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Abstract

In this paper, a new general family of distributions using the hypoexponential distribution is intro-
duced and studied. From this family, we focus our attention on a new weighted exponential distri-
bution. Some of their mathematical properties are provided. We investigate maximum likelihood
estimation of the model parameters. Three real data sets are used to prove the potential of this
distribution among some recent extensions of the exponential distribution.
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1. Introduction

Over the past decades, considerable efforts have been made to develop flexible distributions for
modeling lifetime data. In many situations, the weighted exponential distributions reach this goal with
a great success. They are characterized by probability density functions of the form: f(x) = w(x)g(x),
where g(x) denotes a pdf of the exponential distribution with parameter λ > 0 and w(x) denotes a
weight function. A suitable choice for w(x), based on practical or theoretical consideration, can
lead a proper statistical model for analysis specific lifetime data. The literature covering weighted
exponential distributions is vast and is growing fast. We refer to the review of [16], and the references
therein.

In this article, we introduce a new general family of distributions constructed from the so-called
hypoexponential distribution and a transformation derived to the one used in [19] and [15]. Let us
recall that the hypoexponential distribution is characterized by the distribution of a sum of several
independent exponential random variables with different parameters (see [2] and [1]). It is used in
many domains of application, including tele-traffic engineering and queueing systems. Several tuning
parameters are thus necessary for a perfect model. Our new family of distributions profits of this
flexibility to open the door of new applications.

By considering a specific configuration, we exhibit a new weighted exponential distribution, called
the EH(a, λ) distribution, having some interesting properties. The corresponding cumulative distri-
bution function can also be viewed a special linear combination of several cumulative distribution
functions associated to the well known exponentiated exponential distribution introduced by [8, 9].
Since some coefficients of the combination can be negative, it also belongs to the family of finite gen-
eralized mixture distributions (see [4], [5] and [3]). Mathematical properties of our distribution are
studied, including moments, conditional moments, reversed conditional moments, moment generating
function, Lorenz curve, Bonferroni curve, mean deviations and order statistics. Estimation of the
parameters is determined using the method of maximum likelihood. Considering three real data sets
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of different natures, we show the superiority of our distribution in terms of some goodness-of-fit statis-
tics in comparison to the well-known distributions: the Lindley distribution (see [7]), the exponential
distribution and the exponentiated exponential distribution (see [8, 9]).

The rest of the paper is organized as follows: Section 2 presents our new distribution. Some of
its mathematical properties are described in Section 3. Distributions of order statistics following our
distribution are investigated in Section 4. Estimation of the parameters via the maximum likelihood
is studied in Section 5. Applications to real data sets are performed in Section 6. Some concluding
remarks are outlined in Section 7.

2. The EH(a, λ) distribution

2.1. On the hypoexponential distribution

We now briefly present the so-called hypoexponential distribution. Let m ≥ 2 be a positive
integer and α1, α2, . . . , αm be m different real numbers. Let X1, X2, . . . , Xm be m independent
random variables, with Xi following the exponential distribution of parameter αi > 0; the probability
distribution function (pdf) of Xi is given by

fXi(x) = αie
−αix, x > 0.

Then the random variable S =
m∑
i=1

Xi follows the hypoexponential distribution with a parameter

vector a = (α1, . . . , αm); a pdf of S is given by

fS(x) =

m∑
i=1

αi
Pi
e−αix, x > 0,

where

Pi =

m∏
j=1
j 6=i

(
1− αi

αj

)
.

Note that Pi is completely determined by a and can be positive or negative according to the sign of
m∏
j=1
j 6=i

(αj − αi), offering a great richness in the construction of fS(x). The corresponding cumulative

distribution function (cdf) is given by

FS(x) = 1−
m∑
i=1

1

Pi
e−αix, x > 0. (1)

Further details on the hypoexponential distribution can be found in [2], [1] and [17]. Before introduc-
ing the EH(a, λ) distribution, we present a more general family of distributions based on a general
transformation of cdf and the hypoexponential distribution.

2.2. A family of distributions based on the hypoexponential distribution

Lemma 1 below presents an idea of construction of a new cdf using two existing cdfs.

Lemma 1. Let G(x) and H(x) be two cdfs of continuous distributions with G(x) of support (0,+∞).
Let K(x) be the function defined by

K(x) = 1−G(− ln(H(x))), x ∈ R.

Then K(x) is a cdf of a continuous distribution.

2



Proof. Since G(x) and H(x) are two cdfs of continuous distributions with G(x) of support (0,+∞), we
have K(x) ∈ [0, 1], K(x) is continuous on R, lim

x→−∞
K(x) = 1−G(− lim

x→0
ln(x)) = 1− lim

x→+∞
G(x) = 0,

lim
x→+∞

K(x) = 1−G(0) = 1 and, denoting by g(x) a pdf associated to G(x) and h(x) a pdf of H(x),

we have K ′(x) = h(x)
H(x)g(− ln(H(x))) ≥ 0 almost everywhere. Thus K(x) satisfies the properties of a

cdf. This ends the proof.

Remark 1. In the context of Lemma 1, one can observe that K(x) is the cdf of the random variable
H−1(e−U ) where U denotes a random variable having the cdf G(x). This idea was also used with
specific distributions on U in [19] and [15].

Let us now introduce a particular family of distributions which will be at the heart of this study.
Let H(x) be a cdf of a continuous distribution and G(x) be the cdf associated to the hypoexponential
distribution with a parameter vector a = (α1, . . . , αm) (1). It follows from Lemma 1 that the following
function K(x) is a cdf:

K(x) = 1−G(− ln(H(x))) = 1−

(
1−

m∑
i=1

1

Pi
e−αi(− ln(H(x)))

)
=

m∑
i=1

1

Pi
[H(x)]αi .

From this expression, new distributions arise by taking specific cdf H(x) (uniform distribution, normal
distribution, Cauchy distribution, Pareto distribution . . . ). We will call the associated distribution
the GH(H;a) distribution (for general hypoexponential distribution with a parameter vector a =
(α1, . . . , αm) using a cdf H(x)) for frequently used purpose in the present study or elsewhere.

Let us now consider a random variable Y following the GH(H;a) distribution. Then the cdf of Y
is given by

FY (x) =

m∑
i=1

1

Pi
[H(x)]αi , x ∈ R.

Using the equality
m∑
i=1

1
Pi

= 1, the survival function (sf) of Y is given by

SY (x) = 1− FY (x) = 1−
m∑
i=1

1

Pi
[H(x)]αi =

m∑
i=1

1

Pi
[1− [H(x)]αi ], x ∈ R.

Denoting by h(x) a pdf associated to H(x), a pdf of Y is given by

fY (x) = h(x)

m∑
i=1

αi
Pi

[H(x)]αi−1, x ∈ R.

The hazard rate function (hrf) of Y is given by

hY (x) =
fY (x)

SY (x)
= h(x)

m∑
i=1

αi

Pi
[H(x)]αi−1

m∑
i=1

1
Pi

[1− [H(x)]αi ]
, x ∈ R.

Remark 2. The GH(H;a) distribution belongs to the family of weighted distributions; we can express
fY (x) as: fY (x) = w(x)g(x), where g(x) denotes a pdf of the exponential distribution with parameter

λ > 0 and w(x) =
m∑
i=1

αi

Pi
[H(x)]αi−1.

Remark 3. Since the coefficients 1
P1
, 1
P2
, . . . , 1

Pm
have possible negative and positive values with

m∑
i=1

1
Pi

= 1, the GH(H;a) distribution also belongs to the family of finite generalized mixture of expo-

nentiated baseline cdf [H(x)]α (also known as Lehmann type-I distribution) (see [4], [5] and [3]).
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Remark 4. In the particular case m = 2, a = (α1, α2), α1, α2 > 0, α1 6= α2, we have P1 = α2−α1

α2

and P2 = α1−α2

α1
,

FY (x) =
α2

α2 − α1
[H(x)]α1 +

α1

α1 − α2
[H(x)]α2 , x ∈ R,

and
fY (x) =

α1α2

α2 − α1
h(x)

(
[H(x)]α1−1 − [H(x)]α2−1

)
, x ∈ R.

Assuming that α2 > α1, note that P1 > 0 and P2 < 0.

The distribution of a sum of two independent GH(H;a) distributions can be characterized. Let
Y and Z be two independent random variables, Y follows the GH(H1;a) distribution with a =
(α1, α2, . . . , αm) and Z follows the GH(H2;b) distribution with b = (β1, β2, . . . , βm). Let h1(x) be a

pdf associated to the cdf H1(x) and h2(x) be a pdf associated to the cdf H2(x). Set Q` =
m∏
j=1
j 6=`

(
1− β`

βj

)
.

Then a pdf for Y + Z is given by

fY+Z(x) =

m∑
i=1

m∑
`=1

αiβ`
PiQ`

∫ +∞

−∞
h1(t)h2(x− t)[H1(t)]αi−1[H2(x− t)]β`−1dt, x ∈ R.

This result is an immediate consequence of the continuous convolution formula.

2.3. The EH(a, λ) distribution

Let us now consider the GH(H;a) distribution defined with the cdf H(x) associated to the ex-
ponential distribution of parameter λ > 0: H(x) = 1 − e−λx, x > 0. We will call the associated
distribution the EH(a, λ) distribution (for exponential hypoexponential distribution with a parameter
vector a = (α1, . . . , αm) and λ) for frequently used purpose in the present study or elsewhere. Let us
now consider a random variable Y following the EH(a, λ) distribution. Then the cdf of Y given by

FY (x) =

m∑
i=1

1

Pi
(1− e−λx)αi , x > 0.

This cdf can be viewed as a finite generalized mixture of generalized exponential distribution baseline
cdf introduced by [8, 9], with different parameters for the power.

The sf of Y is given by

SY (x) =

m∑
i=1

1

Pi
[1− (1− e−λx)αi ], x > 0.

A pdf of Y is given by

fY (x) = λe−λx
m∑
i=1

αi
Pi

(1− e−λx)αi−1, x > 0.

The hrf of Y is given by

hY (x) = λe−λx

m∑
i=1

αi

Pi
(1− e−λx)αi−1

m∑
i=1

1
Pi

[1− (1− e−λx)αi ]
, x > 0.

Some asymptotic properties of the previous functions are given below: when x→ 0, we have

FY (x) ∼
m∑
i=1

1

Pi
(λx)αi , fY (x) ∼ λ

m∑
i=1

αi
Pi

(λx)αi−1, hY (x) ∼ λ
m∑
i=1

αi
Pi

(λx)αi−1.
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Note that, if inf(α1, α2, . . . , αm) > 1, we have lim
x→0

fY (x) = 0. If inf(α1, α2, . . . , αm) < 1, the limit

depends on the signs of P1, P2, . . . , Pm; we can have lim
x→0

f(x) = +∞ in some configurations. We have

lim
x→+∞

f(x) = 0. The limit for h(x) when x→ +∞ depends only on λ and P1, P2, . . . , Pm.

Remark 5. As already observed in Remark 3, the EH(a, λ) distribution belongs to the family of
weighted exponential distributions; we can express fY (x) as: fY (x) = w(x)g(x), where g(x) denotes a

pdf of the exponential distribution with parameter λ > 0 and w(x) =
m∑
i=1

αi

Pi
(1− e−λx)αi−1.

Remark 6. We now adapt Remark 1 to the EH(a, λ) distribution. Let us observe that, for a random
variable U following the hypoexponential distribution with parameter a, the random variable W =
− 1
λ ln(1− e−U ) follows the EH(a, λ) distribution.

Remark 7. In the particular case m = 2, a = (α1, α2), α1, α2 > 0, α1 6= α2, we have P1 = α2−α1

α2

and P2 = α1−α2

α1
,

FY (x) =
α2

α2 − α1
[1− e−λx]α1 +

α1

α1 − α2
[1− e−λx]α2 , x > 0,

and

fY (x) =
λα1α2

α2 − α1
e−λx

(
[1− e−λx]α1−1 − [1− e−λx]α2−1

)
, x > 0.

Figures 1, 2 and 3 show the graphical features of pdfs, cdfs and hrfs of the EH(a, λ) distribution
with a = (α1, α2), α1 = α and α2 = α+0.1, for several choices of parameters (α, λ). In this particular
case, let us precise that

FY (x) = (1 + 10α)(1− e−λx)α − 10α(1− e−λx)α+0.1, (2)

a pdf is given by

fY (x) = λα(1 + 10α)e−λx(1− e−λx)α−1[1− (1− e−λx)0.1] (3)

and the hrf is given by

hY (x) =
λα(1 + 10α)e−λx(1− e−λx)α−1[1− (1− e−λx)0.1]

1− (1 + 10α)(1− e−λx)α + 10α(1− e−λx)α+0.1
. (4)

We observe that the plots of the pdfs and hrfs of the EH(a, λ) distribution are very flexible; different
shapes and curves can be of interest for modeling lifetime data.

Remark 8. To the best of our knowledge, the considered particular EH(a, λ) distribution is new
in the literature; it is not a particular distribution of another family of distributions. For instance,
the main differences between fY (x) (3) and similar looking pdfs as those associated to the weighted
exponentiated exponential distribution introduced by [14] or the transmuted generalized exponential
distribution proposed by [10], is the last term [1− (1− e−λx)0.1] which only depends on λ, not α.
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Figure 1: Some cdfs F (x) = F (x; (α, λ)) (2) with various values for α and λ.
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Figure 2: Some pdfs f(x) = f(x; (α, λ)) (3) with various values for α and λ.
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Figure 3: Some hrfs h(x) = h(x; (α, λ)) (4) with various values for α and λ.
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3. Mathematical properties related to the EH(a, λ) distribution

We now present some mathematical properties of our distribution.
The distribution of a sum of two independent EH(a, λ) distributions can be characterized. Let

Y and Z be two independent random variables, Y follows the EH(a, λ1) distribution with a =
(α1, α2, . . . , αm) and Z follows the EH(b, λ2) distribution with b = (β1, β2, . . . , βm). Set Q` =
m∏
j=1
j 6=`

(
1− β`

βj

)
. Then a pdf for Y + Z is given by

fY+Z(x) = λ1λ2

m∑
i=1

m∑
`=1

αiβ`
PiQ`

∫ x

0

e−λ1te−λ1(x−t)[1− e−λ1t]αi−1[1− e−λ2(x−t)]β`−1dt, x > 0.

Also, note that

P(Y ≤ Z) =

m∑
i=1

m∑
`=1

β`
PiQ`(αi + β`)

.

This probability can be of interest in the context of reliability the stress-strength model (see [11]).
Let us work with only a random variable Y following the EH(a, λ) distribution.
Owing to the binomial series, we have the following expansion for FY (x):

FY (x) =

m∑
i=1

1

Pi
(1− e−λx)αi =

m∑
i=1

+∞∑
k=0

(
αi
k

)
(−1)k

1

Pi
e−kλx.

Using again the binomial series, we have the following expansion for fY (x):

fY (x) = λe−λx
m∑
i=1

αi
Pi

(1− e−λx)αi−1 =

m∑
i=1

+∞∑
k=0

ηi,ke
−(k+1)λx,

where

ηi,k = λ

(
αi − 1

k

)
(−1)k

αi
Pi
.

We can obtain the quantile function QY (x) via the nonlinear equation:

FY (QY (x)) = x ⇔
m∑
i=1

1

Pi
(1− e−λQY (x))αi = x.

The EH(a, λ) distribution can be simulated by using Y = QY (U) where U is a random variable having
the uniform distribution on [0, 1].

Let us consider the Gamma function: Γ(ν) =
∫ +∞

0
xν−1e−xdx, ν > 0. The r-th moment of Y is

given by

E(Y r) =

∫ +∞

−∞
xrfY (x)dx =

m∑
i=1

+∞∑
k=0

ηi,k

∫ +∞

0

xre−(k+1)λxdx =
Γ(r + 1)

λr+1

m∑
i=1

+∞∑
k=0

ηi,k
1

(k + 1)r+1
.

The moment generating function of Y is given by, for t < λ,

MY (t) = E(etY ) =

∫ +∞

−∞
etxfY (x)dx =

m∑
i=1

+∞∑
k=0

ηi,k

∫ +∞

0

e(t−(k+1)λ)xdx =

m∑
i=1

+∞∑
k=0

ηi,k
1

(k + 1)λ− t
.

Proceeding as in [9, Equation (2.3)], with the change of variable y = e−λx, we also have, for t < λ,

MY (t) =

m∑
i=1

1

Pi

Γ(αi + 1)Γ
(
1− t

λ

)
Γ
(
αi − t

λ + 1
) .
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Let us consider the lower incomplete Gamma function: Γ(t, ν) =
∫ t

0
xν−1e−xdx. Then we have∫ t

0

xrfY (x)dx =

m∑
i=1

+∞∑
k=0

ηi,k

∫ t

0

xre−(k+1)λxdx =
1

λr+1

m∑
i=1

+∞∑
k=0

ηi,k
Γ((k + 1)λt, r + 1)

(k + 1)r+1
.

This equality will be useful in the next. For t > 0, the conditional r-th moment of Y is given by

E(Y r | Y > t) =
1

1− FY (t)

∫ +∞

t

xrfY (x)dx =
1

1− FY (t)

(
1−

∫ t

0

xrfY (x)dx

)
=

1

1− FY (t)

(
1− 1

λr+1

m∑
i=1

+∞∑
k=0

ηi,k
Γ((k + 1)λt, r + 1)

(k + 1)r+1

)
.

For t > 0, the reversed conditional r-th moment of Y is given by

E(Y r | Y ≤ t) =
1

FY (t)

∫ t

0

xrfY (x)dx =
1

FY (t)λr+1

m∑
i=1

+∞∑
k=0

ηi,k
Γ((k + 1)λt, r + 1)

(k + 1)r+1
.

Let µ = E(Y ). The Lorenz curve L(FY (t)) is given by

L(FY (t)) =
1

µ

∫ t

0

xfY (x)dx =
1

µλr+1

m∑
i=1

+∞∑
k=0

ηi,k
Γ((k + 1)λt, 2)

(k + 1)r+1
.

The Bonferroni curve B(FY (t)) is given by

B(FY (t)) =
1

µFY (t)

∫ t

0

xfY (x)dx =
1

µFY (x)λr+1

m∑
i=1

+∞∑
k=0

ηi,k
Γ((k + 1)λt, 2)

(k + 1)r+1
.

The mean deviation of Y about the mean µ can be expressed as

δ1(Y ) = E(|Y − µ|) = 2µFY (µ)− 2

∫ µ

0

xfY (x)dx

= 2µFY (µ)− 2

λr+1

m∑
i=1

+∞∑
k=0

ηi,k
Γ((k + 1)λµ, 2)

(k + 1)r+1
.

The mean deviation of Y about the median M can be expressed as

δ2(Y ) = E(|Y −M |) = µ− 2

∫ M

0

xfY (x)dx = µ− 2

λr+1

m∑
i=1

+∞∑
k=0

ηi,k
Γ((k + 1)λM, 2)

(k + 1)r+1
.

4. Order statistics

Order statistics are essential in many areas of statistics. They naturally appear in the probabilistic
analysis of reliability of a system. We explicit here the distributions of these order statistics in the con-
text of our new distribution. Let Y1, Y2, . . . , Yn be n independent and identically distributed random
variables following the EH(a, λ) distribution. Let us consider its order statistics is Y1:n, Y2:n, . . . , Yn:n.
A pdf of the i-th order statistic Yi:n is given by

fi:n(x) =
n!

(i− 1)! (n− i)!
[FY (x)]i−1[1− FY (x)]n−ifY (x)

=
n!

(i− 1)! (n− i)!

[
m∑
i=1

1

Pi
(1− e−λx)αi

]i−1 [
1−

m∑
i=1

1

Pi
(1− e−λx)αi

]n−i

× λe−λx
m∑
i=1

αi
Pi

(1− e−λx)αi−1, x > 0.
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In particular, a pdf of Y1:n = inf(Y1, Y2, . . . , Yn) is given by

f1:n(x) = λne−λx

[
1−

m∑
i=1

1

Pi
(1− e−λx)αi

]n−1 m∑
i=1

αi
Pi

(1− e−λx)αi−1

and a pdf of Yn:n = sup(Y1, Y2, . . . , Yn) is given by

f1:n(x) = λne−λx

[
m∑
i=1

1

Pi
(1− e−λx)αi

]n−1 m∑
i=1

αi
Pi

(1− e−λx)αi−1.

Consequently, the cdf of the i-th order statistic Yi:n is given by

F1:n(x) =

∫ x

0

f1:n(t)dt =
n!

(i− 1)! (n− i)!

n−i∑
k=0

(
n− i
k

)
(−1)

k

i+ k
[FY (x)]

i+k

=
n!

(i− 1)! (n− i)!

n−i∑
k=0

(
n− i
k

)
(−1)

k

i+ k

[
m∑
i=1

1

Pi
(1− e−λx)αi

]i+k
, x > 0.

Further, for j < k, a joint pdf of (Yj:n, Yk:n) is given by

f(j:n,k:n)(xj , xk)

=
n!

(j − 1)! (n− k)! (k − j − 1)
[FY (xj)]

j−1[FY (xk)− FY (xj)]
k−j−1[1− FY (xk)]n−kfY (xj)fY (xk)

=
n!

(j − 1)! (n− k)! (k − j − 1)

[
m∑
i=1

1

Pi
(1− e−λxj )αi

]j−1 [ m∑
i=1

1

Pi
[(1− e−λxk)αi − (1− e−λxj )αi ]

]k−j−1

×

[
1−

m∑
i=1

1

Pi
(1− e−λxk)αi

]n−k
λ2e−λ(xj+xk)

m∑
i=1

αi
Pi

(1− e−λxj )αi−1
m∑
i=1

αi
Pi

(1− e−λxk)αi−1,

xj , xk > 0.

5. Maximum likelihood estimation

Let Y1, Y2, . . . , Yn be a random sample from the EH(a, λ) distribution with unknown parameters
α1, . . . , αm, λ. We consider the maximum likelihood estimation providing the maximum likelihood
estimators (MLEs) α̂1, . . . , α̂m, λ̂ for α1, . . . , αm, λ. Let us recall that the MLEs have some statistical
desirable properties (under regularity conditions) as the sufficiency, invariance, consistency, efficiency
and asymptotic normality. Using the observed information matrix, asymptotic confidence interval for
α1, . . . , αm, λ can be constructed. Details can be found in [12].

Let Θ = (α1, . . . , αm, λ) and y1, y2, . . . , yn be the observed values. The likelihood function is given
by

L(Θ) = λne
−λ

n∑
u=1

yu
n∏
u=1

(
m∑
i=1

αi
Pi

(1− e−λyu)αi−1

)
.

The log-likelihood function is given by

`(Θ) = log(L(Θ)) = n log(λ)− λ
n∑
u=1

yu +

n∑
u=1

log

(
m∑
i=1

αi
Pi

(1− e−λyu)αi−1

)
.

The nonlinear log-likelihood equations given by ∂`(Θ)
∂Θ = 0 are listed below

∂`(Θ)

∂λ
=
n

λ
−

n∑
u=1

yu + λ

n∑
u=1

e−λyu

m∑
i=1

αi(αi−1)
Pi

(1− e−λyu)αi−2

m∑
i=1

αi

Pi
(1− e−λyu)αi−1

= 0 (5)
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and, for any q ∈ {1, . . . ,m},

∂`(Θ)

∂αq
=

n∑
u=1

∂
∂αq

(
m∑
i=1

αi

Pi
(1− e−λyu)αi−1

)
m∑
i=1

αi

Pi
(1− e−λyu)αi−1

= 0. (6)

Let us now investigate the numerator. We have
m∑
i=1

αi
Pi

(1− e−λyu)αi−1 =
αq
Pq

(1− e−λyu)αq−1 +

m∑
i=1
i6=q

αi
Pi

(1− e−λyu)αi−1.

Hence

∂

∂αq

(
m∑
i=1

αi
Pi

(1− e−λyu)αi−1

)

=
∂

∂αq

(
αq
Pq

)
(1− e−λyu)αq−1 +

αq
Pq

(1− e−λyu)αq−1 log(1− e−λyu)

+

m∑
i=1
i6=q

αi(1− e−λyu)αi−1 ∂

∂αq

(
1

Pi

)
.

Observe that

∂

∂αq

(
αq
Pq

)
=

∂

∂αq

αq m∏
j=1
j 6=q

αj
αj − αq

 =

m∏
j=1
j 6=q

αj
αj − αq

+ αq

 m∏
j=1
j 6=q

αj
αj − αq


 m∑
v=1
v 6=q

1

αv − αq

 .

On the other hand, for i 6= q, we have

∂

∂αq

(
1

Pi

)
=

∂

∂αq

 m∏
j=1
j 6=i

αj
αj − αi

 =

 m∏
j=1

j 6={i,q}

αj
αj − αi

 ∂

∂αq

(
αq

αq − αi

)

= −

 m∏
j=1

j 6={i,q}

αj
αj − αi

 αi
(αq − αi)2

.

Putting these equalities together, we obtain an unified equation for (6). The MLEs are solutions of
(5) and (6). These equations are not solvable analytically, but some numerical iterative methods, as
Newton-Raphson method, can be used.

Study of a particular case. Let us now consider a simple two parameters EH(a, λ) distribution
where a = (α1, . . . , αm), for any i ∈ {1, . . . ,m}, αi = α + εi, with ε1, . . . , εm denote different fixed
positive real numbers. Then α > 0 and λ > 0 can be estimated via the maximum likelihood method.
It is enough to set Θ = (α, λ), using (5) with αi = α+ εi and consider the new equation:

∂`(Θ)

∂α
=

n∑
u=1

∂
∂α

(
m∑
i=1

α+εi
Pi

(1− e−λyu)α+εi−1

)
m∑
i=1

α+εi
Pi

(1− e−λyu)α+εi−1

= 0. (7)

We can explicit the numerator by observing that

∂

∂α

(
m∑
i=1

α+ εi
Pi

(1− e−λyu)α+εi−1

)
=

m∑
i=1

∂

∂α

(
α+ εi
Pi

)
(1− e−λyu)α+εi−1

+

m∑
i=1

α+ εi
Pi

(1− e−λyu)α+εi−1 ln(1− e−λyu),
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with

∂

∂α

(
α+ εi
Pi

)
=

 m∏
j=1
j 6=i

1

εj − εi

 ∂

∂α

 m∏
j=1

(α+ εj)

 =

 m∏
j=1
j 6=i

1

εj − εi


 m∏
j=1

(α+ εj)

 m∑
j=1

1

α+ εj

 .

Again, these equations can be solve numerically. Thanks to its simplicity, this particular EH(a, λ)
distribution will be considered in the applications presented in the next section.

6. Illustrative real data examples

In this section, we analysis real data sets to show that the EH(a, λ) distribution can be a better
model than other existing distributions. We consider the following well-known weighted exponential
distributions for comparison purpose:

Lindley distribution: A pdf associated to the Lindley distribution of parameter θ > 0 is given by

f(x) =
θ2

θ + 1
(1 + x)e−θx, x > 0.

Theory and applications related to this distribution can be found in [7].

Exponential distribution: A pdf associated to the exponential distribution of parameter λ > 0 is given
by

f(x) = λe−λx, x > 0.

Exponentiated exponential distribution (E Exponential): A pdf associated to the Exponentiated expo-
nential distribution of parameters α, λ > 0 is given by

f(x) = λαe−λx
(
1− e−λx

)α−1
, x > 0.

Details about this distribution can be found in [8].

Exponential Hypoexponential distribution (Exp Hypo): To simplify the situation, we consider a par-
ticular simple two parameters EH(a, λ) distribution with m = 2, a = (α1, α2), α1 = α and
α2 = α + 0.1, α > 0 and λ > 0 are the parameters to be estimated; the value 0.1 is subjective.
The corresponding pdf is given by

f(x) = λα(1 + 10α)e−λx(1− e−λx)α−1[1− (1− e−λx)0.1], x > 0.

Remark 9. Another two parameters EH(a, λ) distribution can be used, as the one defined with m = 3,
say a = (α1, α2, α3), α1 = α, α2 = α+ ε and α3 = α+ υ, for fixed ε and υ with ε 6= υ, the parameters
to be estimated are α > 0 and λ > 0.

The three considered real data sets are described as follows:

Data set 1: This data set contains n = 31 measures of the strength data of glass of the aircraft
window. It is extracted from [6]:

18.83, 20.8, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.8, 26.69, 26.77, 26.78, 27.05, 27.67,
29.9, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29,
45.381

Data set 2: The data set contains n = 63 measures related to the strength of 1.5cm glass fibers. It
is reported in [18]:

0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.39, 1.49,
1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69,
1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24, 1.3,
1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89
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Model Estimate of parameters −2 log(L) AIC AICC BIC

Data set 1 Lindley θ̂ = 0.062988 253.99 255.99 256.13 257.42

Exponential λ̂ = 0.032455 274.53 276.53 276.67 277.96

E Exponential (α̂, λ̂) = (93.7873, 0.166016) 208.26 212.26 212.69 215.13

Exp Hypo (α̂, λ̂) = (41.288, 0.107838) 208.09 212.09 212.52 214.96

Data set 2 Lindley θ̂ = 0.996116 162.56 164.56 164.62 166.70

Exponential λ̂ = 0.663647 177.66 179.66 179.73 181.80

E Exponential (α̂, λ̂) = (31.3489, 2.61157) 62.76 66.76 66.96 71.05

Exp Hypo (α̂, λ̂) = (24.0816, 1.83894) 55.67 59.67 59.87 63.96

Data set 3 Lindley θ̂ = 0.196 839.05 841.06 841.09 843.89

Exponential λ̂ = 0.106773 828.68 830.68 830.71 833.53

E Exponential (α̂, λ̂) = (1.21795, 0.121167) 826.15 830.15 830.25 835.85

Exp Hypo (α̂, λ̂) = (1.44399, 0.057924) 825.49 829.49 829.59 835.20

Table 1: −2 log(L), AIC, AICC and BIC of the fitted distributions of Data sets 1, 2 and 3.

Data set 3: The data set contains n = 128 measures on the remission times in months of bladder
cancer patients. It is extracted from [13]:

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26,
3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70,
5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32,
7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41,
7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 7.66, 11.25,
17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46,
4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03,
20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69, 5.49

For each data set, we compare the fitted distributions using the four criteria: −2 log(L), AIC (Akaike
Information Criterion), AICC (Akaike Information Criterion Corrected) and BIC (Bayesian Infor-
mation Criterion). Let us precise that log(L) is the log-likelihood taking with the estimate values,

AIC=−2 log(L) + 2k, AICC=AIC+ 2k(k+1)
n−k−1 and BIC=−2 log(L) + k log(n), where k denotes the num-

ber of estimated parameters and n denotes the sample size. The best fitted distribution corresponds
to lower −2 log(L), AIC, AICC and BIC.

We see in Table 1 that the EH(a, λ) distribution has the smallest −2 log(L), AIC, AICC and BIC
for the three data sets, indicating that it is a serious competitor to the other considered distributions.

7. Conclusion

A new weighted exponential distribution based on the hypoexponential distribution is introduced.
Some of its structural properties are studied. The analysis of three real data sets shows that the fit
of the model related to our new distribution can be superior to other models.

As future work, we plan to study the GH(H;a) distribution with another cdf H(x) and also
to provide more applications for the EH(a, λ) distribution with m ≥ 3. Inverted or transmuted
transformations of EH(a, λ) can be of interest too for some applications.
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