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Phase field modelling of anisotropic crack propagation

Thanh Tung Nguyen, Julien Réthoré1, Marie-Christine Baietto
LaMCoS, Université de Lyon / INSA Lyon / CNRS UMR 5259

Bat. Jacquard, 27 Avenue Jean Capelle, F-69621 Villeurbanne, Cedex, France

Abstract

Anisotropy is inherent to crystalline materials (among others) due to the symmetry of

the atomic lattice. However, failure anisotropy is questioning the foundations of brittle

failure as the equivalence between the principle of local symmetry and the maximum

energy release rate criterion is no longer valid. Many experimental observations have

been reported in the literature but anisotropic failure is thus still an open path for fun-

damental research. The aim of the paper is to propose a phase field model that could

reproduce (energetically) non-free anisotropic crack bifurcation within a framework

allowing for robust and fast numerical simulations. After the model and its finite ele-

ment implementation have been detailed, its ability to capture the thought phenomenon

is illustrated through several examples.
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1. Introduction

Anisotropy is inherent to crystalline materials (among others) due to the symmetry

of the atomic lattice. Depending on the level of symmetry, one can derive the symmetry

class for elasticity or other physical properties. Concerning failure, anisotropy is often

higher than for elasticity for a given symmetry class. However, failure anisotropy is

questioning the foundations of brittle failure as the equivalence between the principle

of local symmetry and the maximum energy release rate criterion is no longer valid.
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Many experimental observations have been reported in the literature as for example

in Wu et al. (1995). More recent theoretical investigations proposed by Hakim and

Karma (2009) have motivated model experiments on thin films by Takei et al. (2013).

Even more recently, Li et al. (2014) developed a numerical implementation of a phase

field model with strong anisotropy including the explicit dependency of fracture energy

to the local crack orientation. In their paper, they have been able to reproduce zigzag

crack paths which are in qualitative agreement with experimental observations. In their

approach that uses a second order formulation, crack curvature is penalized. However,

there is no direct link between the model parameters and the energy cost for crack

bending. This is an important point as experimental evidences were reported in Takei

et al. (2013).

The aim of the paper is to propose a phase field model that could reproduce (ener-

getically) non-free anisotropic crack bifurcation. For this purpose, we choose to extend

the formalism proposed by Clayton and Knap (2015) within a framework allowing for

robust and fast numerical implementation. The outline of the paper is as follows: first

we recall in Section 2 the useful regularized representation of cracks that is then used

in the phase field model we develop in Section 3. The finite element implementation

of the model is then detailed in Section 4 before its ability for modelling anisotropic

failure are illustrated in Section 5.

2. Regularized representation of free discontinuities

2.1. General statements

Let Ω ⊂ RD an open domain describing a cracked solid, with D the space dimen-

sion and ∂Ω its boundary. Let Γ a curve of dimension D−1 within Ω (see Fig. 1). In a

regularized framework, the crack geometry is approximated by a smeared representa-

tion defined by a scalar parameter d(x), x ∈Ω, taking a unit value on Γ and vanishing

away from it. It can be shown (see e.g. Miehe et al. (2010)) that such a function can
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be determined by solving the following boundary value problem on Ω:


d− `2∆d = 0 in Ω,

d(x) = 1 on Γ,

∇d(x) ·n = 0 on ∂Ω,

(1)

where ∆(.) is the Laplacian, ` is a regularization parameter describing the actual width

of the smeared crack, and n the outward normal to ∂Ω. A two-dimensional illustration

of this concept is depicted in Fig. 1(b). It can be shown that (1) is the Euler-Lagrange

equation associated with the variational problem:

d(x) = Arg
{

inf
d∈Sd

Γ`(d)
}
, (2)

with Sd = {d|d(x) = 1 on Γ ∀x ∈ Γ} and where

Γ`(d) =
∫

Ω

γ(d,∇d)dΩ (3)

represents the total crack length. In (3), γ(d,∇d) denotes the crack density function

per unit volume, defined by:

γ(d,∇d) =
1
2`

d2 +
`

2
∇d ·∇d. (4)

2.2. Anisotropy

In the anisotropic case, we extend this formulation to a class of anisotropic materi-

als. An anisotropic crack surface density function is written by the following expres-

sion:

γ(d,∇d,ωωω) =
1
2`

d2 +
`

2
ωωω : (∇d⊗∇d). (5)

Where ωωω is a second order structural tensor, being invariant with respect to rota-

tions (characterizing the kind of the material’s anisotropy). The terminology anisotropy

is used herein to be consistent with the literature. However, this terminology may be
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confusing as one has to distinguish between elastic anisotropy and failure anisotropy.

In the latter case, the term directionality would be more appropriate. One usually

distinguishes between weak and strong anisotropy to failure. This transition is ob-

tained when the angular distribution of the reciprocal surface energy (1/γ) becomes

non-convex. This non-convexity induces forbidden direction for the crack to propa-

gate whereas convex reciprocal surface energy does not.

As considered in Clayton and Knap (2015), to make the energy release rate orien-

tation dependent, the tensor ωωω can be defined by:

ωωω = 1+β(1−M⊗M) (6)

where M denotes the unit vector normal to the preferential cleavage plane (with

respect to the material coordinates), β� 0 is used to penalize the damage on planes

not normal to M. Hence, in the case of isotropic material we set β = 0.

In order to estimate the anisotropy introduce in the surface energy by this formula-

tion, we compute the distribution of surface energy gcγ`(d,ωωω) for a phase field d(x) is

determined numerically by the following variational problem:

d(x) = Arg
{

inf
d∈Sd

∫
Ω

γ(d,∇d,ωωω)dΩ

}
, (7)

A Benchmark problem described in Fig. 2 is considered. The phase field variable

d is assigned a unit value within a disc of radius r = 0.025B at the center of a square

domain of size B. Once the computation of d is performed, the corresponding surface

energy distribution is calculated at the integration points. For M = [1 0], gc = 1 J/m2

and β between 0 and 20, polar plots of element average value of γ and 1/γ at a distance

r = 0.025B+2` from the domain center are depicted in Fig. 3. The fluctuation of the

surface energy on these plots is due to the position of the integration element center

which is not exactly located at a distance r from the center. For β = 0, the surface
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energy does not depend on the orientation and isotropy is recovered. When β is in-

creased from 0 to 20, there is a strong modification of the surface energy distribution

as illustrated in Fig. 3(a). Namely, when beta increases the surface energy in the [1 0]

orientation decreases whereas it remains constant in the [1 0] orientation. In Fig. 3(b),

the sensitivity of the reciprocal surface energy to β is analyzed. It is clearly shown

that for β≤ 1 the reciprocal surface energy distribution is convex but it becomes non-

convex for β > 1. A smooth transition from weak to strong anisotropy can thus be

modeled within the proposed framework.

In the case of the cleavage planes of multiple discrete orientations, we introduce

the multiple phase field dddi to quantify the damage accumulation on each such plane di.

Thus the total crack length is here rewritten by the following:

Γ`(dddi,ωωωi) = ∑
i

Γ
i
`(di,ωωωi) = ∑

i

∫
Ω

γi(di,∇di,ωωωi)dΩ, (8)

with γi(di,∇di,ωωωi) is the crack density function of damage system di corresponding to

orientation dependent ωωωi.

The variational derivative of the crack density function for each damage system is

now defined as:

δγi(di,∇di,ωωωi) =
di

`
− `

[
∇

2di +βi

(
∇

2di−Mi⊗Mi : ∇∇di

)]
(9)

where ωωωi = [ωωω1,ωωω2, ...ωωωn] is calculated from Equation 6 corresponding to each

preferential cleavage plane (depending on the unit vector normal Mi and coefficient

βi). Note that, the regularization parameter ` can be taken different for each plane.

However, in this work we assume ` is homogeneous.
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3. Phase field method

3.1. Regularized variational framework

The variational approach to fracture mechanics provided by Francfort and Marigo

(1998) introduces the following energy functional for the cracked body:

E(u,Γ) = Eu(u,Γ)+Es(Γ) =
∫

Ω\Γ
Wu(εεε(u))dΩ+gcH D−1(Γ) (10)

where Wu is the strain energy density function, εεε = 1
2

(
∇u+∇uT), u is the displace-

ment field, gc is the fracture toughness, and H D−1 is the Hausdorff surface measure

giving the crack length (D = 2) or surface (D = 3). The term Eu(u,Γ) represents the

elastic energy stored in the cracked body, and Es(Γ) is the energy required to create

the crack according to the Griffith criterion. Then, the state variables are the displace-

ment field u and the geometry of the crack Γ. In a regularized framework (phase field

method), fracture energy is regularized by the crack density function γi(di,∇di,ωωωi) for

each damage variable di and the strain energy is replaced by energy of damageable

material Wu(εεε(u),dddi), the above functional is substituted by the functional:

E(u,dddi) =
∫

Ω

Wu(εεε(u),dddi)dΩ+gc ∑
i

∫
Ω

γi(di,∇di,ωωωi)dΩ, (11)

The total energy is then rewritten as E =
∫

Ω
WdΩ in which

W =Wu(εεε(u),dddi)+gc ∑
i

γi(di,∇di,ωωωi) (12)

3.2. Unilateral contact formulations and strain criterion with threshold for anisotropic

elastic energy

In order to prevent the issue of cracks interpenetration in compression mode, many

unilateral contact formulations have been proposed in the literature. For more details

and practical implementation aspects, the interested reader may refer to Freddi and

Royer-Carfagni (2010).
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In what follow, we will present some points of view about the unilateral contact

formulations for anisotropic elastic energy proposed in the work by Clayton and Knap

(2015). This model has been proposed for the first time in the work of Ramtani et al.

(1992), and applied to predict the behavior of rocks up to failure in the work of Comi

(2001). This idea has been used in the regularized framework for brittle fracture of

Amor et al. (2009) for isotropic case. The strain is decomposed into deviatoric εεεdev and

spheric εεεsph parts. Then, it is assumed that damage is created by expansion (positive

part of trace of the strain) and shear.

Wu(εεε(u),d) =


1
2

g(dddi)
[
εεε : C0 : εεε

]
if trεεε≥ 0

1
2
[
εεεsph : C0 : εεεsph

]
+g(dddi)

[
εεεdev : C0 : εεεdev

]
if trεεε < 0

(13)

Where C0 denote the initial elastic tensor of the material. The degradation function

g(dddi) in (13) is assumed to have the simple form:

g(dddi) = (1− k)∏
i
(1−di)

2 + k. (14)

The function g(dddi) has been chosen such that g′(di = 1) = 0 to guarantee that the

strain energy density function takes a finite value as the domain is locally cracked

(see e.g. Braides (1998)) and g(dddi = 0) = 1 to guarantee that the material is initially

undamaged, g(di = 1) = 0 is the limit for a fully damaged material. The quadratic

function is chosen here (1− di)
2, that is the simplest case to ensure the existence of

a solution regular in the sense of Carfagni. Alternatively the quartic function, and the

cubic function are introduced in the work of Karma et al. (2001), Borden (2012). The

small parameter k << 1 is introduced to maintain the well-posedness of the system for

partially broken parts of the domain.

By introducing bulk modulus k0 for the undamaged material (relating the spherical
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of the strain to the spherical part of the stress), the elastic tensor now written as:

C= g(dddi)C0 + k01⊗1
[
1−g(dddi)

]
sign−(trεεε) (15)

Where the sign function sign−(x) = 1 if x < 0 and sign−(x) = 0 if x≥ 0. The strain

energy is now rewritten by:

Wu(εεε(u),dddi) =
1
2
[
εεε : C : εεε

]
(16)

In order to prevent the problem of a damage-type occurring at low stress levels, a

thresholded energy function is used. We seek to rewrite (12), so that the damage will

only appear when the strain energy rather than an initial damage threshold ψc, but the

elastic behavior of material is still valid in classical way. Without loss of generality,

we chosen ψc =
gc

2`
, the total density energy defined in (12) can be re-written as:

W =Wu(εεε(u),dddi)−g(dddi)ψc +ψc +2ψc`∑
i

γi(di,∇di,ωωωi) (17)

This formulation verifies that for dddi→ 0 (elastic state) which includes g(dddi)→ 1,

γi(di,∇di,ωωωi)→ 0, we recover the classical form of elastic behavior of material. Note

that the similar idea of this method can be found in the work by Frémond and Nedjar

(1996); Pham et al. (2011); Miehe et al. (2015).

3.3. Basics of thermodynamics and evolution of phase field

In this subsection we will formulate a crack phase field evolution law, that can

guarantee the irreversibility of the process. Assuming isothermal process and without

the external mircoforces, a reduced form of the Clausius-Duhem inequality can be

written as:

∑
i

Aiḋi ≥ 0 (18)

where Ai is the variational derivative of W with respect to the phase field di, reads:

Ai =−
δW
δdi

=−∂W
∂di

+∇.

(
∂W

∂∇di

)
(19)
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Assuming that, the damage systems are independent of each other, then the condi-

tion (18) becomes:



A1ḋ1 ≥ 0

A2ḋ2 ≥ 0

...

Anḋn ≥ 0

(20)

At this stage, a threshold F(Ai) such that no damage occurs satisfied the following

condition:

F(Ai)≤ 0. (21)

Assuming the principle of maximum dissipation then requires the dissipation A ḋ

to be maximum under the constraint (21). Using the method of Lagrange multipliers

and the following Lagrangian:

Li =−Aiḋi +λiFi(Ai) (22)

yields the Kuhn-Tucker equations:

∂Li

∂Ai
= 0, λi ≥ 0,Fi ≤ 0,λiFi = 0. (23)

The first equality in (23) gives:

ḋi = λi
∂Fi(Ai)

∂Ai
. (24)

Without loss of generality, the threshold function Fi(Ai) is assumed in the form

Fi(Ai) = Ai. From (24) and using the second inequality in (23), we obtain:

ḋi = λ≥ 0 (25)
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For each damage system, when ḋi > 0, and from (20), (25) and the third equality

in (23) , which give Fi = 0 implying:

Fi =−
δW
δdi

=−∂Wu

∂di
− ∂(g(dddi)ψc)

∂di
−2ψc`δγi(di,∇di,ωωωi) = 0, (26)

where δγi(di,∇di,ωωωi) is defined in (9).

From (15), (16) and (26), we have

−δW
δdi

= 2(1−di)(1− k)∏ j 6=i(1−d j)
2
(

εεε : Ch : εεε−ψc

)
−2ψc`δγi(di,∇di,ωωωi) = 0,

(27)

with

Ch =
C0− k01⊗1 sign−(trεεε)

2
(28)

As (1−di)(1− k)∏ j(1−d j)
2(εεε : Ch : εεε−ψc

)
≥ 0 and ψc` > 0, then

δγi(di,∇di,ωωωi)≥ 0 (29)

Expressing the variation of crack length:

d
dt

Γ
i
` =

∫
Ω

δγi(di,∇di,ωωωi) ḋidΩ, (30)

we can check that due to (29)

Γ̇
i
` ≥ 0, (31)

a non-reversible evolution of cracks is satisfied. In addition, to ensure the positive

condition of (29) and to handle loading and unloading histories, Miehe et al. (2010)

introduced the strain history functional:

Hi(x, t) = max
τ∈[0,t]

{
(1− k)∏

j
(1−d j)

2
(

εεε(x,τ) : Ch(x,τ) : εεε(x,τ)−ψc

)}
. (32)
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Note that, this functional is initiated Hi(x, t = 0) = 0. Therefore, following (32) the

history functional will be equal zero when the strain energy bellow threshold ψc, that

prevent damage occurring at low stress levels. By substituting Hi(x, t) to first term

in (27), and using (1), (9) It yields the following phase field problem to be solved to

evaluate the field di(x, t) at time t:


(1−di)Hi−ψc

(
di− `2

[
∇2di +βi

(
∇2di−Mi⊗Mi : ∇∇di

)])
= 0 in Ω,

di(x) = 1 on Γ,

∇di(x) ·n = 0 on ∂Ω.

(33)

4. Finite element discretization

4.1. Weak form of phase field problem

Starting from (33)1, multiplying by a test function δdi and integrating over Ω, we

obtain:

∫
Ω

{
(1−di)Hiδdi−ψc

(
di− `2

[
∇

2di +βi

(
∇

2di−Mi⊗Mi : ∇∇di

)])
δdi

}
dΩ= 0.

(34)

Using the property of the product rule used to find the derivatives of products:

(∆di) δdi = ∇ · (∇diδdi)−∇di ·∇(δdi), (35)

and the divergence theorem, we finally obtain the formulation of phase field problem

for each preferential cleavage plane:

∫
Ω

{
(Hi +ψc)diδdi +ψc`

2
∇di

[
1+βi

(
1−Mi⊗Mi

)]
∇(δdi)

}
dΩ =

∫
Ω

HiδdidΩ.

(36)
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4.2. Weak form of displacement problem

The weak form associated with the displacement problem is found by solving the

variational problem:

u(x) = Arg
{

inf
u∈Su

(
E(u,dddi)−W ext)} (37)

where Su =
{

u|u(x) = ū on ∂Ωu, u ∈ H1(Ω)
}

and W ext =
∫

Ω
f · udΩ+

∫
∂ΩF

F ·

udΓ with f and F body forces and prescribed traction over the boundary ∂ΩF . We

obtain the classical weak form for u(x) ∈ Su:

∫
Ω

σσσ : εεε(δu)dΩ =
∫

Ω

f ·δudΩ+
∫

∂ΩF

F ·δudΓ ∀δu ∈ H1
0 (Ω), (38)

where the Cauchy stress σσσ = ∂Wu
∂εεε

is given using (16) and (15), by:

σσσ =

[
g(dddi)C0 + k01⊗1

[
1−g(dddi)

]
sign−(trεεε(u))

]
: εεε(u) (39)

4.3. Time-Discrete field variables in an incremental setting

In the present work, the computations are performed in quasi-static conditions.

Then, the time steps introduced in the following actually refer to load increments. In-

troducing a time stepping, the phase field problem for preferential plane i to be solved

at time tn+1 is expressed by seeking di(x) ∈ Sdi , such that:

∫
Ω

{
(H n

i +ψc)dn+1
i δdn+1

i +ψcl2
∇dn+1

i

[
1+βi

(
1−Mi⊗Mi

)]
∇(δdn+1

i )

}
dΩ

=
∫

Ω

H n
i δdn+1

i dΩ. (40)

The Cauchy stress at time tn+1 is now defined by:

σσσ
n+1 =

[
g(dddn+1

i )C0 + k01⊗1
[
1−g(dddn+1

i )
]
sign−(trεεε(un+1))

]
: εεε(un+1) (41)
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The sign function sign−(trεεε(un+1)) in Equation 41 introduces non-linearity when

solving the variational problem related to displacement field. In order to recast the

latter as a linear problem, we use the shifted algorithm proposed in Nguyen et al.

(2015b) by introducing the prediction R−, which is determined from results of previous

time step tn:

R− = sign−(trεεε(un)) =

 1 if trεεε(un)< 0

0 if trεεε(un)≥ 0
(42)

4.4. Overall algorithm

The overall algorithm is described as follows:

Initialization. Initialize the displacement field u0(x), all phase field systems

ddd0
i (x), and the strain-history functional for each systems H 0

i = 0.

WHILE tn+1 ≤ T , given un, dddn
i and H n

i ,

1. Compute the strain history functional for each damage systems H n+1
i by (32).

2. Compute damage fields dn+1
i (x) by solving the linear phase field problem (36).

3. Compute displacement field un+1(x):

• Determine the prediction R− by Equation (42)

• Solving the linear displacement problem (38).

4. (.)n← (.)n+1 and go to (1).

5. Examples

5.1. Crack propagation in a model material

In this first example, a comparison with experiments on a model honeycomb ma-

terial obtained by additive manufacturing is proposed.
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5.1.1. Experimental observation

Failure experiments on honeycomb materials have been performed. The specimen

geometry is defined in Figure 4. The left arms of the specimen are fixed in the grips

of a standard tensile device and submitted to a constant vertical displacement speed of

0.1mm/min. The specimens were obtained by a 3D printer. They are made from photo-

sensitive ABS-type polymer powder. The bulk material obtained from this process

is isotropic. Its elastic behavior is defined by a Young’s modulus of 1.4 GPa and a

Poisson’s ratio of 0.4. A pre-crack has been designed by simply not printing some

cells along the symmetry plane of the specimen. The results presented in this paper

are based on the analysis of a material generated by a periodic tilling of the D2 cell

presented in Figure 5. This cell is invariant by rotation of 2π/2. It is also invariant

by symmetry with respect to horizontal vertical planes. The edges are 140 µm thick

and 1100 µm long. At the macroscopic scale, when the honeycomb is considered as

a continuum, the material is orthotropic for elasticity. For this unit cell geometry,

experiments until rupture have been carried out. Two orientations (0o and 90o) of

the material structure with respect to the specimen axis are tested. The crack paths are

shown in Figure 6 and they clearly show how the material orientation influences failure

in such material. A closer view of the broken cells is presented in Figure 7. From

these experimental observations, it appears that failure occurs at the corners of the unit

cells. This observation holds for all the unit cell geometries tested experimentally.

Consequently, the cleavage planes for this material are defined by the red lines in

Figure 5. In the model proposed herein, two possible orientations of cleavage planes

have to be considered.

5.1.2. Numerical model

In the simulations, the effective continuum material is considered. The effective

elastic tensor is obtained by using a periodic homogenization scheme. For the 0o case
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the elastic tensor is:

C0 =


420 40 0

40 180 0

0 0 30

 MPa (43)

and the initial bulk modulus k0 is 247 MPa. The other model parameters are gc which

is set to 20 J/m2, `= 0.01 mm and β = 20 to induce strong anisotropy. For simulating

the experiments, a rectangular domain of 60×120 mm is considered. An initial crack

of length a = 60 mm is defined by simply removing the elements of the rectangular

finite element mesh cut by this crack. A regular mesh of triangular elements of edge

0.01 mm is used in the simulations, it consists in about 30 000 elements. The vertical

displacement of the nodes along the left edge of the rectangular domain is prescribed

to induce a mode I opening solicitation at the crack tip.

5.1.3. Results

Two orientations of the material are tested as in the experiments (see Figure 6. The

results are illustrated in Figure 8. In this Figure, the phase field variables are plotted

at the end of the simulation. For the two orientations, during the nucleation stage both

cleavage planes absorb part of the elastic energy available in the system. Then, crack

initiation occurs in one of the two planes. As soon as a crack initiates, the dissipation

is concentrated in the activated cleavage plane only. The phase field variable for the

unactivated plane remains at the same level during the rest of the failure process. As

expected the failure patterns follow one of the orientations allowed in the model (see

Figure 5). For the two orientations, the selected plane in the simulation gives the same

crack orientation as in the experiments.

5.2. Zigzag crack

In this example, a benchmark from the literature is reproduced. The idea of this ex-

ample is to guide the crack in a direction that is forbidden for the material as observed

experimentally by Wu et al. (1995) and Takei et al. (2013). A square domain of 2×2

mm2 is analyzed. The displacement is fully constrained (zero horizontal displacement
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and remote vertical displacement) in the upper and lower bands of the domain to force

the crack to propagate within the rest of the domain, a band of 0.8 mm remaining free

to deform. The elastic behavior of the material is isotropic. The young modulus is set

to 10 GPa and the Poisson’s ratio to 0.2. The fracture energy gc is 250 J/m2 and the

regularization parameter ` is 32 µm. The preferential cleavage planes are oriented at

±45o with respect to the horizontal axis. The mesh consists in about 36 000 triangular

elements of 16 µm size.

In Figure 9, the evolution of the equivalent phase field variable deq is plotted for

β = 20, deq being defined as d1+d2−d1d2 i.e. such that 1−deq = (1−d1)(1−d2). In

this Figure, it is observed that the crack initiates in one of the direction allowed by the

model and then bifurcates to the other direction before its reaches the fully constrained

zone. Propagation occurs in this direction until the crack almost reached the other

constrained region and then it bifurcates again. This leads to a zigzag crack pattern as

depicted in Figure 9. In the formulation proposed herein, the crack results from the

superposition of branches activating one of the two allowed cleavage planes , others

orientations being forbidden due to strong anisotropy. This is illustrated in Figure 10,

where the phase field variable of the two systems are plotted at the end of the simu-

lation. One clearly observes how each of the cleavage plane is successively activated

and unactivated to finally obtain the zigzag pattern. Subsequently, changing orienta-

tion means nucleating and initiating a new crack in an other plane what implies higher

energy dissipation than propagating along the same plane. This is further illustrated by

the global load v.s. displacement curve plotted in Figure 11. The red dots on this curve

correspond to the snapshots in Figure 9 that are taken at the times when the crack starts

a zigzag. It is clearly observed that after each of this dots a phase of lower softening

(higher dissipation) starts before the propagation occurs along the new orientation.

The simulation is now carried out for a value of β = 1 inducing weak anisotropy.

In this case there is no forbidden direction for the crack to propagate. As illustrated

in Figure 12, the crack runs along the direction expected from the vertical loading.

However, the crack line is slightly curved. Its initial orientation results from the com-
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petition between the external load and the weak anisotropy that induces a lower cost

for the crack to grow in other orientation than those penalized by the model. After go-

ing along this initial orientation, the crack bends and tends to grow along the opposite

orientation. It is observed in Figure 12 that this curvature is related to the progressive

activation of the second cleavage plane.

From these results, it can be concluded that the model allows for capturing the

effect of weak and strong anisotropy. Further, it seems that energy cost for the crack

to bend is related to the initiation of damage along a different cleavage plane. In the

case of weak anisotropy, this activation is progressive thus leading to low curvature

whereas in the case of strong anisotropy a kink is obtained.

6. Conclusions

To handle failure anisotropy, the proposed model is based on the consideration of

several cleavage planes, each of these planes having its own damage variable. A direc-

tionality effect is obtained by adding a penalty term in the phase field equations that

prevent damage to develop along the normal to the considered cleavage planes. It is

shown that the penalty coefficient allows to control the level of anisotropy and makes

the model switch from weak anisotropy to strong anisotropy. An efficient numerical

implementation is derived for this formulation by using history variables associated

to each of considered cleavage planes. Note that compared to the formulation pro-

posed by Li et al. (2015), a standard finite element implementation is used herein.

Further, and as illustrated by the examples, the proposed model induces additional en-

ergy dissipation when the crack switches from one cleavage plane to an other one. The

definition of the implicitly considered fracture energy distribution as a function of the

kinking angle can be easily extended to 3D as only the normal to the cleavage plane

as to be defined. Also, with the use of the history function, the initial non-linear phase

filed problem recasts in two linear problems which further increases the applicability

of the proposed model to model 3D complex microstructures.
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Among the prospects of this work, one can mention: further validation by compar-

ison to model experiments as performed by Takei et al. (2013) and 3D implementation

and application to polycrystalline structures. For alloys, grain boundaries have a con-

stitutive behavior that differs from the bulk. It would thus be useful to couple the

proposed anisotropic phase field model to a cohesive model for modeling failure at the

grain boundaries. For this purpose, Nguyen et al. (2015a) recently proposed a frame-

work to integrate cohesive interfaces within a phase field model. This approach may

be considered to improve the relevance of the model to model the failure behaviour of

polycrystalline systems.
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Figures

(a) (b)

Figure 1: Regularized representation of a crack: two-dimensional case: (a) sharp crack model; (b)

regularized representation through phase field.
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Figure 2: Benchmark problem for the analysis of surface energy distribution. The phase field variable

d is prescribed a unit value within the disc of radius 0.025B at the centre of the domain.
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Figure 3: Polar plots of the surface energy Γ` (a) and the reciprocal surface energy 1/Γ` (b) for for

M = [1 0] and β varying from 0 to 20.

23



30

40

68
.7
2

60

150

14
0

95.5

Pre-Crack

Figure 4: Specimen geometry for the failure experiments
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Figure 5: D2 unit cell geometry for 0o orientation and its admissible cleavage planes (red lines).
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(a)

(b)

Figure 6: Experimental crack paths for two orientation of the material architecture: (a) 0◦, (b) 90◦
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(a) (b)

Figure 7: Close view of the failure mechanisms in the analyzed architectured materials.
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Figure 8: Phase field variable in the activated (a,b) and unactivated (c,d) cleavage planes for the two

orientations of the model material.
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Figure 9: Evolution of the equivalent phase field deq during the propagation of the guided crack.
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(a)

(b)

Figure 10: Distribution of the two phase field variables at the end of the propagation of the guided crack

for strong anisotropy (β = 20).
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Figure 11: Load displacement curve for the example of the guided crack. The red dots corresponds to

the states depicted in Figure 9.
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(a)

(b)

Figure 12: Distribution of the two phase field variables at the end of the propagation of the guided crack

for weak anisotropy (β = 1).
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