Uncertainty in simulating biomass yield and carbon-water fluxes from Euro-Mediterranean grasslands under climate changes

Renata Sandor, Shaoxiu Ma, Marco Acutis, Zoltán Barcza, Haythem Ben Touhami, Luca Doro, Dóra Hidy, Martin Köchy, Julien Minet, Eszter Lellei-Kovács, et al.

To cite this version:
Renata Sandor, Shaoxiu Ma, Marco Acutis, Zoltán Barcza, Haythem Ben Touhami, et al.. Uncertainty in simulating biomass yield and carbon-water fluxes from Euro-Mediterranean grasslands under climate changes. International Livestock Modelling and Research Colloquium, Oct 2014, Bilbao, Spain. hal-01519328

HAL Id: hal-01519328
https://hal.science/hal-01519328
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Uncertainty in simulating biomass yield and carbon-water fluxes from Euro-Mediterranean grasslands under climate changes

Renáta Sándor, S Ma, M Acutis, Z Barcza, H Ben Touhami, L Doro, D Hidy, M Köchy, J Minet, E Lellei-Kovács, A Perego, S Rolinski, F Ruget, G Seddaiu, L Wu, G Bellocchi
Grassland model inter-comparison in MACSUR

- Questionnaires to modelling teams
- Guidelines and minimum dataset requirement for model evaluation
- Common protocol for model inter-comparison
- Model inter-comparison at selected sites in Europe (plot-scale simulations)

Aims:

- To quantify uncertainties on yield and carbon-flux outputs
- To explore the sensitivity of grassland models to climate change factors

Coordinator

- Data segregation
- Output evaluation
- Uncertainty analysis
Systemic approach

- Inputs
- Parameters
- Input variables
- Initial values
- Outputs

PaSim
SPACSYS
AnnuGrow
STICS
EPIC
ARMOSA
Biome-BGC
MuSo
LPJmL
CARAIB

Grassland-specific
Crop models (adapted to grasslands)
Biome models

(HAB, GPP, NEE ...)

Investigated sites

- **Flux-tower observational sites**
 (GPP, NEE, RECO, ET, ST, SWC, HAB)
 Data: hourly resolution

- **Grassland experimental sites**
 (HAB)
 Data: cutting events

Management:
- Kemp-1: intensive (4 cuts/year)
- Kemp-2: extensive (2 cuts/year)
- Roth-1: NH4 – fertilization
- Roth-2: NO3 – fertilization
- Lq-1: intensive (N fertilized)
- Lq-2: extensive (non fertilized)
UNCALIBRATED vs CALIBRATED runs
(HAB, g DM m$^{-2}$)

Uncalibrated vs Calibrated runs (HAB, g DM m$^{-2}$)

Uncertainty of the simulated yield from all models at Sassari site

- envelope of simulated HAB
- observed data
- median of all models
Actual Evapotranspiration with monthly resolution at Grillenburg (Germany)
SENSITIVITY TEST
(Yearly Gross Primary Production vs CO₂)

Baseline: 380 ppm

<table>
<thead>
<tr>
<th>CO₂ Change</th>
<th>Percentage Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>+100% CO₂ (760 ppm)</td>
<td>+25%</td>
</tr>
<tr>
<td>+50% CO₂ (570 ppm)</td>
<td>+17%</td>
</tr>
<tr>
<td>+25% CO₂ (475 ppm)</td>
<td>+11%</td>
</tr>
<tr>
<td>+15% CO₂ (437 ppm)</td>
<td>+8%</td>
</tr>
<tr>
<td>+10% CO₂ (418 ppm)</td>
<td>+6%</td>
</tr>
<tr>
<td>+5% CO₂ (399 ppm)</td>
<td>+4%</td>
</tr>
</tbody>
</table>

y = 1732.9e^{0.0354x}
R² = 0.921
SENSITIVITY TEST
(Yearly Gross Primary Production vs Temperature and Precipitation)

Change of GPP at Oensingen, Mean

Temperature

-25% T → -7%
-10% T → -3%
-5% T → +0.2%
+5% T → +3%
+10% T → +4.5%
+25% T → +6%

Precipitation

-25% P → -1.4%
-10% P → +0.5%
-5% P → +1.5%
+5% P → +2.5%
+10% P → +3%
+25% P → +3.3%
SENSITIVITY TEST
(Yearly Gross Primary Production vs Temperature and Precipitation)
Conclusions

◆ Overall, model calibration improves accuracy and reduces uncertainty in biomass and carbon-water cycle estimations

◆ Alternative models show different sensitivity to climate change factors

◆ Estimated Gross Primary Productivity is roughly exponentially increasing with the atmospheric CO$_2$ level (by up to ~25% when doubling [CO$_2$])

◆ The effect of temperature on the GPP changes is higher than the effect of precipitation
Action plan and perspectives

MACSUR
◆ To analyze the envelope of model outputs of sensitivity tests on the yield biomass production

◆ To estimate the interactions between different scenarios and model simulations related with the sensitivity of the applied model

Perspectives
◆ To expand the collaboration with new sites, models on different treatments and/or grazing animals

Thank you for your attention!