
HAL Id: hal-01519205
https://hal.science/hal-01519205v1

Submitted on 6 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing the Performance of the SRR Loop Scheduler
with Irregular Workloads

Pedro Henrique Penna, Eduardo C Inacio, Márcio Castro, Patrícia Plentz,
Henrique Cota de Freitas, François Broquedis, Jean-François Méhaut

To cite this version:
Pedro Henrique Penna, Eduardo C Inacio, Márcio Castro, Patrícia Plentz, Henrique Cota de Freitas,
et al.. Assessing the Performance of the SRR Loop Scheduler with Irregular Workloads. Interna-
tional Conference on Computational Science (ICCS’17), Petros Koumoutsakos, Eleni Chatzi, Jun
2017, Zurich, Switzerland. �hal-01519205�

https://hal.science/hal-01519205v1
https://hal.archives-ouvertes.fr

This space is reserved for the Procedia header, do not use it

Assessing the Performance of the SRR

Loop Scheduler with Irregular Workloads

Pedro H. Penna1, Eduardo C. Inacio1, Márcio Castro1, Patŕıcia Plentz1,
Henrique C. Freitas2, François Broquedis3, and Jean-François Méhaut3

1 Federal University of Santa Catarina, Florianópolis, Brazil
2 Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil

3 University of Grenoble Alpes, Grenoble, France

Abstract
The input workload of an irregular application must be evenly distributed among its threads
to enable cutting-edge performance. To address this need in OpenMP, several loop scheduling
strategies were proposed. While having this ever-increasing number of strategies at disposal
is helpful, it has become a non-trivial task to select the best one for a particular application.
Nevertheless, this challenge becomes easier to be tackled when existing scheduling strategies
are extensively evaluated. Therefore, in this paper, we present a performance and scalability
evaluation of the recently-proposed loop scheduling strategy named Smart Round-Robin (SRR).
To deliver a comprehensive analysis, we coupled a synthetic kernel benchmarking technique with
several rigorous statistical tools, and considered OpenMP’s Static and Dynamic loop schedulers
as our baselines. Our results unveiled that SRR performs better on irregular applications with
symmetric workloads and coarse-grained parallelization, achieving up to 1.9x and 1.5x speedup
over OpenMP’s Static and Dynamic schedulers, respectively.

Keywords: Irregular Workloads, Loop Scheduling, Performance Evaluation, Kernel Benchmarking

1 Introduction

In High Performance Computing (HPC), parallel applications can be classified as either regular
or irregular. In the former group, the time needed to solve a given problem is strictly related
to the size of the input data. A naive implementation of the matrix multiplication algorithm is
a typical example of application that belongs to this group, in which the number of operations
is constantly proportional to the products of the rows of a matrix by the columns of another
matrix, regardless of the actual numbers involved in the computation. On the other hand, in
the latter group, the contents of the input data also impact significantly on their execution
times [6]. For instance, in a data clustering application that uses a Minimum Spanning Tree
algorithm, the computation time depends on how the data is distributed in the Clustering
Euclidean space.

1

Assessing the Performance of the SRR Loop Scheduler Pedro H. Penna et al.

In the case of regular parallel applications, the input workload can be naturally broken up
into homogeneous tasks, so that no thread is greatly overloaded with computations. In the
case of irregular applications, in contrast, the workload may not be so easily divided, and thus
load imbalance may arise among the threads. This may result in considerable performance and
scalability issues, since the overall performance of the application would be bounded by the
performance of the most overloaded thread.

Indeed, evenly distributing the input workload of an irregular application to its threads is
a well-known NP-Hard problem named the Load Balancing Problem [9], and it is a recurring
subject of research in HPC [3, 4, 8]. For instance, in OpenMP, an industry and academia stan-
dard Application Programming Interface (API) for parallel programming on shared-memory
architectures [2], this problem arises when scheduling iterations in parallel loops. In this con-
text, the problem is referenced as the Loop Scheduling Problem and comes down into assigning
loop iterations to threads, so as to evenly distribute the overall load between them.

To address this new problem, several loop scheduling strategies were proposed to cover
a great variety of scenarios. They aim at mitigating the load imbalance between iterations
by smartly assigning them to threads [3, 5, 8]. While having this ever-increasing number of
strategies at disposal is indeed helpful, it has become a complex task to actually select the best
one for a particular application [12, 10].

In this paper we argue that this challenge becomes easier to be tackled when existing loop
scheduling strategies are extensively evaluated. Therefore, the main goal of this work is to eval-
uate the performance bounds and scaling capabilities of the recently-proposed loop scheduling
strategy named Smart Round-Robin (SRR) [8]. This strategy showed promising results for
irregular applications, but has not yet been thoroughly assessed. More precisely, we present the
following contributions in this paper: (i) a detailed and comprehensive performance analysis
of SRR through a full factorial experimental design, which considers six performance factors
that impact on the workload of an irregular application, coupled with rigorous statistical tools
to deliver a statistically significant assessment; (ii) an analysis of the weak and strong scalabil-
ity potentials of this emerging strategy; and (iii) a throughout comparison evaluation of SRR
against the OpenMP’s Static and Dynamic loop scheduling strategies.

The remainder of this work is organized as follows. In Section 2, we present a background of
the loop scheduling strategies considered in this paper. In Section 3, we discuss related works
and our contributions to the state-of-the-art. In Section 4 discusses our evaluation methodology.
In Section 5, we discuss our experimental results. In Section 6, we present the main conclusions
of this work and its future perspectives.

2 Loop Scheduling Strategies in OpenMP

OpenMP is shipped with three loop scheduling strategies: Static, Dynamic and Guided [2]. The
first one divides the iterations of a parallel loop into user-defined equal-size chunks, which are
then statically assigned to threads in a round-robin fashion. This strategy introduces minimum
overhead in the application runtime, since scheduling is performed statically. It is more suitable
for regular applications, because it schedules chunks regardless of their load.

In contrast, the Dynamic strategy uses an internal work queue to dynamically assign chunk-
sized blocks of loop iterations to threads. The scheduling is performed on-demand at cost of
some performance overhead, and the chunk size may be fine-tuned to achieve load balancing [1].
Therefore, this strategy is recommended to parallel applications that feature irregular behavior.
Finally, the Guided loop scheduling strategy works similar to the Dynamic one, but the chunk
size starts off large and decreases with the course of time. This allows for a better tradeoff

2

Assessing the Performance of the SRR Loop Scheduler Pedro H. Penna et al.

between the synchronization overhead and load balancing because: (i) threads synchronize less
frequently to access the internal work queue at the beginning due to the large chunk sizes; and
(ii) as the execution approaches the end, the chunk size becomes small enough to guarantee a
better load balance.

SRR is a workload-aware loop scheduling strategy recently-proposed to address irregular
applications that may have their input workload somehow estimated [8]. Unlike the other
strategies shipped with OpenMP, this one considers some information about the input workload
of the application to better balance the load among the threads. SRR was implemented in
libgomp, the GCC’s OpenMP runtime library, and it is publicly available. The main idea behind
SRR is to assign pairs of chunk-sized loop iterations to threads in a round-robin fashion, so
that, in the end, each thread is assigned to a near average workload. For this, pairs are formed
up by chunk-sized blocks of iterations that have not yet been assigned to some thread and have
the lowest and highest loads. A complete description of SRR can be found in [8].

3 Related Work

To cover a great variety of scenarios, several loop scheduling strategies were proposed. Targeting
memory-bound irregular applications running on large-scale NUMA platforms, Durand et al.
introduced a new loop scheduler called Adaptative [4]. This strategy uses a work-stealling
algorithm to dynamically adapt the chunk granularity in parallel loops, and thus better exploit
memory affinity. Their experimental results unveiled that Adaptative overpasses the OpenMP’s
Dynamic scheduler in irregular applications, while delivering equi-performance to OpenMP’s
Static on regular applications. Other memory-affinity schedulers are discussed in [3, 7].

In contrast to scheduling strategies that focus on exploiting runtime information, Thoman
et al. introduced an alternative hybrid approach that uses compiling time information in addi-
ton [13]. They implemented their loop scheduler in the Insieme Compiler and runtime system,
and contrasted its performance with OpenMP’s default loop schedulers. Their results suggested
that a hybrid scheduler may even superior strategies than the scheduling strategies available in
OpenMP. In [5] compiling information is also considered in loop scheduling.

With this ever-increasing number of loop scheduling strategies, the task of actually selecting
the best one for a particular scenario has become non-trivial. To address this challenge, Sukhija
et al. proposed a prediction algorithm based on Machine Learning that selects the most robust
loop scheduling strategy for a target application/platform [12]. Based on their results, they
concluded that their approach selects the most robust loop scheduling strategy, given a user-
specified tolerance. Targeting a similar goal, Srivastava et al. proposed a strategy based on
Artificial Neural Networks (ANNs) to predict the performance of dynamic loop scheduling
strategies on heterogeneous platforms [10]. To train the ANN, they used results obtained
with a synthetic kernel benchmark running on synthetically-generated input workloads based
the Gamma, Gaussian and Exponential Probability Density Functions (PDFs). Their results
unveiled that the proposed strategy is able to predict the performance of a dynamic scheduling
strategy, and thus can guide the selection of the best strategy on heterogeneous platforms.

What concerns the efforts for assessing scheduling strategies, Srivastava et al. proposed a
methodology for evaluating the performance of dynamic loop schedulers [11]. Their method-
ology relies on the simulation and synthetic kernel benchmarking techniques, and considers
Gaussian-generated irregular workloads. In the end, they concluded that their methodology
may be applied to evaluate the performance of loop scheduling strategies. Another work that
proposes a similar evaluation methodology is discussed in [1].

Our work differs from the previous ones in three main points. First, unlike those works that

3

Assessing the Performance of the SRR Loop Scheduler Pedro H. Penna et al.

proposed loop scheduling strategies [4, 3, 7, 13, 5, 8], in this work we focus on the actual perfor-
mance and scalability evaluation of a recently-proposed strategy, the SRR scheduler. Second, in
contrast to the related works that employed simulation and synthetic kernel benchmarking for
evaluating loop scheduling strategies [11, 1, 12, 10], in this work we couple the latter technique
with several rigorous statistical tools in addition, to deliver a comprehensive and statistically
significant analysis. Finally, we carry out weak and strong scaling experiments to unveil the
scalability potentials of SRR.

4 Evaluation Methodology

This section describes the performance factors considered in the evaluation. Then, it details
the experimental design method that we followed in our experiments.

4.1 Performance Factors

We considered the following six performance factors to assess the performance of the SRR loop
scheduling strategy: (i) the input workload PDF; (ii) the input workload PDF’s kurtosis; (iii)
the loop iteration shuffling; (iv) the complexity of the application kernel; (v) the number of
chunks of loop iterations; and (vi) the number of threads. The last three factors model the
irregular application, whereas the other ones model its input workload.

Workload PDF (PDF). It models the frequency of light, medium and heavy load chunks
of loop iterations in the input workload. Chunks of loop iterations belonging to the same class
have the same load. The more skewed the PDF is, the stronger is the irregularity in the input
workload and more difficult is to achieve load balancing.

Workload PDF’s Kurtosis (Kurtosis). It models how strong is the frequency change
in the PDF of the input workload. The stronger this factor is, the stronger is the irregularity
in the input workload and more difficult is to evenly distribute the workload.

Loop Chunk Shuffling (Shuffling). It states how chunks of iterations are shuffled in
the input workload. In blind loop scheduling strategies, i.e., those that do not consider any
information about the input workload, this performance factor may greatly impact on their
load balancing capability.

Complexity of the Application Kernel (Kernel). It models the runtime complexity
of the irregular application. The more complex is the kernel the stronger is the impact of the
input workload on runtime.

Number of Chunks of Loop Iterations. It models the granularity level of parallelization
in the application. The higher is the number of chunks the easier is to balance the overall input

0

2

4

6

8

10

12

14

16

 0 2 4 6 8 10 12 14 16

F
re

q
u
e
n
c
y
 (

%
)

Class

(a) PDF.

0

2

4

6

8

10

12

14

16

 0 2 4 6 8 10 12 14 16

F
re

q
u
e
n
c
y
 (

%
)

Class

(b) Kurtosis.

0

1

2

3

4

5

6

 0 12 24 36 48

W
o
rk

lo
a
d
 (

%
)

Chunks of Loop Iterations

(c) Input workload.

0

1

2

3

4

5

6

 0 12 24 36 48

W
o
rk

lo
a
d
 (

%
)

Chunks of Loop Iterations

(d) Kernel.

0

1

2

3

4

5

6

 0 12 24 36 48

W
o
rk

lo
a
d
 (

%
)

Chunks of Loop Iterations

(e) Shuffling.

Figure 1: Impact of performance factors in the application’s workload.

4

Assessing the Performance of the SRR Loop Scheduler Pedro H. Penna et al.

workload, but the higher is the synchronization and communication overheads.
Number of Threads. It states the number of working threads in the parallel application.

The more threads, the shorter should be the time-to-solution of the application.
Figure 1 illustrates the impact of some of these performance factors in the workload of the

application. In this example, the frequency of each chunk load class was generated according
to the Gaussian PDF (Figure 1a). Chunk load class frequencies are fine adjusted by the PDF
kurtosis (Figure 1b). Each chunk load class is assigned to a different load, resulting in the input
workload of the application (Figure 1c). The complexity of the application kernel strengthens
the load imbalance between chunks of loop iterations (Figure 1d). Finally, loop chunk shuffling
models how chunks of loop iterations are actually disposed in a for loop (Figure 1e).

4.2 Experimental Design

To assess the performance bounds and scaling capabilities of SRR, we carried out three ex-
periments considering the performance factors presented earlier, and using the synthetic kernel
proposed in [8]. We considered the following levels for performance factors: PDF = { Beta,
Gamma Gaussian, Uniform }; Kurtosis = { 0.750, 0.775, 0.800, 0.825 0.850, 0.875, 0.900 };
Shuffling = { 1, 307, 769, 967 }; Kernel = { Linear, Logarithmic }; Chunks = { 4, 8, 12, 16,
20, 24 28, 32, 36, 40, 44, 48 }; and Threads = { 2, 4, 6, 8, 10, 12 14, 16, 18, 20, 24 }.

In the first experiment, we intend to compare the performance of SRR with the OpenMP’s
Static and Dynamic strategies. To do so, we adopt a full factorial experimental design to
deliver a comprehensive and statistically significant analysis. We considered the following four
performance factors, resulting in 224 possible scenarios for each of the three loop scheduling
strategies: PDF, Kurtosis, Shuffling and Kernel. For this experiment, we set the number of
threads to 24 and the number of chunks to 48 iterations. We fixed these parameters so as they
would be consistent to [8].

In the second and third experiments, we aim at analyzing the scaling capabilities of the SRR
loop scheduling strategy. In the former experiment, we perform weak scaling tests to analyze
how SRR scales when the chunk increases in a constant ratio of 2× with the number of threads.
In the latter experiment, we carry out strong scaling tests to study how SRR performs for a
fixed number of chunks. In both experiments we varied the number of threads from 2 to 24
while fixing the PDF, Kurtosis, Shuffling and Kernel performance factors.

Overall, in these three experiments, we carry out five replications of each experiment to
account for the inherent variance of the measures in the experimental environment. For each
replicate, the actual order in which individual runs of experiments is executed is randomly
determined. This approach ensures that observations and experimental errors are independent
and identically distributed (i.i.d.) random variables.

5 Experimental Results

In this section, we unveil the results of our performance analysis experiment, and then we
discuss about the scaling capabilities that we observed for SRR in the weak and strong scaling
experiments. Our evaluation methodology is publicly available, so all results can be easily
reproduced1. All results presented in the paper were run on a SMP machine powered by four
six-core Intel Xeon E5 processors (24 physical cores in total) with 64 GB of RAM.

1Experimental results are available at https://dx.doi.org/10.6084/m9.figshare.3753024.

5

https://dx.doi.org/10.6084/m9.figshare.3753024

Assessing the Performance of the SRR Loop Scheduler Pedro H. Penna et al.

Table 1: ANOVA of the considered performance factors.

Factor MSQ Pr(>F) Factor MSQ Pr(>F)

Kurtosis 2511.12 <2.2e-16 Strategy:Kernel 52998.63 <2.2e-16
Shuffling 3094.83 <2.2e-16 PDF:Shuffling 95.04 1.121e-06
PDF 71879.79 <2.2e-16 PDF:Shuffling 95.04 1.121e-06
Strategy 118490.53 <2.2e-16 PDF:Kernel 33904.94 <2.2e-16
Kernel 2888428.00 <2.2e-16 PDF:Kurtosis 1694.24 <2.2e-16
Strategy:Kurtosis 48.90 0.002235 Kurtosis:Shuffling 12.05 0.8781
Strategy:PDF 6067.14 <2.2e-16 Kurtosis:Kernel 1201.45 <2.2e-16
Strategy:Shuffling 7329.35 <2.2e-16 Shuffling:Kernel 1649.73 <2.2e-16

5.1 Performance Analysis Overview

To guide us on the performance analysis of the SRR loop scheduling strategy, we adopted the
Fisher’s Analysis of Variance (ANOVA) method. With this approach, we focus on obtain-
ing statistically significant and reproducible conclusions about the impact of the considered
performance factors independently and their interactions on the response variables.

Table 1 presents the outcome of the method in the form of an ANOVA table. Results indi-
cate that all performance factors and interactions other than Kurtosis:Shuffling have a highly
significant impact on the time-to-solution, considering a significance level of 5% (α = 0.05). In
terms of main effects, we observed that not only they significantly impact the time-to-solution,
but also their impact on the response variable is greater than their two-way interactions, ac-
counting for 96.7% of the total performance variability.

Moreover, by taking into account the Mean Square (MSQ) of each main factor, we concluded
that the application’s kernel complexity is the most impacting factor on the application’s time-
to-solution, followed by the scheduling strategy and the performance factors related to the input
workload (i.e., PDF, Shuffling and Kurtosis). On the other hand, when analyzing two-way
interactions between scheduling strategies and other main factors, we observed that Shuffling
becomes slightly more impactful on time-to-solution than the PDF of the input workload. It is
noteworthy that the variance among experiment replicates are very small, with a Mean Square
of the Error (MSE) of 3261. In the following sections we carry out a top-down performance
analysis of the SRR loop scheduling strategy, starting from the most impactful performance
factors towards the least impactful ones.

5.2 Kernel Analysis

Figure 2a presents an overview of execution times for scheduling strategies per kernel type.
These plots illustrate the variance of the time-to-solution for each kernel and strategy, varying
all other factors (i.e., PDF, Kurtosis and Shuffling).

When comparing the three scheduling strategies, we observed that all of them showed a
similar performance behavior regardless of the kernel type. In contrast to the other strategies,
the SRR scheduler presents a considerably smaller variance in execution times. Moreover, when
considering the interquartile range (IQR), smaller execution times are observed with SRR,
Dynamic, and Static strategies, in this order. However, when taking into account the overlap
for whiskers and IQR in the boxplots, conclusions about the actual differences in execution
time are misleading. Therefore, to obtain statistically significant mean differences between
the strategies, we employed Tukey’s method with the response variables time-to-solution and
speedup, using a significance of 5%.

6

Assessing the Performance of the SRR Loop Scheduler Pedro H. Penna et al.

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

Static Dynamic SRR

T
im

e
 (

s
)

Linear Kernel

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

Static Dynamic SRR
T

im
e

 (
s
)

Logarithm Kernel

(a) Kernel type.

 55

 60

 65

 70

 75

 80

 85

0.750 0.800 0.850 0.900

T
im

e
(s

)

Kurtosis

All Shuffling Seeds

Dynamic
SRR

 55

 60

 65

 70

 75

 80

 85

0.750 0.800 0.850 0.900

T
im

e
 (

s
)

Kurtosis

Fixed Shuffling Seed

Dynamic
SRR

(b) Kurtosis and Shuffling.

 62

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

Dynamic SRR

T
im

e
 (

s
)

Beta

 30

 35

 40

 45

 50

 55

 60

 65

Dynamic SRR

T
im

e
 (

s
)

Gamma

 55

 60

 65

 70

 75

 80

 85

Dynamic SRR

T
im

e
 (

s
)

Gaussian

 60

 65

 70

 75

 80

 85

 90

 95

Dynamic SRR

T
im

e
 (

s
)

Uniform

(c) PDF type.

Figure 2: Breakdown of execution times per (a) Kernel, (b) Kurtosis/Shuffling and (c) PDF.

Indeed, results from this method unveiled that when contrasting SRR with the Dynamic
and Static strategies, time-to-solution is reduced by the former strategy in 2.90s and 6.83s for
the linear kernel, and in 11.19s and 33.69s for the logarithmic kernel. In addition, in means of
speedup, and when compared to the Dynamic strategy, we observed that SRR performs 1.24×
and 1.19× better, in the linear and logarithmic kernels, respectively. The rationale behind the
overlap between IQR is discussed in Section 5.3. As a side remark, since the Static scheduler
presented a worse performance than both, the Dynamic and SRR strategies, in all cases, from
this point on we will carry out the analysis only with the latter two.

Finally, when contrasting one kernel type with another, we noted that there exists a sig-
nificant difference between the two kernel types, regardless of the scheduling strategy used.
Changing from a linear to a logarithmic kernel when using either the Static, Dynamic or SRR
strategy increases the mean execution time in 73.79s, 55.21s and 46.92s, respectively.

5.3 Workload PDF Analysis

Figure 2c presents the breakdown of execution times for each strategy per PDF type. These
plots refer to results with the logarithmic kernel when varying all levels of the other factors (i.e.,
Kurtosis and Shuffling). Nevertheless, the following discussion applies to the linear kernel.

When analyzing the impact of the PDF in the performance of each strategy, we observed
that for the Beta, Gaussian and Uniform PDFs, SRR presents smaller time-to-solution than the
Dynamic scheduler. The greatest difference is for the Uniform PDF, where SRR has run 15.66s
faster (1.41× speedup); and the smaller difference is for the Beta PDF, where SRR has run
7.56s faster (1.18× speedup). However, for the Gamma PDF, the performance of Dynamic and
SRR strategies was roughly the same, with the former presenting a slightly greater variance in
execution times. Indeed, in some scenarios with the Gamma PDF, SRR has presented a slower

7

Assessing the Performance of the SRR Loop Scheduler Pedro H. Penna et al.

run time than Dynamic. In the worst case, SRR suffered a performance degradation of 8.7%.

In addition, it is important to point out that the Gamma PDF is the rationale behind our
inconclusive analysis in Section 5.2, when we studied the impact of the application’s kernel
in the performance of each strategy in means of IQR overlapping. Results with this PDF
were hiding performance gains of SRR over the Dynamic in the other PDFs. Nevertheless, in
this point, we observed that the Gamma PDF generates a highly irregular workload, and thus
suggesting that the SRR strategy may not perform so well on asymmetric workloads.

Furthermore, when using Tukey’s method to evaluate the impact of the each PDF in the
performance of each strategy, we observed that for the Dynamic strategy, changing the input
workload of an application from one to another greatly impacts on its execution time, regardless
of the workload PDF used. On the other hand, for the SRR strategy, this difference is significant
only when switching from/to a Gamma-generated input workload. Putting it differently, the
time-to-solution achieved by SRR is not affected by changes in the application’s input workload.

5.4 Kurtosis and Shuffling Analysis

Results for the impact of Kurtosis and Shuffling on the time-to-solution are presented in Fig-
ure 2b. For both plots, the kernel type was fixed to logarithmic and the PDF to Gaussian. On
the left-hand side, the time-to-solution is presented for all kurtosis, averaged by the shuffling
seed value and replicates. Vertical bars refer to the standard deviation of the mean time. On
the other hand, to isolate the effect of the kurtosis in the response variable, the figure on the
right-hand side presents results for shuffling seed fixed to 307. The following conclusions equally
apply to all other scenarios, except for those involving Gamma.

We observed that both strategies suffer from performance degradation when the kurtosis
of the PDF increases. However, in all cases, this impact is greater on the Dynamic than on
SRR strategy. If we consider all other scenarios, this performance degradation results in higher
execution times ranging from 7.84s to 9.67s for the Dynamic strategy, on average, according
to Tukey’s method with significance of 5%. In means of speedup, we observed that SRR
overpasses the Dynamic scheduler in performance in up to 1.5× (logarithmic kernel, Uniform
PDF, 0.825 kurtosis and shuffling seed 307). When varying the seed value for iteration shuffling,
we noted that the Dynamic strategy presents a greater variance on execution times and a worse
performance than SRR, regardless of the seed value. The performance of Dynamic is greatly
influenced by this factor due to its dynamic behavior, whereas the SRR scheduler, inherently
avoids this because it sorts loop iterations beforehand.

5.5 Scaling Analysis

In this section we carry out a discussion about the scaling capabilities of the SRR strategy in the
weak and strong scaling experiments. The following conclusions are based on the results that
we observed for the scenario in which the SRR scheduler has performed the best (logarithmic
kernel, Uniform PDF, 0.825 kurtosis and shuffling seed 307). Therefore, they reflect an upper
bound scaling analysis over all the scenarios.

In the weak scaling experiment (Figure 3a), we noted small execution times when running
with less than 8 threads and we did not identified any significant difference between the Dynamic
and SRR scheduling strategies. However, when running with 8 threads and more, we observed
that SRR delivers a constant performance when the number of threads and chunks of loop
iterations increase proportionally. This result thus unveils that SRR may achieve linear weak
scaling for properly large input workloads.

8

Assessing the Performance of the SRR Loop Scheduler Pedro H. Penna et al.

 40

 50

 60

 70

 80

 90

 100

8 10 12 14 16 18 20 22 24

T
im

e
 (

s
)

Number of Threads

Dynamic
SRR

(a) Weak scaling.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

6 8 10 12 14 16 18 20 22 24

T
im

e
 (

s
)

Number of Threads

Dynamic
SRR

(b) Strong scaling.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 4 8 12 16 20 24

T
im

e
 (

s
)

Thread Number

Dynamic
SRR

(c) 22 thread run.

 40

 50

 60

 70

 80

 90

 100

 0 4 8 12 16 20 24

T
im

e
 (

s
)

Thread Number

Dynamic
SRR

(d) 24 thread run.

Figure 3: Results for weak and strong scaling experiments.

Results for the strong scaling experiment are presented in Figure 3b (results for scenarios
with less than 6 threads were omitted to improve visibility). Overall, we observed that the
scaling capability of SRR is roughly similar to the Dynamic strategy, i.e., time-to-solution
decreases quasi-exponentially as we increase the number of threads. Nevertheless, SRR has
presented steps on the graph. When the number of threads is a divisor of the number of chunks
of loop iterations (48 chunks), there is a considerable drop in the execution time. However, when
this number is not a divisor of the number of chunks, the execution time remains constant.

To find out more details about this peculiar behavior, we thus selected the case with 22 and
24 threads to study. However, it is important to point out that we drew the same conclusion
for the other similar cases (i.e., 6 and 8 threads, and 10 and 12 threads). Figures 3c and
Figure 3d present the workload assigned to each thread when running with 22 and 24 threads,
respectively. As it can be noted, in the first scenario, SRR ends up overloading two threads
with computation, whereas in the second scenario, the input workload is evenly distributed.
The rationale behind this behavior, however, comes from the SRR strategy itself. When the
number of threads is not a divisor of the number of chunks of loop iterations, the very first
threads that are considered in the scheduling end up with an extra pair of loop iterations, and
thus load imbalance arises. Indeed, we believe that if SRR also considered the total workload
assigned to each thread when scheduling loop iterations, it might had stepped out from this
corner case and delivered a better strong scaling capability.

6 Conclusions and Future Work

With the ever-increasing number of loop scheduling strategies, it has become a non-trivial task
to actually select the best one for a particular parallel application. Nevertheless, this challenge
becomes easier to be tackled when existing strategies are extensively evaluated. Therefore,
in this paper, we presented a performance and scalability evaluation of the recently-proposed
workload-aware loop scheduling strategy named SRR. This strategy showed promising results
for irregular applications, but had not been thoroughly assessed before. To deliver a compre-
hensive analysis, we coupled the synthetic kernel benchmarking technique with several rigorous
statistical tools, and considered OpenMP’s Static and Dynamic loop schedulers as our baselines.

We studied the impact of several factors in the time-to solution and speedup of each strategy
in 672 distinct scenarios. Our experiments unveiled that SRR performs better on symmetric
workloads and may achieve up to 1.9× and 1.5× better performance than OpenMP’s Static and
Dynamic strategies, respectively. Moreover, our results pointed out that the time-to-solution
achieved by SRR is not significantly affected by changes in application’s input workload, and
that this strategy may deliver linear weak scaling capability for properly large input workloads.

9

Assessing the Performance of the SRR Loop Scheduler Pedro H. Penna et al.

Nevertheless, we noted that SRR performs similar to the Dynamic strategy for asymmetric
workloads. Finally, when SRR faces a strong scaling scenario, it is overpassed in performance
by the Dynamic scheduler, when the number of threads is not a divisor of the number of chunks
of loop iterations in the irregular application.

As future works, we intend assess memory affinity and energy efficiency of the SRR strategy
in NUMA and hetherogeneous platforms. Furthermore, we intend derive formal proofs on the
performance bounds of this strategy. Finally, we intend to propose an enhancement in the SRR
scheduler so that it can step out from the corner scenarios in which we observed that it may
not perform as expected.

Acknowledgements

We would like to thank CAPES, FAPEMIG, FAPERGS and INRIA under the ExaSE project
grant APQ-03206-13, CNPq under the projects grants 458530/2014-0 and 233223/2014-2, and
STIC-AmSud/CAPES cooperation under EnergySFE project grant 99999.007556/2015-02.

References

[1] M. Balasubramaniam, N. Sukhija, F.M. Ciorba, I. Banicescu, and S. Srivastava. Towards the
scalability of dynamic loop scheduling techniques via discrete event simulation. In Int. Parallel
and Distributed Processing Symp. Workshops, pages 1343–1351, May 2012.

[2] L. Dagum and R. Menon. Openmp: An industry standard api for shared-memory programming.
Computational Science Engineering, 5(1):46–55, 1998.

[3] W. Ding, Y Zhang, M. Kandemir, J. Srinivas, and P. Yedlapalli. Locality-aware mapping and
scheduling for multicores. In Int. Symp. on Code Generation and Opt., pages 1–12, Febi 2013.

[4] Marie Durand, François Broquedis, Thierry Gautier, and Bruno Raffin. An efficient openmp loop
scheduler for irregular applications on large-scale numa machines. In OpenMP in the Era of Low
Power Devices and Accelerators, volume 8122 of LNCS, pages 141–155. 2013.

[5] A. Hajieskandar and S. Lotfi. Parallel loop scheduling using an evolutionary algorithm. In Int.
Conf. on Advanced Computer Theory and Engineering, volume 1, pages 314–319, 2010.

[6] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali, and Calin Casçaval. How
much parallelism is there in irregular applications? In Proc. of the SIGPLAN Symp. on Principles
and Practice of Parallel Programming, pages 3–14, 2009.

[7] Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, Michael Spiegel, and Jan F Prins. Openmp
task scheduling strategies for multicore numa systems. Int. J. High Perform. Comput. Appl.,
26:110–124, 2012.

[8] Pedro H. Penna, Márcio Castro, Henrique Freitas, François Broquedis, and Jean-François Méhaut.
Design Methodology for Workload-Aware Loop Scheduling Strategies Based on Genetic Algorithm
and Simulation. Concurrency and Computation: Practice and Experience, 2016.

[9] Steven S. Skiena. The Algorithm Design Manual. 2nd edition, 2008.

[10] S. Srivastava, B. Malone, N. Sukhija, I. Banicescu, and F.M. Ciorba. Predicting the flexibility
of dynamic loop scheduling using an artificial neural network. In Int. Symp. on Parallel and
Distributed Comp., pages 3–10, 2013.

[11] S. Srivastava, N. Sukhija, I. Banicescu, and F.M. Ciorba. Analyzing the robustness of dynamic
loop scheduling for heterogeneous comp. systems. In Int. Symp. on Parallel and Distributed Comp.,
pages 156–163, 2012.

[12] N. Sukhija, B. Malone, S. Srivastava, I. Banicescu, and F.M. Ciorba. Portfolio-based selection of
robust dynamic loop scheduling algorithms using machine learning. In Int. Parallel Distributed
Processing Symp. Workshops, pages 1638–1647, 2014.

[13] Peter Thoman, Herbert Jordan, Simone Pellegrini, and Thomas Fahringer. Automatic openmp
loop scheduling: A combined compiler and runtime approach. In OpenMP in a Heterogeneous
World, volume 7312 of LNCS, pages 88–101. 2012.

10

	1 Introduction
	2 Loop Scheduling Strategies in OpenMP
	3 Related Work
	4 Evaluation Methodology
	4.1 Performance Factors
	4.2 Experimental Design

	5 Experimental Results
	5.1 Performance Analysis Overview
	5.2 Kernel Analysis
	5.3 Workload pdf Analysis
	5.4 Kurtosis and Shuffling Analysis
	5.5 Scaling Analysis

	6 Conclusions and Future Work

