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INVARIANCE FOR ROUGH DIFFERENTIAL EQUATIONS

LAURE COUTIN* AND NICOLAS MARIE**

Abstract. In 1990, in Itô’s stochastic calculus framework, Aubin and Da
Prato established a necessary and sufficient condition of invariance of a nonempty
compact or convex subset C of Rd (d ∈ N∗) for stochastic differential equa-
tions (SDE) driven by a Brownian motion. In Lyons rough paths framework,
this paper deals with an extension of Aubin and Da Prato’s results to rough
differential equations. A comparison theorem is provided, and the special case
of differential equations driven by a fractional Brownian motion is detailed.
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1. Introduction

The invariance of a nonempty closed convex subset of Rd (d ∈ N∗) for a (ordi-
nary) differential equation was solved by Nagumo in [26], see also [2] for a simple
proof. It was obtained by Aubin and Da Prato in [5] for stochastic differential
equations. More explicit results in the special case of polyhedrons have been estab-
lished in Milian [25]. In [10], Cresson, Puig and Sonner have introduced a stochastic
generalization of the well-known Hodgkin-Huxley neuron model satisfying the as-
sumptions of the stochastic viability theorem of Milian [25]. On the viability and
the invariance of sets for stochastic differential equations, see also Milian [24], Gau-
tier and Thibault [15], and Michta [23].

In [6], the results of [5] were extended by Aubin and Da Prato to the stochas-
tic differential inclusions. The case of stochastic controlled differential equations
was studied by Da Prato and Frankowska in [12] or more recently by Buckdahn,

Key words and phrases. Viability theorem ; Comparison theorem ; Rough differential equations
; Fractional Brownian motion ; Logistic equation.
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Quicampoix, Rainer and Teichmann in [8]. An unified approach which provides a
viability theorem for stochastic differential equations, backward stochastic differ-
ential equations and partial differential equations is developed in Buckdahn et al.
[7].

The invariance of a subset of Rd for a stochastic differential equation driven by a
α-Hölder continuous process with α ∈ (1/2, 1) has been already studied by several
authors in the fractional calculus framework developed by Nualart and Rascanu in
[29]. In Ciotir and Rascanu [9] and Nie and Rascanu [27], the authors have proved
a sufficient and necessary condition for the invariance of a closed subset of Rd for
a stochastic differential equation driven by a fractional Brownian motion of Hurst
parameter H ∈ (1/2, 1). In [22], Melnikov, Mishura and Shevchenko have proved
a sufficient condition for the invariance of a smooth and nonempty subset of Rd
for a stochastic differential equation driven by a mixed process containing both a
Brownian motion and a α-Hölder continuous process with α ∈ (1/2, 1).

The rough paths theory introduced by T. Lyons in 1998 in the seminal paper [20]
provides a natural and powerful framework to study differential equations driven
by α-Hölder signals with α ∈ (0, 1]. The theory and its applications are widely
studied by many authors. For instance, see the book of Friz and Victoir [14], the
nice introduction of Friz and Hairer [13], or the approach of Gubinelli [16].

The main purpose of this article is to extend the viability theorem of Aubin and Da
Prato [5] and to provide a comparison theorem for the rough differential equations.
The paper deals also with an application of the viability theorem to stochastic
differential equations driven by a fractional Brownian motion of Hurst parameter
greater than 1/4.

Let T > 0 be arbitrarily chosen, and consider the differential equation

(1) yt = y0 +

∫ t

0

b(ys)ds+

∫ t

0

σ(ys)dws ; t ∈ [0, T ]

where, y0 ∈ Rd, b (resp. σ) is a continuous map from Rd into itself (resp. Md,e(R)),
and w : [0, T ]→ Re is a α-Hölder continuous signal with e ∈ N∗ and α ∈ (0, 1].

At Section 2, some definitions and results on rough differential equations are stated
in order to take Equation (1) in that sense. Section 3 deals with a viability theorem
for Equation (1) taken in the sense of rough paths (see Friz and Victoir [14]) and
a convex or compact set. At Section 4, a comparison theorem for the rough dif-
ferential equations is proved by using the viability results of Section 3. At Section
5, the viability theorem is applied to stochastic differential equations driven by a
fractional Brownian motion of Hurst parameter greater than 1/4. Finally, Appen-
dix A is a brief survey on convex analysis.

For the sake of readability, all results are proved on [0, T ], but they can be ex-
tended on R+ via some usual localization arguments.

The results established in this paper could be applied in stochastic analysis it-
self, and in other sciences as neurology. On the one hand, in stochastic analysis,
one could study the viability of rough differential inclusions as in Aubin and Da
Prato [6] in Itô’s calculus framework, or could also compare the viability condition
for rough differential equations to the reflecting boundary conditions for Ito’s sto-
chastic differential equations (see Lions and Sznitman [19]). On the other hand,
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together with J.M. Guglielmi who is neurologist at the American Hospital of Paris,
we are studying a fractional Hodgkin-Huxley neuron model, that extends the model
of Cresson et al. [10], in order to model injured nerves membrane potential in some
neuropathies.

The following notations are used throughout the paper.

Notations (general) :
• The Euclidean scalar product on Rd is denoted by 〈., .〉, and the Euclidean

norm on Rd is denoted by ‖.‖. The canonical basis of Rd is denoted by
(ek)k∈J1,dK. For every x ∈ Rd, its j-th coordinate with respect to (ek)k∈J1,dK

is denoted by x(j) for every j ∈ J1, dK.
• For every x0 ∈ Rd and r ∈ R+, Bd(x0, r) := {x ∈ Rd : ‖x− x0‖ 6 r}.
• The interior, the closure and the frontier of a set S ⊂ Rd are respectively

denoted by int(S), S and ∂S.
• For every k ∈ J1, dK, Dk := {x ∈ Rd : x(k) > 0}.
• For a nonempty closed set S ⊂ Rd, and every x ∈ Rd, ΠK(x) denotes the

set of best approximations of x by the elements of K :

(2) ΠS(x) :=

{
x∗ ∈ S : ‖x− x∗‖ = inf

y∈S
‖x− z‖

}
.

• The distance between x ∈ Rm and a nonempty closed set S ⊂ Rd is

dS(x) := inf
y∈S
‖x− y‖.

• The space of the matrices of size d × e is denoted by Md,e(R). The (eu-
clidean) matrix norm on Md,e(R) is denoted by ‖.‖Md,e(R). If d = e,
then Md(R) := Md,e(R). The canonical basis of Md,e(R) is denoted by
(ek,l)(k,l)∈J1,dK×J1,eK.

• Let E and F be two vector spaces. The space of the linear maps from E
into F is denoted by L(E,F ). If E = F , then L(E) := L(E,F ).

• The space of the continuous functions from [0, T ] into Rd is denoted by
C0([0, T ],Rd) and equipped with the uniform norm ‖.‖∞,T .

• The space of the continuous functions l from (0, t0) into ]0,∞[ with t0 > 0,
and such that

lim
t→0+

tβ

l(t)
= 0 ; ∀β > 0,

is denoted by St0 .
Notations (rough paths). See Friz and Victoir [14], Chapters 5, 7, 8 and 9 :

• ∆T := {(s, t) ∈ R2
+ : 0 6 s < t 6 T}.

• The space of the α-Hölder continuous functions from [0, T ] into Rd is de-
noted by Cα-Höl([0, T ],Rd) and equipped with the α-Hölder semi-norm
‖.‖α-Höl,T :

‖x‖α-Höl,T := sup
(s,t)∈∆T

‖xt − xs‖
|t− s|α

; ∀x ∈ Cα-Höl([0, T ],Rd).

• The step-N signature of x ∈ C1-Höl([0, T ],Rd) with N ∈ N∗ is denoted by
SN (x) :

SN (x)t :=

(
1,

∫
0<u<t

dxu, . . . ,

∫
0<u1<···<uN<t

dxu1
⊗ · · · ⊗ dxuN

)
; ∀t ∈ [0, T ].

• The step-N free nilpotent group over Rd is denoted by GN (Rd) :

GN (Rd) := {SN (γ)1 ; γ ∈ C1-Höl([0, 1],Rd)}.
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• The space of the geometric α-rough paths from [0, T ] into G[1/α](Rd) is
denoted by GΩα,T (Rd) :

GΩα,T (Rd) := {S[1/α](x) ; x ∈ C1-Höl([0, T ],Rd)}
dα-Höl,T

where, dα-Höl,T is the α-Hölder distance for the Carnot-Carathéodory met-
ric.

2. Preliminaries

The purpose of this section is to provide the appropriate formulation of Equa-
tion (1) in the rough paths framework. At the end of the section, a convergence
result for the Euler scheme associated to Equation (1) is stated, and a definition of
invariant sets for rough differential equations is provided.

The definitions and propositions stated in the major part of this section come
from Lyons and Qian [21], Friz and Victoir [14], or Friz and Hairer [13].

First, the signal w is α-Hölder continuous with α ∈ (0, 1]. In addition, w has
to satisfy the following assumption.

Assumption 2.1. There exists w ∈ GΩα,T (Re) such that w(1) = w.

Let W : [0, T ]→ Re+1 be the signal defined by :

Wt := te1 +

e+1∑
k=2

w
(k−1)
t ek ; ∀t ∈ [0, T ].

By Friz and Victoir [14], Theorem 9.26, there exists at least one W ∈ GΩα,T (Re+1)

such that W(1) = W .

Let us state the conditions the collection of vector fields of a rough differential
equation has to satisfy in order to get at least the existence of solutions.

Notation. For every γ > 0, bγc is the largest integer strictly smaller than γ.

Definition 2.2. Consider γ > 0, l,m ∈ N∗ and a nonempty closed set V ⊂ Rl. A
map f : Rl → Ml,m(R) is γ-Lipschitz continuous (in the sense of Stein) from V
intoMl,m(R) if and only if :

(1) f |V ∈ Cbγc(V,Ml,m(R)).
(2) f,Df, . . . ,Dbγcf are bounded on V .
(3) Dbγcf is (γ−bγc)-Hölder continuous from Rl into L(V ⊗bγc,Ml,m(R)) (i.e.

there exists C > 0 such that for every x, y ∈ V ,

‖Dbγcf(y)−Dbγcf(x)‖L(V ⊗bγc,Ml,m(R)) 6 C‖y − x‖γ−bγc).

The set of all such maps is denoted by Lipγ(V,Ml,m(R)).

The map f is locally γ-Lipschitz continuous from Rl into Ml,m(R), if for every
nonempty compact set K ⊂ Rl, f is γ-Lipschitz continuous from K intoMl,m(R).
The set of all such maps is denoted by Lipγloc(Rl,Ml,m(R)).

In the sequel, b and σ satisfy the following assumption.

Assumption 2.3. There exists γ ∈ (1/α, [1/α] + 1) such that :
(1) b ∈ Lipγ−1

loc (Rd) and σ ∈ Lipγ−1
loc (Rd,Md,e(R)).

(2) b (resp. σ) is Lipschitz continuous from Rd into itself (resp. Md,e(R)).
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(3) D[1/α]b (resp. D[1/α]σ) is (γ − [1/α])-Hölder continuous from Rd into
L((Rd)⊗[1/α],Rd) (resp. L((Rd)⊗[1/α],Md,e(R))).

Let fb,σ : Rd →Md,e+1(R) be the map defined by :

fb,σ(x) :=

d∑
k=1

b(k)(x)ek,1 +

e+1∑
l=2

d∑
k=1

σk,l(x)ek,l ; ∀x ∈ Rd.

In the rough paths framework, dy = fb,σ(y)dW with y0 ∈ Rd as initial condition is
the appropriate formulation of Equation (1).

Under the Assumptions 2.1 and 2.3, by Friz and Victoir Theorem 10.26, Exer-
cice 10.55 and Exercice 10.56, the rough differential equation dy = fb,σ(y)dW with
y0 ∈ Rd as initial condition has at least one solution y on [0, T ]. Precisely, there
exists a sequence (Wn)n∈N of elements of C1-Höl([0, T ],Re+1) such that

(3) lim
n→∞

dα-Höl,T (S[1/α](W
n),W) = 0

and

(4) lim
n→∞

‖y − yn‖∞,T = 0

where, for every n ∈ N, yn is the solution on [0, T ] of the ordinary differential
equation dyn = fb,σ(yn)dWn with y0 as initial condition.

Moreover, if b and σ satisfy the following assumption, the solution of Equation
(1) is unique and denoted by πfb,σ (0, y0,W).

Assumption 2.4. b ∈ Lipγloc(Rd) and σ ∈ Lipγloc(Rd,Md,e(R)).

Let us now define the Euler scheme for Equation (1) and state a convergence result.

Let D := (t0, . . . , tn) be a dissection of [0, T ] with n ∈ N∗. The Euler scheme
ŷn := (ŷnt0 , . . . , ŷ

n
tn) for Equation (1) along the dissection D is defined by

ŷntk := EWtk−1,tk ◦ · · · ◦ EWt0,t1 y0 ; ∀k ∈ J1, nK

with
Egx := x+ Efb,σ (x, g)

and

Efb,σ (x, g) :=

[1/α]∑
k=1

e+1∑
i1,...,ik=1

fb,σ,i1 . . . fb,σ,ikI(x)g(k),i1,...,ik

for every g ∈ G[1/α](Re+1) and x ∈ Rd, and where I denotes the identity map from
Rd into itself.

Theorem 2.5. Let D := (t0, . . . , tn) be a dissection of [0, t] with t ∈ [0, T ] and n ∈
N∗. Under the Assumptions 2.3 and 2.4, there exists a constant C > 0 depending
only on α, γ, fb,σ and ‖W‖α-Höl,T such that

‖πfb,σ (0, y0;W)t − ŷnt ‖ 6 Ct|D|θ−1

where, θ := (bγc+ 1)α > 1 and |D| is the mesh of D.

See Friz and Victoir [14], Theorem 10.30.

Finally, let us state a definition of invariant sets for Equation (1).

Let S be a subset of Rd.
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Definition 2.6. A function ϕ : [0, T ]→ Rd is viable in S if and only if,

ϕ(t) ∈ S ; ∀t ∈ [0, T ].

The following definition provides a natural extension of the notion of invariant set
in the rough paths theory setting.

Definition 2.7. .
(1) The subset S is invariant for (σ,w) if and only if, for any initial condition

y0 ∈ S, every solution on [0, T ] of the rough differential equation dy =
σ(y)dw is viable in S.

(2) The subset S is invariant for (b, σ,W) if and only if, for any initial condition
y0 ∈ S, every solution on [0, T ] of the rough differential equation dy =
fb,σ(y)dW is viable in S.

3. An invariance theorem for rough differential equations

Consider a nonempty closed set K ⊂ Rd. For every map ϕ : Rd → Md,m(R)
with m ∈ N∗, consider

Kϕ :=

m⋂
k=1

{x ∈ Rd : ∀x∗ ∈ ΠK(x), ϕ.,k(x) ∈ TK(x∗)◦◦},(5)

and then

Kb,±σ := Kb ∩Kσ ∩K−σ.(6)

The invariance of K for (b, σ,W) is studied in this section under the two following
assumptions on the maps b and σ, and the signal w.

Assumption 3.1. K ⊂ Kb,±σ.

Assumption 3.2. There exists λ, µ ∈]0,∞[, β ∈ (0, 2α ∧ 1), t0 ∈ (0, T ], l ∈ St0
and a countable set Be ⊂ ∂Be(0, 1) such that {±ek; k ∈ J1, eK} ⊂ Be, Be = ∂Be(0, 1)
and

−µ = inf
δ∈Be

lim inf
t→0+

〈δ, wt〉
tβl(t)

6 sup
δ∈Be

lim inf
t→0+

〈δ, wt〉
tβl(t)

= −λ.

Consider also the following stronger assumption on the maps b and σ :

Assumption 3.3. Kb,±σ = Rd.

Now, let us state the main result of the paper ; the invariance theorem.

Theorem 3.4. Under the Assumptions 2.1 and 2.3 on b and σ :
(1) Under Assumption 3.3, K is invariant for (b, σ,W).
(2) When K is convex :

(a) Under Assumption 3.1, K is invariant for (b, σ,W).
(b) Under the Assumptions 2.4 and 3.2, if K is invariant for (b, σ,W),

then Assumption 3.1 is fulfilled.
(3) When K is compact and b ≡ 0, under Assumption 3.2, if K is invariant

for (σ,w), then Assumption 3.1 is fulfilled.

Remark 3.5. .
(1) By Remark A.3, for any map ϕ : Rd →Md,m(R) with m ∈ N∗, int(K) ⊂

Kϕ. So, in particular, int(K) ⊂ Kb,±σ. Therefore, Assumption 3.1 is
satisfied if and only if ∂K ⊂ Kb,±σ.
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(2) If K is convex, then

Kϕ =

m⋂
k=1

{x ∈ Rd : ϕ.,k(x) ∈ TK(pK(x))}

for every ϕ : Rd →Md,m(R) with m ∈ N∗, and where pK(x) is the unique
projection of x ∈ Rd on K.

(3) As in Aubin and Da Prato [5], when K is not convex, the sufficient condition
involves all x ∈ Rd, and not only all x ∈ K (see the statement of Theorem
1.5 and its remark page 601).

(4) Assumption 3.1 for some usual convex subsets of Rd :
• When K is a vector subspace of Rd, Assumption 3.1 means that

b(K) ⊂ K

and

σ.,k(K) ⊂ K ; ∀k ∈ J1, eK.

• When K is the unit ball of Rd, Assumption 3.1 means that for every
x ∈ Rd such that ‖x‖ = 1,

〈x, b(x)〉 6 0

and

〈σ.,k(x), x〉 = 0 ; ∀k ∈ J1, eK.

• Consider the polyhedron

K =
⋂
i∈I
{x ∈ Rd : 〈si, x− ai〉 6 0}

where, I ⊂ N is a nonempty finite set, and (ai)i∈I and (si)i∈I are two
families of elements of Rd such that si 6= 0 for every i ∈ I. Here,
Assumption 3.1 means that for every x ∈ K and i ∈ I such that
〈si, x− ai〉 = 0,

〈si, b(x)〉 6 0

and

〈si, σ.,k(x)〉 = 0 ; ∀k ∈ J1, eK.

These conditions on b and σ are quite natural, and the same as in
Milian [25] or Cresson et al. [10], where the driving signal of the main
equation is a Brownian motion.

(5) Assumption 3.2 is close to the notion of "signal rough at time 0" stated at
[13], Chapter 6.

(6) Almost all the paths of the e-dimensional fractional Brownian motion satisfy
Assumption 3.2 (see Proposition 5.2).

At Subsection 3.1, the invariance of K for (b, σ,W) is proved under Assumption
3.3, and under Assumption 3.1 when K is convex. At Subsection 3.2, when K is
compact and b ≡ 0, under Assumption 3.2, the necessity of Assumption 3.1 to get
the invariance of K for (σ,w) is proved. At Subsection 3.3, when K is convex,
under the Assumptions 2.4 and 3.2, the necessity of Assumption 3.1 to get the
invariance of K for (b, σ,W) is proved.
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3.1. Sufficient condition of invariance. The main purpose of this subsection
is to prove the invariance of K for (b, σ,W) under Assumption 3.3, and under
Assumption 3.1 whenK is convex (Theorem 3.4.(1,2.a)). As in Aubin and Da Prato
[5], the proof deeply relies on the fact that t ∈ [0, T ] 7→ d2

K(yt) has a nonpositive
epiderivative (see J.P. Aubin et al. [4], Section 18.6.2), where y is the solution of
dy = fb,σ(y)dW with α = 1 and y0 ∈ K as initial condition (see Lemma 3.6).
Finally, when K is convex and compact, Corollary 3.7 allows to relax the regularity
assumptions on b and σ.

Lemma 3.6. Let K be nonempty closed subset of Rd. Under the Assumptions 2.3
and 3.3 with α = 1, the solution y on [0, T ] of the ordinary differential equation
dy = fb,σ(y)dW with y0 ∈ K as initial condition is viable in K.

Proof. In order to show that y is viable in K in a second step, as in Aubin and Da
Prato [5], the following inequality is proved in a first step :

(7) lim inf
h→0+

d2
K(yt+h)− d2

K(yt)

h
6 0.

Step 1. For t ∈ [0, T ] and h > 0,

(8) yt+h − yt = b(yt)h+ σ(yt)(wt+h − wt) +Rt,h

with

Rt,h :=

∫ t+h

t

[b(ys)− b(yt)]ds+

∫ t+h

t

[σ(ys)− σ(yt)]dws.

Since y (resp. b) is Lipschitz continuous from [0, T ] (resp. Rd) into Rd, there exists
C1 > 0 such that ∥∥∥∥∥

∫ t+h

t

[b(ys)− b(yt)]ds

∥∥∥∥∥ 6 C1h
2.

The function w is Lipschitz continuous from [0, T ] into Re, so there exists ẇ ∈
L∞([0, T ],Re) such that :

ws = w0 +

∫ s

0

ẇudu ; ∀s ∈ [0, T ].

Then, ∥∥∥∥∥
∫ t+h

t

[σ(ys)− σ(yt)]dws

∥∥∥∥∥ =

∥∥∥∥∥
∫ t+h

t

[σ(ys)− σ(yt)]ẇsds

∥∥∥∥∥
6 ‖ẇ‖∞,T

∫ t+h

t

‖σ(ys)− σ(yt)‖Md,e(R)ds.

Since y (resp. σ) is Lipschitz continuous from [0, T ] (resp. Rd) into Rd (resp.
Md,e(R)), there exists C2 > 0 such that :∫ t+h

t

‖σ(ys)− σ(yt)‖Md,e(R)ds 6 C2h
2.

Therefore,

(9) ‖Rt,h‖ 6 C3h
2

with C3 := C1 + C2‖ẇ‖∞,T .

For y∗t ∈ ΠK(yt) and y∗t+h ∈ ΠK(yt+h) arbitrarily chosen :

d2
K(yt+h) = ‖yt+h − y∗t+h‖2

6 ‖yt+h − y∗t ‖2

= ‖yt+h − yt‖2 + 2〈yt+h − yt, yt − y∗t 〉+ ‖yt − y∗t ‖2.
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So,

(10) d2
K(yt+h)− d2

K(yt) 6 ‖yt+h − yt‖2 + 2〈yt+h − yt, yt − y∗t 〉.
The function y is Lipschitz continuous from [0, T ] into Rd, so there exists C4 > 0
such that :

‖yt+h − yt‖2 6 C4h
2.

By Equality (8) and Inequality (9) :

〈yt+h − yt, yt − y∗t 〉 6 C3h
2 +

〈b(yt), yt − y∗t 〉h +

e∑
k=1

〈σ.,k(yt), yt − y∗t 〉(w
(k)
t+h − w

(k)
t ).

Moreover,

〈b(yt), yt − y∗t 〉h+

e∑
k=1

〈σ.,k(yt), yt − y∗t 〉(w
(k)
t+h − w

(k)
t ) 6 0

because yt − y∗t ∈ TK(y∗t )◦ by Proposition A.4, and b(yt),±σ.,k(yt) ∈ TK(y∗t )◦◦ for
every k ∈ J1, eK by Assumption 3.3. So,

〈yt+h − yt, yt − y∗t 〉 6 C3h
2.

Therefore, by Inequality (10) :

d2
K(yt+h)− d2

K(yt) 6 C5h
2

with C5 := 2C3 + C4. This achieves the first step.

Step 2. Consider the function ϕ : [0, T ]→ R+ defined by :

ϕ(t) := d2
K(yt) ; ∀t ∈ [0, T ].

Assume that there exists τ ∈ (0, T ] such that ϕ(τ) > 0. Since ϕ is continuous on
[0, T ], the set

{t ∈ [0, τ) : ∀s ∈ (t, τ ], ϕ(s) > 0}
is not empty, and its infimum is denoted by t∗. Moreover, if ϕ(t∗) > 0, then
there exists t∗∗ ∈ [0, t∗) such that ϕ(t) > 0 for every t ∈ (t∗∗, t∗]. So, necessarily,
ϕ(t∗) = 0.

By Inequality (7), for every t ∈ [t∗, τ ],

D↑ϕ(t)(1) := lim inf
h→0+,u→1

ϕ(t+ hu)− ϕ(t)

h
6 0.

So, by Aubin [2] :
0 < ϕ(τ) = ϕ(τ)− ϕ(t∗) 6 0.

There is a contradiction, then ϕ is nonpositive on [0, T ]. Since ϕ([0, T ]) ⊂ R+,
necessarily :

ϕ(t) = d2
K(yt) = 0 ; ∀t ∈ [0, T ].

In other words, y is viable in K. �

Via Lemma 3.6, let us prove Theorem 3.4.(1,2).

Proof. Theorem 3.4.(1,2a). Theorem 3.4.(1) is proved at the first step, and Theo-
rem 3.4.(2a) is proved at the second step.

Step 1. Assume that α ∈ (0, 1] and Kb,±σ = Rd. Since K is a closed subset
of Rd, every solution on [0, T ] of the rough differential equation dy = fb,σ(y)dW
with y0 ∈ K as initial condition is viable in K by Lemma 3.6 together with Equality
(4).
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Step 2. Assume that α = 1, K is convex and K ⊂ Kb,±σ (see (6) for a definition).
Let y be the solution on [0, T ] of the ordinary differential equation dy = fb,σ(y)dW
with y0 ∈ K as initial condition. Consider the maps B := b ◦ pK , S := σ ◦ pK and
F : Rd →Md,e+1(R) such that :

F (x) :=

d∑
k=1

B(k)(x)ek,1 +

e+1∑
l=2

d∑
k=1

Sk,l(x)ek,l ; ∀x ∈ Rd.

Since fb,σ (resp. pK) is Lipschitz continuous from Rd into Md,e+1(R) (resp. K),
F is Lipschitz continuous from Rd into Md,e+1(R). So, the ordinary differential
equation dY = F (Y )dW with y0 ∈ K as initial condition has a unique solution Y
on [0, T ].

Since KB,±S = Rd, Y is viable in K by Lemma 3.6.

Therefore, the solution y of the ordinary differential equation dy = fb,σ(y)dW
with y0 as initial condition coincides with Y on [0, T ] because fb,σ coincides with
F on K. In particular, y is viable in K.

Assume now that α ∈ (0, 1]. Since K is a closed subset of Rd, every solution
on [0, T ] of the rough differential equation dy = fb,σ(y)dW with y0 ∈ K as initial
condition is viable in K by Equality (4). �

Corollary 3.7. Under the Assumptions 2.1 and 3.1, if K is a nonempty convex and
compact subset of Rd, b ∈ Lipγ−1

loc (Rd) and σ ∈ Lipγ−1
loc (Rd,Md,e(R)) with γ > 1/α,

then all the solutions of the rough differential equation dy = fb,σ(y)dW with y0 ∈ K
as initial condition are defined on [0, T ] and viable in K.

Proof. Since fb,σ is locally (γ − 1)-Lipschitz continuous from Rd into Md,e+1(R),
there exists τ ∈ (0, T ] such that the rough differential equation dy = fb,σ(y)dW
with y0 ∈ K as initial condition has at least one solution y on [0, τ).

Since b and σ satisfy Assumption 3.1, by Theorem 3.4.(2) applied to (b, σ,W) on
[0, τ [ :

yt ∈ K ; ∀t ∈ [0, τ [.

So, y is bounded on [0, τ [ by at least one continuous function from [0, T ] into Rd
because K is a bounded subset of Rd.

Therefore, by Friz and Victoir [14], Theorem 10.21, y is defined on [0, T ], and
by Theorem 3.4.(2), it is viable in K. �

3.2. Necessary condition of invariance : compact case. When K is compact
and b ≡ 0, the purpose of this subsection is to prove that under Assumption 3.2, if
K is invariant for (σ,w), then Assumption 3.1 is fulfilled (Theorem 3.4.(3)).

Lemma 3.8. Under Assumption 3.2, for T0 := t0 ∧ T ,

M := max
k∈J1,eK

sup
t∈[0,T0]

∣∣∣∣∣ w(k)
t

tβl(t)

∣∣∣∣∣ <∞.
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Proof. By Assumption 3.2 :

min
k∈J1,eK

lim inf
t→0+

w
(k)
t

tβl(t)
= min

k∈J1,eK
lim inf
t→0+

〈ek, wt〉
tβl(t)

> inf
δ∈Be

lim inf
t→0+

〈δ, wt〉
tβl(t)

= −µ.

Moreover, the function

t ∈ (0, T0] 7−→ w
(k)
t

tβl(t)

is continuous. So, there exists r > 0 such that :

min
k∈J1,eK

inf
t∈[0,T0]

w
(k)
t

tβl(t)
> −rµ.

Similarly, there exists R > 0 such that :

max
k∈J1,eK

sup
t∈[0,T0]

w
(k)
t

tβl(t)
6 Rµ.

This achieves the proof. �

Proposition 3.9. Under Assumption 3.2 :

−µ = inf
δ∈∂Be(0,1)

lim inf
t→0+

〈δ, wt〉
tβl(t)

6 sup
δ∈∂Be(0,1)

lim inf
t→0+

〈δ, wt〉
tβl(t)

= −λ.

Proof. Let δ ∈ ∂Be(0, 1) be arbitrarily chosen. Since Be = ∂Be(0, 1), there exists a
sequence (δn)n∈N of elements of Be such that :

lim
n→∞

‖δ − δn‖ = 0.

By Lemma 3.8 :

M := max
k∈J1,eK

sup
t∈[0,T0]

∣∣∣∣∣ w(k)
t

tβl(t)

∣∣∣∣∣ <∞.
For every n ∈ N and t ∈ (0, T0],

〈δ, wt〉
tβl(t)

=
〈δ − δn, wt〉

tβl(t)
+
〈δn, wt〉
tβl(t)

6 ‖δ − δn‖ ·
‖wt‖
tβl(t)

+
〈δn, wt〉
tβl(t)

6 ‖δ − δn‖M +
〈δn, wt〉
tβl(t)

.

So, for every n ∈ N, by Assumption 3.2 :

lim inf
t→0+

〈δ, wt〉
tβl(t)

6 ‖δ − δn‖M + lim inf
t→0+

〈δn, wt〉
tβl(t)

6 ‖δ − δn‖M − λ
−−−−→
n→∞

−λ.

Since the right hand side of the previous inequality is not depending on δ :

sup
δ∈∂Be(0,1)

lim inf
t→0+

〈δ, wt〉
tβl(t)

6 −λ.

Moreover, by Assumption 3.2 and since Be ⊂ ∂B(0, 1) :

−λ = sup
δ∈Be

lim inf
t→0+

〈δ, wt〉
tβl(t)

6 sup
δ∈∂Be(0,1)

lim inf
t→0+

〈δ, wt〉
tβl(t)

.
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Therefore,

sup
δ∈∂Be(0,1)

lim inf
t→0+

〈δ, wt〉
tβl(t)

= −λ.

Similarly,

inf
δ∈∂Be(0,1)

lim inf
t→0+

〈δ, wt〉
tβl(t)

= −µ.

�

Proof. Theorem 3.4.(3). Let y be a solution of the rough differential equation
dy = σ(y)dw with y0 ∈ K as initial condition, and assume that y is viable in K.

Consider s ∈ TK(y0)◦ and ε > 0. Since K is a nonempty compact subset of
Rd, by Proposition A.5, there exists δε > 0 such that for every x ∈ K ∩Bd(y0, δε),

〈x− y0, s〉 6 ε‖x− y0‖.
Since y is continuous, there exists tε ∈ [0, T ] such that y([0, tε]) ⊂ Bd(y0, δε). So,
for every t ∈ [0, tε],

〈yt − y0, s〉 6 ε‖yt − y0‖.
Then,

lim sup
t→0+

〈yt − y0, s〉
tβl(t)

6 ε lim sup
t→0+

‖yt − y0‖
tβl(t)

.

For every t ∈ [0, T ], by Theorem 2.5 applied with the dissection (0, t) of [0, t], there
exists a constant C > 0, depending on T but not on t, such that :

‖yt − y0 − σ(y0)wt‖ 6 Ct|(0, t)|(bγc+1)α−1

6 CT (bγc−1)αt2α.

Since β < 2α,

lim sup
t→0+

〈σ(y0)wt, s〉
tβl(t)

6 ε lim sup
t→0+

‖σ(y0)wt‖
tβl(t)

.

Therefore, by duality in Rd :

(11) lim inf
t→0+

〈u(s), wt〉
tβl(t)

> 0 ; ∀s ∈ TK(y0)◦

where, u : TK(y0)◦ → Re is the map defined by

u(s) := −σ(y0)τs ; ∀s ∈ TK(y0)◦,

and σ(y0)τ is the transpose of the matrix σ(y0).

Assume that there exists s ∈ TK(y0)◦ such that u(s) 6= 0, and put

v(s) :=
u(s)

‖u(s)‖
∈ ∂Be(0, 1).

By Inequality (11) :

lim inf
t→0+

〈v(s), wt〉
tβl(t)

> 0.

There is a contradiction with Assumption 3.2 by Proposition 3.9. So, necessarily :

u(s) = 0 ; ∀s ∈ TK(y0)◦.

Therefore, since (ek)k∈J1,eK is a basis of Re :

〈σ.,k(y0), s〉 = 0 ; ∀k ∈ J1, eK.

In particular, ±σ.,k(y0) ∈ TK(y0)◦◦ for every k ∈ J1, eK. This achieves the proof
because y0 ∈ K has been arbitrarily chosen. �
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3.3. Necessary condition of invariance : convex case. WhenK is convex, the
purpose of this subsection is to prove that under the Assumptions 2.4 and 3.2, if K
is invariant for (b, σ,W), then b and σ satisfy Assumption 3.1 (Theorem 3.4.(2b)).
First, that result is proved for the half-hyperplanes.

Lemma 3.10. Under the Assumptions 2.1, 2.3, 2.4 and 3.2, if there exists ν ∈
J1, dK such that Dν = {x ∈ Rd : x(ν) > 0} is invariant for (b, σ,W), then

b(ν)(x− x(ν)eν) > 0 and σν,.(x− x(ν)eν) = 0

for every x ∈ Rd.

Proof. Let ŷ : [0, T ]→ Rd be the map defined by :

ŷt := EW0,ty0 ; ∀t ∈ [0, T ].

For every t ∈ [0, T ], (y0, ŷt) coincides with the Euler scheme for the rough differen-
tial equation dy = fb,σ(y)dW with y0 ∈ Rd as initial condition along the dissection
Dt := (0, t) of [0, t].

In a first step, it is proved that if there exists y0 ∈ Dν such that

(12) lim inf
t→0+

ŷ
(ν)
t

tβl(t)
< 0,

then Dν is not invariant for (b, σ,W). In a second step, it is proved that if there
exists y0 ∈ ∂Dν such that σν,.(y0) 6= 0 or b(ν)(y0) < 0, then ŷ satisfies Inequality
(12).

Step 1. Assume that there exists y0 ∈ Dν such that :

lim inf
t→0+

ŷ
(ν)
t

tβl(t)
< 0.

For every t ∈ [0, T ], by Theorem 2.5 applied with the dissection (0, t) of [0, t], there
exists a constant C1 > 0, depending on T but not on t, such that

‖πfb,σ (0, y0;W)t − ŷt‖ 6 C1t|Dt|θ−1

= C1t
θ

with θ := (bγc+ 1)α > 1. So,

π
(ν)
fb,σ

(0, y0;W)t

tβl(t)
6 C1

tθ−β

l(t)
+

ŷ
(ν)
t

tβl(t)
; ∀t ∈ (0, T0].

Moreover, since θ > 1 > β and l ∈ St0 :

lim inf
t→0+

[
C1
tθ−β

l(t)
+

ŷ
(ν)
t

tβl(t)

]
= lim inf

t→0+

ŷ
(ν)
t

tβl(t)
.

Therefore, by Inequality (12) :

lim inf
t→0+

π
(ν)
fb,σ

(0, y0;W)t

tβl(t)
< 0.

In conclusion, there exists t1 ∈ [0, T0] such that :

π
(ν)
fb,σ

(0, y0;W)t1 < 0.

The path π(ν)
fb,σ

(0, y0;W) is not viable in Dν .

Step 2. Let us show that if there exists y0 ∈ ∂Dν such that σν,.(y0) 6= 0 or
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b(ν)(y0) < 0, then ŷ satisfies Inequality (12).

Case 1. Assume that there exists y0 ∈ ∂Dν such that σν,.(y0) 6= 0. By Lemma 3.8 :

M := max
k∈J1,eK

sup
t∈[0,T0]

∣∣∣∣∣ w(k)
t

tβl(t)

∣∣∣∣∣ <∞.
On the one hand, since ‖σν,.(y0)‖−1σν,.(y0) ∈ ∂Be(0, 1) and Be = ∂Be(0, 1), there
exists a sequence (un)n∈N of elements of Be such that :

lim
n→∞

∥∥∥∥un − σν,.(y0)

‖σν,.(y0)‖

∥∥∥∥ = 0.

So, there exists n0 ∈ N such that for every n ∈ N ∩ [n0,∞[,

‖σν,.(y0)− vn‖ 6
λ

4eM
‖σν,.(y0)‖

and vn := ‖σν,.(y0)‖un where, λ is defined in Assumption 3.2. Then, for every
n ∈ N ∩ [n0,∞[,

sup
t∈[0,T0]

1

tβl(t)
|〈σν,.(y0)− vn, wt〉| 6 eM‖σν,.(y0)− vn‖

6
λ

4
‖σν,.(y0)‖.(13)

On the other hand, by the definition of the Euler scheme for Equation (1), there
exists C2 > 0 such that :

|E(ν)
fb,σ

(y0,W0,t)− 〈σν,.(y0), wt〉| 6 C2(t2α ∨ t) ; ∀t ∈ [0, T ].

Since l ∈ St0 and β ∈ (0, 2α ∧ 1) :

lim
t→0+

1

tβl(t)
|E(ν)
fb,σ

(y0,W0,t)− 〈σν,.(y0), wt〉| ≤ C2 lim
t→0+

t2α−β

l(t)

= 0.(14)

For every n ∈ N ∩ [n0,∞[, by Assumption 3.2, Inequality (13) and Equality (14)
together :

lim inf
t→0+

ŷ
(ν)
t

tβl(t)
= lim inf

t→0+

〈σν,.(y0), wt〉
tβl(t)

6 sup
t∈[0,T0]

1

tβl(t)
|〈σν,.(y0)− vn, wt〉|+ lim inf

t→0+

〈vn, wt〉
tβl(t)

6
λ

4
‖σν,.(y0)‖ − λ‖σν,.(y0)‖ = −3λ

4
‖σν,.(y0)‖.

So,

lim inf
t→0+

ŷ
(ν)
t

tβl(t)
< 0.

By the first step of the proof, it means that Dν is not invariant for (b, σ,W). In
other words, if K is invariant for (b, σ,W), then

(15) σν,.(x) = 0 ; ∀x ∈ ∂Dν .

Case 2. Assume that Dν is invariant for (b, σ,W) and there exists y0 ∈ ∂Dν such
that b(ν)(y0) < 0. By the first case, since Dν is invariant for (b, σ,W), Equation
(15) is true.

Let t ∈ [0, T ] be arbitrarily chosen.
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• If α ∈ (1/2, 1), then

ŷ
(ν)
t = b(ν)(y0)t+ 〈σν,.(y0), wt〉

= b(ν)(y0)t.

• If α ∈ (0, 1/2], then

ŷ
(ν)
t = b(ν)(y0)t+ 〈σν,.(y0), wt〉+

[1/α]∑
k=2

e∑
i1,...,ik=1

[σi1 . . . σikI(y0)](ν)w(k),i1,...,ik .

Consider k ∈ J2, [1/α]K and i1, . . . , ik ∈ J1, eK. There exists a real family
(ρi2,...,ik−1,l1,...,lk−1

(y0))(l1,...,lk−1)∈J1,dKk−1 such that :

[σi1 . . . σikI(y0)](ν) =

d∑
l1,...,lk−1=1

σl1,i1(y0)∂k−1
l1,...,lk−1

σν,ik(y0)ρi2,...,ik−1,l1,...,lk−1
(y0).

Consider the set

Ik−1 := {(l1, . . . , lk−1) ∈ J1, dKk−1 : ∃κ ∈ J1, k − 1K, lκ 6= ν}.
By (15) together with Schwarz’s lemma :

∂k−1
l1,...,lk−1

σν,.(x) = 0 ; ∀x ∈ ∂Dν , ∀(l1, . . . , lk−1) ∈ Ik−1.

Then,
[σi1 . . . σikI(y0)]

(ν) = σν,i1(y0)∂
k−1
ν,...,νσν,ik (y0)ρi2,...,ik−1,ν,...,ν(y0) +∑

l1,...,lk−1∈Ik−1

σl1,i1(y0)∂
k−1
l1,...,lk−1

σν,ik (y0)ρi2,...,ik−1,l1,...,lk−1(y0)

= 0.

So,
ŷ

(ν)
t = b(ν)(y0)t.

Since l ∈ St0 and 1 > β, there exists t2 ∈ (0, T0] such that :

0 <
t1−β

l(t)
< 1 ; ∀t ∈ (0, t2].

Therefore,

lim inf
t→0+

ŷ
(ν)
t

tβl(t)
6 lim inf

t→0+

ŷ
(ν)
t

t

6 b(ν)(y0) < 0.

This achieves the proof because there is a contradiction by the first step of the
proof. �

Via Lemma 3.10, let us prove that Assumption 3.1 is necessary to get the invariance
of K for (b, σ,W).

Proof. Theorem 3.4.(2b). In a first step, it is proved that if the half-space

Ha,s := {x ∈ Rd : 〈s, x− a〉 6 0}
with a ∈ Rd and s ∈ Rd\{0} is invariant for (b, σ,W), then

〈b(x), s〉 6 0

and
〈σ.,k(x), s〉 = 0 ; ∀k ∈ J1, eK

for every x ∈ ∂Ha,s. In a second step, this result is used to show that if K is
invariant for (b, σ,W), then K ⊂ Kb,±σ.
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Step 1. Let y0 ∈ Ha,s be arbitrarily chosen. Since s ∈ Rd\{0}, there exists
ν ∈ J1, dK such that s(ν) 6= 0. Consider the map U : Rd → Rd defined by :

U(x) := −(x− a) + (x(ν) − a(ν) − 〈x− a, s〉)eν ; ∀x ∈ Rd.

The map U is one to one from Rd into itself, and

U−1(x) = −x+ a− 1

s(ν)
(x(ν) − 〈x, s〉)eν ; ∀x ∈ Rd.

Moreover, U |Ha,s (resp. U |∂Ha,s) is one to one from Ha,s (resp. ∂Ha,s) into Dν

(resp. ∂Dν) where, Dν is defined in Lemma 3.10. For every x, h ∈ Rd,

DU(x).h = −h+ (h(ν) − 〈h, s〉)eν
= MUh

with

MU := −I + eν,ν −
d∑
k=1

s(k)eν,k.

Consider the maps B : Rd → Rd and S : Rd →Md,e(R) defined by

B(x) := MUb(U
−1(x))

= (eν,ν − I)b(U−1(x))− 〈b(U−1(x)), s〉eν
and

S(x) := MUσ(U−1(x))

= (eν,ν − I)σ(U−1(x))−
e∑

k=1

〈σ.,k(U−1(x)), s〉eν,k

for every x ∈ Rd. Let F : Rd →Md,e+1(R) be the map defined by :

F (x) :=

d∑
k=1

B(k)(x)ek,1 +

e+1∑
l=2

d∑
k=1

Sk,l(x)ek,l ; ∀x ∈ Rd.

Since U−1 ∈ L(Rd) and b and σ satisfy assumptions 2.3 and 2.4, B and S also.
So, by Friz and Victoir [14], Theorem 10.26, Exercice 10.55 and Exercice 10.56,
the rough differential equation dz = F (z)dW with U(y0) as initial condition has a
unique solution z on [0, T ]. By the (rough) change of variable formula, for every
t ∈ [0, T ],

U−1(zt) = y0 +

∫ t

0

M−1
U dzs

= y0 +

∫ t

0

fb,σ(U−1(zs))dWs.

Therefore, since dy = fb,σ(y)dW has a unique solution,

(16) πF (0, .;W) = U(πfb,σ (0, U−1(.);W)).

Assume that Ha,s is invariant for (b, σ,W). Since U |Ha,s is one to one from Ha,s

into Dν , by Equality (16), Dν is invariant for (B,S,W). So, by Lemma 3.10 :

B(ν)(x− x(ν)eν) > 0 and Sν,.(x− x(ν)eν) = 0

for every x ∈ Rd. Let k ∈ J1, eK and x ∈ ∂Ha,s be arbitrarily chosen. Since U |∂Ha,s
is one to one from ∂Ha,s into ∂Dν , U(x) ∈ ∂Dν . Therefore, by construction of B
and S :

〈b(x), s〉 = −B(ν)(U(x)) 6 0
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and

〈σ.,k(x), s〉 = −
d∑
j=1

σj,k(x)s(j)

= −Sν,k(U(x)) = 0.

Step 2. Assume that there exists y0 ∈ ∂K such that y0 6∈ Kb,±σ. Then, there
exists s ∈ NK(y0) such that :

(17) 〈b(y0), s〉 > 0 or (∃k ∈ J1, eK : 〈σ.,k(y0), s〉 6= 0).

Consider the half-space

Hy0,s := {x ∈ Rd : 〈s, x− y0〉 6 0}.
By the first step of the proof, (17) implies that there exists t ∈ [0, T ] such that
πfb,σ (0, y0;W)t 6∈ Hy0,s. Moreover, since y0 ∈ ∂K and s ∈ NK(y0), K ⊂ Hy0,s.
Therefore, πfb,σ (0, y0;W)t 6∈ K. This achieves the proof by contraposition. �

4. A comparison theorem for rough differential equations

In this section, a comparison theorem for rough differential equations is proved
by using the viability theorem of Section 3.

Consider a nonempty set I ⊂ J1, dK, and

K := {(x1, x2) ∈ (Rd)2 : ∀i ∈ I, x(i)
1 6 x

(i)
2 }.

The following comparison theorem is a consequence of Theorem 3.4.

Proposition 4.1. For j ∈ {1, 2}, consider bj : Rd → Rd and σj : Rd →Md,e(R)
satisfying assumptions 2.3 and 2.4, and the map f j : Rd →Md,e+1(R) defined by :

f j(x) :=

d∑
k=1

b
(k)
j (x)ek,1 +

e+1∑
l=2

d∑
k=1

σjk,l(x)ek,l ; ∀x ∈ Rd.

Under the Assumptions 2.1 and 3.2, the two following conditions are equivalent :
(1) For every (y1

0 , y
2
0) ∈ K, i ∈ I and t ∈ [0, T ], (y1

t )(i) 6 (y2
t )(i) where yj is

the solution of the rough differential equation dyj = f j(yj)dW with yj0 as
initial condition for j ∈ {1, 2}.

(2) For every (x1, x2) ∈ K and i ∈ I, if x(i)
1 = x

(i)
2 , then

b
(i)
1 (x1) 6 b(i)2 (x2)

and
σ1
i,k(x1) = σ2

i,k(x2) ; ∀k ∈ J1, eK.

Proof. The set K is (isomorphe to) a nonempty closed convex polyhedron of R2d.
Indeed,

K ∼=
⋂
i∈I
{x ∈ R2d : 〈si, x〉 6 0}

with si := ei− ed+i for every i ∈ I. Let F : R2d →M2d,e+1(R) be the map defined
by :

F (x1, x2) :=

e+1∑
l=1

d∑
k=1

[f1
k,l(x1)ek,l + f2

k,l(x2)ed+k,l] ; ∀(x1, x2) ∈ (Rd)2.

Since bj and σj satisfy Assumption 2.3 for j ∈ {1, 2}, B := F.,1 and S :=
(F.,k)k∈J2,e+1K also.
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The first condition is equivalent to the invariance of K for (B,S,W), and the
second condition means that K ⊂ KB,±S (see Milian [25], Theorem 2 (proof)).
Therefore, these conditions are equivalent by Theorem 3.4. �

5. Invariance for differential equations driven by a fractional
Brownian motion

At Subsection 4.1, it is shown that the fractional Brownian motion satisfies
assumptions 2.1 and 3.2. Subsection 4.2 deals with the viability of the solutions
of a multidimensional logistic equation driven by a fractional Brownian motion of
Hurst parameter belonging to (1/4, 1).

5.1. Fractional Brownian motion. In this subsection, it is proved that the frac-
tional Brownian motion satisfies assumptions 2.1 and 3.2. So, the viability theorem
proved at Section 3 (Theorem 3.4) can be applied to differential equations driven
by a fractional Brownian motion. In particular, it extends the results of Aubin and
Da Prato [5].

First of all, let us remind the definition of the fractional Brownian motion.

Definition 5.1. Let (Bt)t∈[0,T ] be an e-dimensional centered Gaussian process. It
is a fractional Brownian motion of Hurst parameter H ∈ (0, 1) if and only if,

cov(B(i)
s , B

(j)
t ) =

1

2
(|t|2H + |s|2H − |t− s|2H)δi,j

for every (i, j) ∈ J1, eK2 and (s, t) ∈ [0, T ]2.

About the fractional Brownian motion, the reader can refer to Nualart [28], Chap-
ter 5.

Let B := (Bt)t∈[0,T ] be an e-dimensional fractional Brownian motion of Hurst
parameter H ∈ (1/4, 1). The associated canonical probability space is denoted by
(Ω,A,P).

By Garcia-Rodemich-Rumsey’s lemma (see Nualart [28], Lemma A.3.1), almost all
the paths of B are α-Hölder continuous with α ∈ (0, H). The following proposition
ensures that almost all the paths of B satisfy also Assumption 3.2.

Proposition 5.2. For any countable set Be ⊂ ∂Be(0, 1), almost surely,

lim inf
t→0+

〈x,Bt〉
tβl(t)

= −1 ; ∀x ∈ Be

with β = H and l ∈ Se−1 defined by

l(t) :=

√
2 log

(
log

(
1

t

))
; ∀t ∈ (0, e−1].

Proof. By the law of the iterated logarithm for the 1-dimensional fractional Brow-
nian motion (see Arcones [1] and Viitasaari [30], Remark 2.3.3) :

P

[
lim inf
t→0+

B
(1)
t

tβl(t)
= −1

]
= 1.

Consider x ∈ ∂Be(0, 1). Since (〈x,Bt〉)t∈[0,T ]
d
= B(1) :

P
[
lim inf
t→0+

〈x,Bt〉
tβl(t)

= −1

]
= 1.
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Therefore, since Be is a countable subset of ∂Be(0, 1) :

P

[ ⋂
x∈Be

{
lim inf
t→0+

〈x,Bt〉
tβl(t)

= −1

}]
= 1.

This achieves the proof. �

By Friz and Victoir [14], Proposition 15.5 and Theorem 15.33, there exists an en-
hanced Gaussian process B : (Ω,A) → GΩα,T (Re) such that B(1) = B. So, the
signal B satisfies assumptions 2.1 and 3.2.

Let W := (Wt)t∈[0,T ] be the stochastic process defined by :

Wt := te1 +

e∑
k=1

B
(k)
t ek+1 ; ∀t ∈ [0, T ].

By Friz and Victoir [14], Theorem 9.26, there exists an enhanced stochastic process
W : (Ω,A)→ GΩα,T (Re+1) such that W(1) := W .

Consider α ∈ (0, H) and a nonempty closed set K ⊂ Rd.

Proposition 5.3. Under the Assumptions 2.3 and 2.4 on b and σ :
(1) Under Assumption 3.3, K is invariant for (b, σ,W).
(2) When K is compact and b ≡ 0, if K is invariant for (σ,B), then Assump-

tion 3.1 is fulfilled.
(3) When K is convex, it is invariant for (b, σ,W) if and only if Assumption

3.1 is fulfilled.

Proof. Straightforward application of Theorem 3.4. �

Proposition 5.4. Under Assumption 3.1, if K is convex and compact, b ∈ Lipγ−1
loc (Rd)

and σ ∈ Lipγ−1
loc (Rd,Md,e(R)) with γ > 1/α, then all the solutions of the rough dif-

ferential equation dY = fb,σ(Y )dW with y0 ∈ K as initial condition are defined on
[0, T ] and viable in K.

Proof. Straightforward application of Corollary 3.7. �

Remark 5.5. .
(1) The Brownian motion is a fractional Brownian motion of Hurst parameter

H = 1/2.
(2) The rough differential equations driven by a Brownian motion are sto-

chastic differential equations in the sense of Stratonovich. Let B be an
e-dimensional Brownian motion. In order to consider the stochastic differ-
ential equation

dyt = b(yt)dt+ σ(yt)dBt

in the sense of Itô, one has to consider the rough differential equation

dyt =

b(yt)− 1

2

e∑
i,j=1

σ.,iσ.,j(yt)

 dt+ σ(yt)dBt

where,

σ.,iσ.,j :=

d∑
k=1

σk,i∂kσ.,j ; ∀i, j ∈ J1, eK.

(see Friz and Victoir [14], p. 510, Equation (17.3)).
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5.2. A logistic equation driven by a fractional Brownian motion. The lo-
gistic equation is a typical example of differential equation with a non-Lipschitz
vector field, but with solutions viable in a nonempty convex and compact subset of
Rd.

Consider K := [0, 1]d, γ > 1/α, a locally (γ − 1)-Lipschitz continuous map σ :
Rd → Md,e(R) such that K ⊂ Kσ ∩ K−σ, m ∈ Rd and bm : Rd → Rd the map
defined by :

b(i)m (x) := m(i)x(i)(1− x(i)) ; ∀i ∈ J1, dK, ∀x ∈ Rd.
The set K is a nonempty compact convex polyhedron of Rd. Indeed,

K = K1 ∩K2

with

K1 :=

d⋂
i=1

{x ∈ Rd : 〈−ei, x〉 6 0}

and

K2 :=

d⋂
i=1

{x ∈ Rd : 〈ei, x− ei〉 6 0}.

Consider i ∈ J1, dK and x ∈ Rd. If 〈−ei, x〉 = 0, then x(i) = 0 and 〈bm(x),−ei〉 = 0.
If 〈ei, x− ei〉 = 0, then x(i) = 1 and 〈bm(x), ei〉 = 0. Therefore, K ⊂ Kbm . In other
words, bm and σ satisfy Assumption 3.1.

Consider y0 ∈ K. Since K is convex and compact, by Proposition 5.4, the lo-
gistic equation

Yt = y0 +

∫ t

0

bm(Ys)ds+

∫ t

0

σ(Ys)dBs ; t ∈ [0, T ]

has at least one solution defined on [0, T ] and viable in K. For instance, one can
put

σ(x) :=

d∑
i=1

x(i)(1− x(i))ei,i ; ∀x ∈ Rd.

Appendix A. Tangent and normal cones

This Appendix is a brief survey on convex analysis.

The definitions and propositions stated in this subsection come from Hiriart-Urrut
and Lemaréchal [17], Chapter A, and Aubin et al. [4], Chapter 18.

First, let us define the polar and bipolar sets of a closed cone.

Definition A.1. .
(1) The polar set of a closed cone K ⊂ Rd is the closed cone

K◦ = {s ∈ Rd : ∀δ ∈ K, 〈s, δ〉 6 0}.

(2) The bipolar set of K is the closed cone K◦◦ := (K◦)◦.

Let us now define the tangent and normal cones to a nonempty closed set S ⊂ Rd
at x ∈ S.

Definition A.2. .
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(1) A vector δ ∈ Rd is tangent to S at x if and only if there exists a sequence
(xn)n∈N of elements of S, and a real sequence (tn)n∈N such that when n→
∞,

‖xn − x‖ → 0, tn ↓ 0 and
∥∥∥∥xn − xtn

− δ
∥∥∥∥→ 0.

The set of the tangent vectors to S at x is a closed cone of Rd, called the
tangent cone to S at x, and denoted by TS(x).

(2) A vector s ∈ Rd is normal to S at x if and only if,

〈s, δ〉 6 0 ; ∀δ ∈ TS(x).

The set of the normal vectors to S at x is the normal cone to S at x, denoted
by NS(x).

Remark A.3. If x ∈ int(S), then TS(x) = TS(x)◦◦ = Rd.

The two following properties are crucial in the proof of Theorem 3.4.

Proposition A.4. For every y ∈ Rd and y∗ ∈ ΠS(y) (see (2) for a definition),
y − y∗ ∈ TS(y∗)◦.

See [3], Proposition 3.2.3 p. 85.

Proposition A.5. If S is compact, then

TS(x)◦ = {s ∈ Rd : ∀ε > 0, ∃δ > 0, ∀y ∈ S ∩Bd(x, δ), 〈y − x, s〉 6 ε‖y − x‖}.

The two last propositions provide some properties of the tangent and normal cones
when S is a nonempty closed convex set.

Proposition A.6. The tangent cone TS(x) is a closed convex cone such that S ⊂
{x}+ TS(x).

Proposition A.7. A vector s ∈ Rd is normal to S at x if and only if,

〈s, y − x〉 6 0 ; ∀y ∈ S.
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