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In this paper, a new general family of distributions using the hypoexponential distribution is introduced and studied. A special case of this family is explored in detail, corresponding to a new finite generalized mixture of generalized exponential distributions. Some of their mathematical properties are provided. We investigate maximum likelihood estimation of the model parameters. Three real data sets are used to prove the potential of this distribution among some recent extensions of the exponential distribution.

Introduction

Over the past decades, considerable efforts have been made to develop flexible distributions for modeling lifetime data. In many situations, the weighted exponential distributions reach this goal with a great success. They are characterized by probability density functions of the form: f (x) = w(x)g(x), where g(x) denotes a pdf of the exponential distribution with parameter λ > 0 and w(x) denotes a weight function. A suitable choice for w(x), based on practical or theoretical consideration, can lead a proper statistical model for analysis specific lifetime data. The literature covering weighted exponential distributions is vast and is growing fast. We refer to the review of [START_REF] Saghir | Weighted Distributions: A Brief Review, Perspective and Characterizations[END_REF], and the references therein.

In this paper, we introduce a new general family of distributions constructed from the so-called hypoexponential distribution and a transformation proposed by [START_REF] Al-Hussaini | Composition of cumulative distribution functions[END_REF]. Let us recall that the hypoexponential distribution is characterized by the distribution of a sum of several independent exponential random variables with different parameters (see [START_REF] Amari | Closed-Form Expression for Distribution of the Sum of Independent E Random Variables[END_REF] and [START_REF] Akkouchi | On the convolution of exponential distributions[END_REF]). It is used in many domains of application, including tele-traffic engineering and queueing systems. Several tuning parameters are thus necessary for a perfect model. Our new family of distributions profits of this flexibility to open the door of new applications.

By considering a specific configuration of this family, we exhibit a new weighted exponential distribution, called the EH(a, λ) distribution, having some interesting properties. The corresponding cumulative distribution function can also be viewed a special linear combination of several cumulative distribution functions associated to the well known exponentiated exponential distribution introduced by Gupta andKundu (1999, 2001). Since some coefficients of the combination can be negative, it also belongs to the family of finite generalized mixture distributions (see [START_REF] Bartholomew | Sufficient conditions for a mixture of exponentials to be a probability density function[END_REF], [START_REF] Franco | Generalized mixtures of Weibull components[END_REF] and [START_REF] Bakouch | Lindley first-order autoregressive model with applications[END_REF]). Mathematical properties of our distribution are studied, including moments, conditional moments, reversed conditional moments, moment generating function, Lorenz curve, Bonferroni curve, mean deviations and order statistics. Estimation of the parameters is determined using the method of maximum likelihood. Considering three real data sets of different natures, we show the superiority of our distribution in terms of some goodness-of-fit statistics in comparison to the well-known distributions: the Lindley distribution (see [START_REF] Ghitany | Lindley distribution and its applications[END_REF]), the exponential distribution and the exponentiated exponential distribution (see Gupta andKundu (1999, 2001)).

The rest of the paper is organized as follows: Section 2 presents our new distribution. Some of its mathematical properties are described in Section 3. Distributions of order statistics following our distribution are investigated in Section 4. Estimation of the parameters via the maximum likelihood is studied in Section 5. Applications to real data sets are performed in Section 6. Some concluding remarks are outlined in Section 7.

The EH(a, λ) distribution

On the hypoexponential distribution

We now briefly present the so-called hypoexponential distribution. Let m ≥ 2 be a positive integer and α 1 , α 2 , . . . , α m be m different real numbers. Let X 1 , X 2 , . . . , X m be m independent random variables, with X i following the exponential distribution of parameter α i > 0; the probability distribution function (pdf) of X i is given by

f Xi (x) = α i e -αix ,
x > 0.

Then the random variable S = m i=1 X i follows the hypoexponential distribution with a parameter vector a = (α 1 , . . . , α m ); a pdf of S is given by

f S (x) = m i=1 α i P i e -αix , x > 0,
where

P i = m j=1 j =i 1 - α i α j .
Note that P i is completely determined by a and can be positive or negative according to the sign of m j=1 j =i (α j -α i ), offering a great richness in the construction of f S (x). The corresponding cumulative distribution function (cdf) is given by

F S (x) = 1 - m i=1 1 P i e -αix , x > 0. ( 1 
)
Further details on the hypoexponential distribution can be found in [START_REF] Amari | Closed-Form Expression for Distribution of the Sum of Independent E Random Variables[END_REF], [START_REF] Akkouchi | On the convolution of exponential distributions[END_REF] and [START_REF] Smaili | Hypoexponential distribution with different parameters[END_REF]. Before introducing the EH(a, λ) distribution, we present a more general family of distributions based on a general transformation of cdf and the hypoexponential distribution.

A family of distributions based on the hypoexponential distribution

Lemma 1 below presents an idea of construction of a new cdf using two existing cdfs.

Lemma 1 (AL-Hussaini ( 2012)). Let G(x) and H(x) be two cdfs of continuous distributions with G(x) of support (0, +∞). Let K(x) be the function defined by

K(x) = 1 -G(-ln(H(x))), x ∈ R.
Then K(x) is a cdf of a continuous distribution.

Remark 1. In the context of Lemma 1, one can observe that K(x) is the cdf of the random variable H -1 (e -U ) where U denotes a random variable having the cdf G(x). This idea was also used with specific distributions on U in [START_REF] Zografos | On families of beta-and generalized gamma-generated distributions and associated inference[END_REF] and [START_REF] Ristić | The gamma-exponentiated exponential distribution[END_REF].

Let us now introduce a particular family of distributions which will be at the heart of this study. Let H(x) be a cdf of a continuous distribution and G(x) be the cdf associated to the hypoexponential distribution with a parameter vector a = (α 1 , . . . , α m ) (1). It follows from Lemma 1 that the following function K(x) is a cdf:

K(x) = 1 -G(-ln(H(x))) = 1 -1 - m i=1 1 P i e -αi(-ln(H(x))) = m i=1 1 P i [H(x)] αi .
From this expression, new distributions arise by taking specific cdf H(x) (uniform distribution, normal distribution, Cauchy distribution, Pareto distribution . . . ). We will call the associated distribution the GH(H; a) distribution (for general hypoexponential distribution with a parameter vector a = (α 1 , . . . , α m ) using a cdf H(x)) for frequently used purpose in the present study or elsewhere.

Let us now consider a random variable Y following the GH(H; a) distribution. Then the cdf of Y is given by

F Y (x) = m i=1 1 P i [H(x)] αi , x ∈ R.
Using the equality

m i=1 1 Pi = 1, the survival function (sf) of Y is given by S Y (x) = 1 -F Y (x) = 1 - m i=1 1 P i [H(x)] αi = m i=1 1 P i [1 -[H(x)] αi ], x ∈ R.
Denoting by h(x) a pdf associated to H(x), a pdf of Y is given by

f Y (x) = h(x) m i=1 α i P i [H(x)] αi-1 , x ∈ R.
The hazard rate function (hrf) of Y is given by

h Y (x) = f Y (x) S Y (x) = h(x) m i=1 αi Pi [H(x)] αi-1 m i=1 1 Pi [1 -[H(x)] αi ] , x ∈ R.
Remark 2. The GH(H; a) distribution belongs to the family of weighted distributions; we can express

f Y (x) as: f Y (x) = w(x)g(x)
, where g(x) denotes a pdf of the exponential distribution with parameter

λ > 0 and w(x) = m i=1 αi Pi [H(x)] αi-1 .
Remark 3. Since the coefficients 1 P1 , 1 P2 , . . . , 1 Pm have possible negative and positive values with m i=1 1 Pi = 1, the GH(H; a) distribution also belongs to the family of finite generalized mixture of exponentiated baseline cdf [H(x)] α (also known as Lehmann type-I distribution) (see [START_REF] Bartholomew | Sufficient conditions for a mixture of exponentials to be a probability density function[END_REF], [START_REF] Franco | Generalized mixtures of Weibull components[END_REF] and [START_REF] Bakouch | Lindley first-order autoregressive model with applications[END_REF]).

Remark 4. In the particular case

m = 2, a = (α 1 , α 2 ), α 1 , α 2 > 0, α 1 = α 2 , we have P 1 = α2-α1 α2 and P 2 = α1-α2 α1 , F Y (x) = α 2 α 2 -α 1 [H(x)] α1 + α 1 α 1 -α 2 [H(x)] α2 , x ∈ R, and 
f Y (x) = α 1 α 2 α 2 -α 1 h(x) [H(x)] α1-1 -[H(x)] α2-1 , x ∈ R.
Assuming that α 2 > α 1 , note that P 1 > 0 and P 2 < 0.

The distribution of a sum of two independent GH(H; a) distributions can be characterized. Let Y and Z be two independent random variables, Y follows the GH(H 1 ; a) distribution with a = (α 1 , α 2 , . . . , α m ) and Z follows the GH(H 2 ; b) distribution with b = (β 1 , β 2 , . . . , β m ). Let h 1 (x) be a pdf associated to the cdf H 1 (x) and h 2 (x) be a pdf associated to the cdf

H 2 (x). Set Q = m j=1 j = 1 -β βj .
Then a pdf for Y + Z is given by

f Y +Z (x) = m i=1 m =1 α i β P i Q +∞ -∞ h 1 (t)h 2 (x -t)[H 1 (t)] αi-1 [H 2 (x -t)] β -1 dt, x ∈ R.
This result is an immediate consequence of the continuous convolution formula.

The EH(a, λ) distribution

Let us now consider the GH(H; a) distribution defined with the cdf H(x) associated to the exponential distribution of parameter λ > 0: H(x) = 1 -e -λx , x > 0. We will call the associated distribution the EH(a, λ) distribution (for exponential hypoexponential distribution with a parameter vector a = (α 1 , . . . , α m ) and λ) for frequently used purpose in the present study or elsewhere. Let us now consider a random variable Y following the EH(a, λ) distribution. Then the cdf of Y given by

F Y (x) = m i=1 1 P i (1 -e -λx ) αi , x > 0.
This cdf can be viewed as a finite generalized mixture of generalized exponential distribution baseline cdf introduced by Gupta and [START_REF] Gupta | Generalized Exponential Distributions[END_REF][START_REF] Gupta | Exponentiated exponential distribution: an alternative to gamma and Weibull distributions[END_REF], with different parameters for the power (the standard cdf of the generalized exponential distribution is obtained by taking m = 1). Thanks to its several tuning parameters, the EH(a, λ) distribution has a great flexibility which can be useful for determine a nice statistical model. The sf of Y is given by

S Y (x) = m i=1 1 P i [1 -(1 -e -λx ) αi ], x > 0.
A pdf of Y is given by

f Y (x) = λe -λx m i=1 α i P i (1 -e -λx ) αi-1 , x > 0.
The hrf of Y is given by

h Y (x) = λe -λx m i=1 αi Pi (1 -e -λx ) αi-1 m i=1 1 Pi [1 -(1 -e -λx ) αi ] , x > 0.
Some asymptotic properties of the previous functions are given below: when x → 0, we have

F Y (x) ∼ m i=1 1 P i (λx) αi , f Y (x) ∼ λ m i=1 α i P i (λx) αi-1 , h Y (x) ∼ λ m i=1 α i P i (λx) αi-1 . Note that, if inf(α 1 , α 2 , . . . , α m ) > 1, we have lim x→0 f Y (x) = 0. If inf(α 1 , α 2 , .
. . , α m ) < 1, the limit depends on the signs of P 1 , P 2 , . . . , P m ; we can have lim Remark 6. We now adapt Remark 1 to the EH(a, λ) distribution. Let us observe that, for a random variable U following the hypoexponential distribution with parameter a, the random variable W = -1 λ ln(1 -e -U ) follows the EH(a, λ) distribution. Remark 7. In the particular case m = 2, a = (α 1 , α 2 ), α 1 , α 2 > 0, α 1 = α 2 , we have P 1 = α2-α1 α2 and P 2 = α1-α2 α1 ,

F Y (x) = α 2 α 2 -α 1 [1 -e -λx ] α1 + α 1 α 1 -α 2 [1 -e -λx ] α2 , x > 0, and f Y (x) = λα 1 α 2 α 2 -α 1 e -λx [1 -e -λx ] α1-1 -[1 -e -λx ] α2-1 , x > 0.
Figures 1, 2 and 3 show the graphical features of pdfs, cdfs and hrfs of the EH(a, λ) distribution with a = (α 1 , α 2 ), α 1 = α and α 2 = α + 0.1, for several choices of parameters (α, λ). In this particular case, let us precise that

F Y (x) = (1 + 10α)(1 -e -λx ) α -10α(1 -e -λx ) α+0.1 , (2) 
a pdf is given by

f Y (x) = λα(1 + 10α)e -λx (1 -e -λx ) α-1 [1 -(1 -e -λx ) 0.1 ] (3)
and the hrf is given by

h Y (x) = λα(1 + 10α)e -λx (1 -e -λx ) α-1 [1 -(1 -e -λx ) 0.1 ] 1 -(1 + 10α)(1 -e -λx ) α + 10α(1 -e -λx ) α+0.1 . ( 4 
)
We observe that the plots of the pdfs and hrfs of the EH(a, λ) distribution are very flexible; different shapes and curves can be of interest for modeling lifetime data.

Remark 8. The considered pdf f Y (x) (3) is a very special case of the EH(a, λ) distribution and the value 0.1 is subjective. It can also be viewed as a particular two parameters pdf of the McDonald modified weibull distribution introduced in [START_REF] Merovci | The McDonald Modified Weibull Distribution: Properties and Applications[END_REF] or the Beta exponentiated Weibull distribution developed by [START_REF] Cordeiro | The beta exponentiated Weibull distribution[END_REF]. Note that the main differences between f Y (x) (3) and similar looking pdfs as those associated to the weighted exponentiated exponential distribution introduced by [START_REF] Mahdavi | Two weighted distributions generated by exponential distribution[END_REF] or the transmuted generalized exponential distribution proposed by [START_REF] Khan | Transmuted generalized exponential distribution: A generalization of the exponential distribution with applications to survival data[END_REF], is the last term [1 -(1 -e -λx ) 0.1 ] which only depends on λ, not α. 

Mathematical properties related to the EH(a, λ) distribution

We now present some mathematical properties of our distribution.

The distribution of a sum of two independent EH(a, λ) distributions can be characterized. Let Y and Z be two independent random variables, Y follows the EH(a, λ 1 ) distribution with a = (α 1 , α 2 , . . . , α m ) and Z follows the EH(b, λ 2 ) distribution with b

= (β 1 , β 2 , . . . , β m ). Set Q = m j=1 j = 1 -β βj .
Then a pdf for Y + Z is given by

f Y +Z (x) = λ 1 λ 2 m i=1 m =1 α i β P i Q x 0 e -λ1t e -λ1(x-t) [1 -e -λ1t ] αi-1 [1 -e -λ2(x-t) ] β -1 dt, x > 0.
Also, note that

P(Y ≤ Z) = m i=1 m =1 β P i Q (α i + β ) .
This probability can be of interest in the context of reliability the stress-strength model (see [START_REF] Kundu | Estimation of P (Y < X) for Generalized Exponential Distribution[END_REF]).

Let us work with only a random variable Y following the EH(a, λ) distribution.

Owing to the binomial series, we have the following expansion for F Y (x):

F Y (x) = m i=1 1 P i (1 -e -λx ) αi = m i=1 +∞ k=0 α i k (-1) k 1 P i e -kλx .
Using again the binomial series, we have the following expansion for f Y (x):

f Y (x) = λe -λx m i=1 α i P i (1 -e -λx ) αi-1 = m i=1 +∞ k=0 η i,k e -(k+1)λx ,
where

η i,k = λ α i -1 k (-1) k α i P i .
We can obtain the quantile function Q Y (x) via the nonlinear equation:

F Y (Q Y (x)) = x ⇔ m i=1 1 P i (1 -e -λQ Y (x) ) αi = x.
The EH(a, λ) distribution can be simulated by using Y = Q Y (U ) where U is a random variable having the uniform distribution on [0, 1]. Let us consider the Gamma function: Γ(ν) = +∞ 0

x ν-1 e -x dx, ν > 0. The r-th moment of Y is given by

E(Y r ) = +∞ -∞ x r f Y (x)dx = m i=1 +∞ k=0 η i,k +∞ 0 x r e -(k+1)λx dx = Γ(r + 1) λ r+1 m i=1 +∞ k=0 η i,k 1 (k + 1) r+1 .
The moment generating function of Y is given by, for t < λ,

M Y (t) = E(e tY ) = +∞ -∞ e tx f Y (x)dx = m i=1 +∞ k=0 η i,k +∞ 0 e (t-(k+1)λ)x dx = m i=1 +∞ k=0 η i,k 1 (k + 1)λ -t .
Proceeding as in (Gupta and Kundu, 2001, Equation (2.3)), with the change of variable y = e -λx , we also have, for t < λ,

M Y (t) = m i=1 1 P i Γ(α i + 1)Γ 1 -t λ Γ α i -t λ + 1 .
Let us consider the lower incomplete Gamma function: Γ(t, ν) = t 0 x ν-1 e -x dx. Then we have

t 0 x r f Y (x)dx = m i=1 +∞ k=0 η i,k t 0 x r e -(k+1)λx dx = 1 λ r+1 m i=1 +∞ k=0 η i,k Γ((k + 1)λt, r + 1) (k + 1) r+1 .
This equality will be useful in the next. For t > 0, the conditional r-th moment of Y is given by

E(Y r | Y > t) = 1 1 -F Y (t) +∞ t x r f Y (x)dx = 1 1 -F Y (t) E(Y r ) - t 0 x r f Y (x)dx = 1 λ r+1 (1 -F Y (t)) m i=1 +∞ k=0 η i,k Γ(r + 1) -Γ((k + 1)λt, r + 1) (k + 1) r+1 .
For t > 0, the reversed conditional r-th moment of Y is given by

E(Y r | Y ≤ t) = 1 F Y (t) t 0 x r f Y (x)dx = 1 F Y (t)λ r+1 m i=1 +∞ k=0 η i,k Γ((k + 1)λt, r + 1) (k + 1) r+1 . Let µ = E(Y ). The Lorenz curve L(F Y (t)) is given by L(F Y (t)) = 1 µ t 0 xf Y (x)dx = 1 µλ r+1 m i=1 +∞ k=0 η i,k Γ((k + 1)λt, 2) (k + 1) r+1 . The Bonferroni curve B(F Y (t)) is given by B(F Y (t)) = 1 µF Y (t) t 0 xf Y (x)dx = 1 µF Y (x)λ r+1 m i=1 +∞ k=0 η i,k Γ((k + 1)λt, 2) (k + 1) r+1 .
The mean deviation of Y about the mean µ can be expressed as

δ 1 (Y ) = E(|Y -µ|) = 2µF Y (µ) -2 µ 0 xf Y (x)dx = 2µF Y (µ) - 2 λ r+1 m i=1 +∞ k=0 η i,k Γ((k + 1)λµ, 2) (k + 1) r+1 .
The mean deviation of Y about the median M can be expressed as

δ 2 (Y ) = E(|Y -M |) = µ -2 M 0 xf Y (x)dx = µ - 2 λ r+1 m i=1 +∞ k=0 η i,k Γ((k + 1)λM, 2) (k + 1) r+1 .

Order statistics

Order statistics are essential in many areas of statistics. They naturally appear in the probabilistic analysis of reliability of a system. We explicit here the distributions of these order statistics in the context of our new distribution. Let Y 1 , Y 2 , . . . , Y n be n independent and identically distributed random variables following the EH(a, λ) distribution. Let us consider its order statistics is Y 1:n , Y 2:n , . . . , Y n:n . A pdf of the i-th order statistic Y i:n is given by

f i:n (x) = n! (i -1)! (n -i)! [F Y (x)] i-1 [1 -F Y (x)] n-i f Y (x) = n! (i -1)! (n -i)! m i=1 1 P i (1 -e -λx ) αi i-1 1 - m i=1 1 P i (1 -e -λx ) αi n-i × λe -λx m i=1 α i P i (1 -e -λx ) αi-1 , x > 0.
In particular, a pdf of

Y 1:n = inf(Y 1 , Y 2 , . . . , Y n ) is given by f 1:n (x) = λne -λx 1 - m i=1 1 P i (1 -e -λx ) αi n-1 m i=1 α i P i (1 -e -λx ) αi-1
and a pdf of

Y n:n = sup(Y 1 , Y 2 , . . . , Y n ) is given by f n:n (x) = λne -λx m i=1 1 P i (1 -e -λx ) αi n-1 m i=1 α i P i (1 -e -λx ) αi-1 .
Consequently, the cdf of the i-th order statistic Y i:n is given by

F i:n (x) = x -∞ f i:n (t)dt = n! (i -1)! (n -i)! n-i k=0 n -i k (-1) k i + k [F Y (x)] i+k = n! (i -1)! (n -i)! n-i k=0 n -i k (-1) k i + k m i=1 1 P i (1 -e -λx ) αi i+k , x > 0.
Further, for j < k, a joint pdf of (Y j:n , Y k:n ) is given by

f (j:n,k:n) (x j , x k ) = n! (j -1)! (n -k)! (k -j -1) [F Y (x j )] j-1 [F Y (x k ) -F Y (x j )] k-j-1 [1 -F Y (x k )] n-k f Y (x j )f Y (x k ) = n! (j -1)! (n -k)! (k -j -1) m i=1 1 P i (1 -e -λxj ) αi j-1 m i=1 1 P i [(1 -e -λx k ) αi -(1 -e -λxj ) αi ] k-j-1 × 1 - m i=1 1 P i (1 -e -λx k ) αi n-k λ 2 e -λ(xj +x k ) m i=1 α i P i (1 -e -λxj ) αi-1 m i=1 α i P i (1 -e -λx k ) αi-1 , 0 < x j < x k .

Maximum likelihood estimation

Let Y 1 , Y 2 , . . . , Y n be a random sample from the EH(a, λ) distribution with unknown parameters α 1 , . . . , α m , λ. We consider the maximum likelihood estimation providing the maximum likelihood estimators (MLEs) α1 , . . . , αm , λ for α 1 , . . . , α m , λ. Let us recall that the MLEs have some statistical desirable properties (under regularity conditions) as the sufficiency, invariance, consistency, efficiency and asymptotic normality. Using the observed information matrix, asymptotic confidence interval for α 1 , . . . , α m , λ can be constructed. Details can be found in [START_REF] Larsen | An Introduction to Mathematical Statistics and Its Applications[END_REF].

Let Θ = (α 1 , . . . , α m , λ) and y 1 , y 2 , . . . , y n be the observed values. The likelihood function is given by

L(Θ) = λ n e -λ n u=1 yu n u=1 m i=1 α i P i (1 -e -λyu ) αi-1 .
The log-likelihood function is given by

(Θ) = log(L(Θ)) = n log(λ) -λ n u=1 y u + n u=1 log m i=1 α i P i (1 -e -λyu ) αi-1 .
The nonlinear log-likelihood equations given by ∂ (Θ) ∂Θ = 0 are listed below

∂ (Θ) ∂λ = n λ - n u=1 y u + n u=1 y u e -λyu m i=1 αi(αi-1) Pi (1 -e -λyu ) αi-2 m i=1 αi Pi (1 -e -λyu ) αi-1 = 0 (5)
and, for any q ∈ {1, . . . , m},

∂ (Θ) ∂α q = n u=1 ∂ ∂αq m i=1 αi Pi (1 -e -λyu ) αi-1 m i=1 αi Pi (1 -e -λyu ) αi-1 = 0. (6) 
Let us now investigate the numerator. We have

m i=1 α i P i (1 -e -λyu ) αi-1 = α q P q (1 -e -λyu ) αq-1 + m i=1 i =q α i P i (1 -e -λyu ) αi-1 . Hence ∂ ∂α q m i=1 α i P i (1 -e -λyu ) αi-1 = ∂ ∂α q α q P q (1 -e -λyu ) αq-1 + α q P q (1 -e -λyu ) αq-1 log(1 -e -λyu ) + m i=1 i =q α i (1 -e -λyu ) αi-1 ∂ ∂α q 1 P i .
Observe that

∂ ∂α q α q P q = ∂ ∂α q   αq m j=1 j =q α j α j -α q    = m j=1 j =q α j α j -α q + α q    m j=1 j =q α j α j -α q       m v=1 v =q 1 α v -α q    .
On the other hand, for i = q, we have

∂ ∂α q 1 P i = ∂ ∂α q    m j=1 j =i α j α j -α i    =     m j=1 j ={i,q} α j α j -α i     ∂ ∂α q α q α q -α i = -     m j=1 j ={i,q} α j α j -α i     α i (α q -α i ) 2 .
Putting these equalities together, we obtain an unified equation for (6). The MLEs are solutions of ( 5) and ( 6). These equations are not solvable analytically, but some numerical iterative methods, as Newton-Raphson method, can be used. The solutions can be approximate numerically by using software such as MATHEMATICA, MAPLE and R. Here we work with MATHEMATICA.

Study of a particular case. Let us now consider a simple two parameters EH(a, λ) distribution where a = (α 1 , . . . , α m ), for any i ∈ {1, . . . , m}, α i = α + i , with 1 , . . . , m denote different fixed positive real numbers. Then α > 0 and λ > 0 can be estimated via the maximum likelihood method. It is enough to set Θ = (α, λ), using (5) with α i = α + i and consider the new equation:

∂ (Θ) ∂α = n u=1 ∂ ∂α m i=1 α+ i Pi (1 -e -λyu ) α+ i-1 m i=1 α+ i Pi (1 -e -λyu ) α+ i-1 = 0. ( 7 
)
We can explicit the numerator by observing that

∂ ∂α m i=1 α + i P i (1 -e -λyu ) α+ i-1 = m i=1 ∂ ∂α α + i P i (1 -e -λyu ) α+ i-1 + m i=1 α + i P i (1 -e -λyu ) α+ i-1 ln(1 -e -λyu ), with ∂ ∂α α + i P i =    m j=1 j =i 1 j -i    ∂ ∂α   m j=1 (α + j )   =    m j=1 j =i 1 j -i      m j=1 (α + j )     m j=1 1 α + j   .
Again, these equations can be solve numerically. Thanks to its simplicity, this particular EH(a, λ) distribution will be considered in the applications presented in the next section.

Illustrative real data examples

In this section, we analysis real data sets to show that the EH(a, λ) distribution can be a better model than other existing distributions. We consider the following well-known weighted exponential distributions for comparison purpose: Lindley distribution: A pdf associated to the Lindley distribution of parameter θ > 0 is given by

f (x) = θ 2 θ + 1 (1 + x)e -θx , x > 0.
Theory and applications related to this distribution can be found in [START_REF] Ghitany | Lindley distribution and its applications[END_REF].

Exponential distribution: A pdf associated to the exponential distribution of parameter λ > 0 is given by f (x) = λe -λx , x > 0.

Exponentiated exponential distribution (E Exponential): A pdf associated to the Exponentiated exponential distribution of parameters α, λ > 0 is given by

f (x) = λαe -λx 1 -e -λx α-1 , x > 0.
Details about this distribution can be found in [START_REF] Gupta | Generalized Exponential Distributions[END_REF].

Exponential Hypoexponential distribution (Exp Hypo): To simplify the situation, we consider a particular simple two parameters EH(a, λ) distribution with m = 2, a = (α 1 , α 2 ), α 1 = α and α 2 = α + 0.1, α > 0 and λ > 0 are the parameters to be estimated; the value 0.1 is subjective. The corresponding pdf is given by

f (x) = λα(1 + 10α)e -λx (1 -e -λx ) α-1 [1 -(1 -e -λx ) 0.1 ],
x > 0.

Remark 9. Another two parameters EH(a, λ) distribution can be used, as the one defined with m = 3, say a = (α 1 , α 2 , α 3 ), α 1 = α, α 2 = α + and α 3 = α + υ, for fixed and υ with = υ, the parameters to be estimated are α > 0 and λ > 0.

The three considered real data sets are described as follows:

Data set 1: This data set contains n = 31 measures of the strength data of glass of the aircraft window. It is extracted from Fuller et al. (1994): 18.83, 20.8, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.8, 26.69, 26.77, 26.78, 27.05, 27.67, 29.9, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29 Data set 2: The data set contains n = 63 measures related to the strength of 1.5cm glass fibers. It is reported in Smith and Naylor (1987): 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89 Data set 3: The data set contains n = 128 measures on the remission times in months of bladder cancer patients. It is extracted from Lee and Wang (2003): 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69, 5.49 For each data set, we compare the fitted distributions using the four criteria: -2 log(L), AIC (Akaike Information Criterion), AICC (Akaike Information Criterion Corrected) and BIC (Bayesian Information Criterion). Let us precise that log(L) is the log-likelihood taking with the estimate values, AIC=-2 log(L) + 2k, AICC=AIC+ 2k(k+1) n-k-1 and BIC=-2 log(L) + k log(n), where k denotes the number of estimated parameters and n denotes the sample size. The best fitted distribution corresponds to lower -2 log(L), AIC, AICC and BIC.

We see in Table 1 that the EH(a, λ) distribution has the smallest -2 log(L), AIC, AICC and BIC for the three data sets, indicating that it is a serious competitor to the other considered distributions.

Conclusion

A new weighted exponential distribution based on the hypoexponential distribution is introduced. Some of its structural properties are studied. The analysis of three real data sets shows that the fit of the model related to our new distribution can be superior to other models.

As future work, we plan to study the GH(H; a) distribution with another cdf H(x) and also to provide more applications for the EH(a, λ) distribution with m ≥ 3. Inverted or transmuted transformations of EH(a, λ) can be of interest too for some applications.

  x→0 f (x) = +∞ in some configurations. We have lim x→+∞ f (x) = 0. The limit for h(x) when x → +∞ depends only on λ and P 1 , P 2 , . . . , P m . Remark 5. As already observed in Remark 3, the EH(a, λ) distribution belongs to the family of weighted exponential distributions; we can express f Y (x) as: f Y (x) = w(x)g(x), where g(x) denotes a pdf of the exponential distribution with parameter λ > 0 and w(x) = m i=1 αi Pi (1 -e -λx ) αi-1 .
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 123 Figure 1: Some cdfs F (x) = F (x; (α, λ)) (2) with various values for α and λ.
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 1 -2 log(L), AIC, AICC and BIC of the fitted distributions of Data sets 1, 2 and 3.
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