2 )

 4542 and only if Assumption 3.1 is fulfilled. Proof. Straightforward application of Theorem 3.Proposition Under Assumption 3.1, if K is convex and compact, b ∈ Lip γ-1 loc (R d ) and σ ∈ Lip γ-1 loc (R d , M d,e (R)) with γ > 1/α, then all the solutions of the rough differential equation dY = f b,σ (Y )dW with y 0 ∈ K as initial condition are defined on [0, T ] and viable in K. Proof. Straightforward application of Corollary 3.7. Remark 5.5. .(1) The Brownian motion is a fractional Brownian motion of Hurst parameter H = 1/2. (The rough differential equations driven by a Brownian motion are stochastic differential equations in the sense of Stratonovich. Let B be an e-dimensional Brownian motion. In order to consider the stochastic differential equation dy t = b(y t )dt + σ(y t )dB t in the sense of Itô, one has to consider the rough differential equation σ .,i σ .,j (y t )   dt + σ(y t )dB t where, σ .,i σ .,j := d k=1 σ k,i ∂ k σ .,j ; ∀i, j ∈ 1, e . (see Friz and Victoir [14], p. 510, Equation (17.3)).

5. 2 .

 2 A logistic equation driven by a fractional Brownian motion. The logistic equation is a typical example of differential equation with a non-Lipschitz vector field, but with solutions viable in a nonempty convex and compact subset of R d .Consider K := [0, 1] d , γ > 1/α, a locally (γ -1)-Lipschitz continuous map σ : R d → M d,e (R) such that K ⊂ K σ ∩ K -σ , m ∈ R d and b m : R d → R d the map defined by : b (i) m (x) := m (i) x (i) (1 -x (i) ) ; ∀i ∈ 1, d , ∀x ∈ R d . The set K is a nonempty compact convex polyhedron of R d . Indeed, K = K 1 ∩ K 2 with K 1 := d i=1 {x ∈ R d : -e i , x0}andK 2 := d i=1 {x ∈ R d : e i , x -e i 0}. Consider i ∈ 1, d and x ∈ R d . If -e i , x = 0, then x (i) = 0 and b m (x), -e i = 0. If e i , x -e i = 0, then x (i) =1 and b m (x), e i = 0. Therefore, K ⊂ K bm . In other words, b m and σ satisfy Assumption 3.1. Consider y 0 ∈ K. Since K is convex and compact, by Proposition 5.4, the logistic equation Y t = y 0 + t 0 b m (Y s )ds + t 0 σ(Y s )dB s ; t ∈ [0, T ] has at least one solution defined on [0, T ] and viable in K. For instance, one can put σ(x) := d i=1

Remark A. 3 .

 3 If x ∈ int(S), then T S (x) = T S (x) •• = R d .The two following properties are crucial in the proof of Theorem 3.4.Proposition A.4. For every y ∈ R d and y * ∈ Π S (y) (see[START_REF] Aubin | A Survey of Viability Theory[END_REF] for a definition), y -y * ∈ T S (y * ) • .See[START_REF] Aubin | Viability Theory[END_REF], Proposition 3.2.3 p. 85.Proposition A.5. If S is compact, then T S (x) • = {s ∈ R d : ∀ε > 0, ∃δ > 0, ∀y ∈ S ∩ B d (x, δ), y -x, s ε y -x }.

  t+h ) -d 2 K (y t ) y t+h -y t 2 + 2 y t+h -y t , y t -y * t . The function y is Lipschitz continuous from [0, T ] into R d , so there exists C 4 > 0

	So,		
	(10) K (y such that : d 2		
		y t+h -y t	2	C 4 h 2 .
	By Equality (8) and Inequality (9) :
	y t+h -y t , y t -y * t	C 3 h 2 +
			e
	b(y t ), y t -y * t h +	σ .,k (y t ), y t -y * t (w	(k) t+h -w t ). (k)
			k=1
	Moreover,		
		e	
	b(y t ), y t -y * t h +	σ .,k (y t ), y t -y * t (w t+h -w (k)	(k)
		k=1	

2 y t+h -y t , y t -y * t + y t -y * t 2 . t ) 0 because y t -y * t ∈ T K (y * t ) • by Proposition A.4, and b(y t ), ±σ .,k (y t ) ∈ T K (y * t ) •• for every k ∈ 1, e by Assumption 3.3. So,

  α t 2α .

	Since β < 2α,				
		lim sup t→0 +	σ(y 0 )w t , s t β l(t)	ε lim sup t→0 +	σ(y 0 )w t t β l(t)	.
	Therefore, by duality in R d :		
	(11)	lim inf t→0 +	u(s), w t t β l(t)	0 ; ∀s ∈ T

K (y 0 ) •

  3.3.Necessary condition of invariance : convex case. When K is convex, the purpose of this subsection is to prove that under the Assumptions 2.4 and 3.2, if K is invariant for (b, σ, W), then b and σ satisfy Assumption 3.1 (Theorem 3.4.(2b)). First, that result is proved for the half-hyperplanes.

	Lemma 3.10. Under the Assumptions 2.1, 2.3, 2.4 and 3.2, if there exists ν ∈
	1, d such that