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Introduction

Positive association (PA) and negative association (NA) [START_REF] Alam | Positive dependence in multivariate distributions[END_REF][START_REF] Esary | Association of random variables, with applications[END_REF] are properties that quantify the dependence between random variables. They have found many applications in limit theorems for random fields [START_REF] Bulinski | Limit Theorems for Associated Random Fields and Related Systems[END_REF][START_REF] Yuan | A central limit theorem for random fields of negatively associated processes[END_REF]. Even if the extension of PA to point processes have been used in analysis of functionals of random measures [START_REF] Burton | Scaling limits for associated random measures[END_REF][START_REF] Evans | Association and random measures[END_REF], there are no general applications of PA or NA to limit theorems for point processes. We contribute in this paper to this aspect for spatial point processes on R d . We especially discuss in detail the case of determinantal point processes (DPPs for short), that are an important example of negatively associated point processes. DPPs are a type of repulsive point processes that were first introduced by Macchi [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] in 1975 to model systems of fermions in the context of quantum mechanics. They have been extensively studied in Probability theory with applications ranging from random matrix theory to non-intersecting random walks, random spanning trees and more (see [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF]). From a statistical perspective, DPPs have applications in machine learning [START_REF] Kulesza | Determinantal point process models for machine learning[END_REF], telecommunication [START_REF] Deng | The ginibre point process as a model for wireless networks with repulsion[END_REF][START_REF] Miyoshi | A cellular network model with ginibre configured base stations[END_REF][START_REF] Gomez | A Case Study on Regularity in Cellular Network Deployment[END_REF], biology, forestry [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] and computational statistics [START_REF] Bardenet | Monte Carlo with determinantal point processes[END_REF].

As a first result, we relate the association property of a point process to its α-mixing properties. First introduced in [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF], α-mixing is a measure of dependence between random variables, which is actually more popular than PA or NA. It has been used extensively to prove central limit theorems for dependent random variables [START_REF] Bolthausen | On the central limit theorem for stationnary mixing random fields[END_REF][START_REF] Doukhan | Mixing: Properties and Examples[END_REF][START_REF] Guyon | Random Fields on a Network[END_REF][START_REF] Ibragimov | Independant and stationnary sequences of random variables[END_REF][START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF]. More details about mixing can be found in [START_REF] Bradley | Basic properties of strong mixing conditions. a survey and some open questions[END_REF][START_REF] Doukhan | Mixing: Properties and Examples[END_REF]. We derive in Section 2 an important covariance inequality for associated point processes (Theorem 2.5), that turns out to be very similar to inequalities established in [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] for weakly dependent continuous random processes. We show that this inequality implies α-mixing and precisely allows to control the α-mixing coefficients by the first two intensity functions of the point process. This result for point processes is in contrast with the case of random fields where it is known that association does not imply α-mixing in general (see in [START_REF] Bulinski | Limit Theorems for Associated Random Fields and Related Systems[END_REF]). However, this implication holds true for integer-valued random fields (see [START_REF] Doukhan | On weak dependence conditions: the case of discrete valued processes[END_REF] or [START_REF] Bulinski | Limit Theorems for Associated Random Fields and Related Systems[END_REF]). As explained in [START_REF] Doukhan | On weak dependence conditions: the case of discrete valued processes[END_REF], this is because the σ-algebras generated by countable sets are much poorer than σ-algebras generated by continuous sets. In fact, by this aspect and some others (for instance our proofs boil down to the control of the number of points in bounded sets), point processes are very similar to discrete processes.

We then establish in Section 3 a general central limit theorem (CLT) for random fields defined as a function of an associated point process (Theorem 3.1). A standard method for proving this kind of theorem is to rely on sufficiently fast decaying α-mixing coefficients along with some moment assumptions. We use an alternative procedure that exploits both the mixing properties and the association property. This results in weaker assumptions on the underlying point process, that can have slower decaying mixing coefficients. This improvement allows in particular to include all standard DPPs, some of them being otherwise excluded with the first approach (like for instance DPPs associated to the Bessel-type kernels [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF]).

Section 4 discusses in detail the case of DPPs, where we derive a tight explicit bound for their α-mixing coefficients and prove a central limit theorem for certain functionals of a DPP (Theorem 4.4). Specifically, these functionals write as a sum of a bounded function of the DPP, over subsets of close-enough points of the DPP. A particular case concerns sums over p-tuple of close enough points of the DPP, which are frequently encountered in asymptotic inference. Limit theorems in this setting have been established in [START_REF] Soshnikov | Determinantal random point fields[END_REF] when p " 1, and in [START_REF] Biscio | Brillinger mixing of determinantal point processes and statistical applications[END_REF] for stationary DPPs and p ě 1. We thus extend these studies to sums over any subsets and without the stationary assumption. As a statistical application, we consider the parametric estimation of second-order intensity reweighted stationary DPPs. These DPPs have an inhomogeneous first order intensity, but translation-invariant higher order (reweighted) intensities. We prove that the two-step estimator introduced in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF], designed for this kind of inhomogeneous point process models, is consistent and asymptotically normal when applied to DPPs.

Associated point processes and α-mixing

Notation

In this paper, we consider locally finite simple point processes on R d , for a fixed d P N. Some theoretical background on point processes can be found in [START_REF] Daley | An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods[END_REF][START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]. We denote by Ω the set of locally finite point configurations in R d . For X P Ω and A Ă R d , we write N pAq :" cardpX ∩ Aq for the random variable representing the number of points of X that fall in A. We also denote by BpAq the Borel σ-algebra of A and by EpAq the σ-algebra generated by X ∩ A, defined by EpAq :" σptX P Ω : N pBq " mu, B P BpAq, m P Nq.

The notation |.| will have a different meaning depending on the object it is applied. For x P R d , |x| stands for the euclidean norm. For a set A Ă R d , |A| :" ş A dx is the euclidean volume of A, and for a set I Ă Z d we write |I| for the cardinal of I. For A, B two subsets of R d (resp. Z d ) we define distpA, Bq as inf xPA,yPB |y ´x| and diampAq as sup x,yPA |y ´x| where |.| is the associated norm on R d (resp. Z d ). For i P Z d , |i| 1 denotes the 1 -norm. Finally, we write Bpx, rq for the euclidean ball centred at x with radius r and }.} p for the p-norm of random variables and functions where 1 ď p ď 8.

We recall that the intensity functions of a point process (when they exist), with respect to the Lebesgue measure, are defined as follows.

Definition 2.1. Let X P Ω and n ě 1 be an integer. If there exists a non-negative function ρ n :

pR d q n Ñ R such that E « ‰ ÿ x1,¨¨¨,xnPX f px 1 , ¨¨¨, x n q ff " ż pR d q n f px 1 , ¨¨¨, x n qρ n px 1 , ¨¨¨, x n qdx 1 ¨¨¨dx n
for all locally integrable functions f : pR d q n Ñ R then ρ n is called the nth order intensity function of X.

In particular, ρ n px 1 , ¨¨¨, x n qdx 1 ¨¨¨dx n can be viewed as the probability that X has a point in each of the infinitesimally small sets around x 1 , ¨¨¨, x n with volumes dx 1 , ¨¨¨, dx n respectively.

We further introduce the notation Dpx, yq :" ρ 2 px, yq ´ρ1 pxqρ 1 pyq.

(2.1)

This quantity is involved in the following equality, deduced from the previous definition and used several times throughout the paper:

CovpN pAq, N pBqq "

ż AˆB Dpx, yqdxdy. (2.2)

Negative and positive association

Our goal in this section is to prove a crucial covariance inequality and to deduce an α-mixing property for associated point processes. We recall that associated point processes are defined the following way (see Definitions 2.11-2.12 in [START_REF] Błaszczyszyn | Clustering comparison of point processes with applications to random geometric models[END_REF] for example).

Definition 2.2.

A point process X is said to be negatively associated (NA for short) if, for all families of pairwise disjoint Borel sets pA i q 1ďiďk and pB i q 1ďiďl such that

p∪ i A i q ∩ p∪ j B j q " H (2.3)
and for all coordinate-wise increasing functions F :

N k Þ Ñ R and G : N l Þ Ñ R it satisfies
ErF pN pA 1 q, ¨¨¨, N pA k qqGpN pB 1 q, ¨¨¨, N pB l qqs ď ErF pN pA 1 q, ¨¨¨, N pA k qqsErGpN pB 1 q, ¨¨¨, N pB l qqs. (2.4)

Similarly, a point process is said to be positively associated (PA for short) if it satisfies the reverse inequality for all families of pairwise disjoint Borel sets pA i q 1ďiďk and pB i q 1ďiďl (but not necessarily satisfying (2.3)).

If a point process is NA or PA it is said to be associated.

The main difference between the definition of PA and NA is the restriction (2.3) that only affects NA point processes. Notice that without (2.3), ErN pAqs 2 ď ErN pAq 2 s contradicts (2.4) hence the need to consider functions depending on disjoint sets for NA point processes.

These inequalities extend to the more general case of functionals of point processes. The first thing we need is a more general notion of increasing functions. We associate to Ω the partial order X ď Y iff X Ă Y and then call a function on Ω increasing if it is increasing respective to this partial order. The association property can then be extended to these functions. A proof in a general setting can be found in [START_REF] Lyons | Determinantal probability: Basic properties and conjectures[END_REF]Lemma 3.6] but we give an alternative elementary one in Appendix A.

Theorem 2.3. Let X be a NA point process on R d and A, B be disjoint subsets of

R d . Let F : Ω Þ Ñ R and G : Ω Þ Ñ R be bounded increasing functions, then ErF pX ∩ AqGpX ∩ Bqs ď ErF pX ∩ AqsErGpX ∩ Bqs.
(2.5)

If X is PA then, for all A, B Ă R d not necessarily disjoint, ErF pX ∩ AqGpX ∩ Bqs ě ErF pX ∩ AqsErGpX ∩ Bqs. (2.6)
Association is a very strong dependence condition. As proved in the following theorem, it implies a strong covariance inequality that is only controlled by the behaviour of the first two intensity functions of X (assuming their existence). To state this result, we need to introduce the following seminorm for functionals over point processes.

Definition 2.4. For any

A Ă R d , }.} A is the seminorm on the functions f : Ω Þ Ñ C defined by }f } A :" sup XPΩ,XĂA xPA |f pXq ´f pX ∪ txuq|.
Note that }.} A is a Lipschitz norm in the sense that it controls the way f pXq changes when a point is added to X ∩ A. Theorem 2.5. Let X be an associated point process and A, B Ă R d be two disjoint bounded subsets. Let f : Ω Ñ R and g : Ω Ñ R be two functions such that f pX ∩ Aq and gpX ∩ Bq are bounded, then

|Covpf pX ∩ Aq, gpX ∩ Bqq| ď }f } A }g} B |CovpN pAq, N pBqq|. (2.7)
Moreover, if X is PA then it also satisfies the same inequality for all A, B Ă R d not necessarily disjoint.

Proof. The proof mimics the one from [START_REF] Bulinski | Asymptotic behaviour of some functionals of positively and negatively dependent random fields[END_REF] for associated random fields. We only consider the case of NA point processes but the PA case can be treated in the same way.

Consider the functions f `, f ´: Ω Ñ R, EpAq-measurable, and g `, g ´: Ω Ñ R, EpBq-measurable, defined by

" f ˘pX q " f pX ∩ Aq ˘}f } A N pAq, g ˘pX q " gpX ∩ Bq ˘}g} B N pBq.
For all x P AzX, f `pX ∪txuq´f `pX q " f pX∪txu∩Aq´f pX∩Aq`}f } A which is positive by definition of }f } A . f `is thus an increasing function. With the same reasoning, g `is also increasing and f ´, g ´are decreasing. f `is not bounded but it is non-negative and almost surely finite so it can be seen as an increasing limit of the sequence of functions minpf `, kq when k goes to infinity. These functions are non-negative, increasing and bounded so for any k and any bounded increasing function g, (2.5) applies where f is replaced by minpf `, kq. By a limiting argument, the same inequality holds true for f " f `. We can also treat the other functions the same way and we get from (2.5)

Covpf `pX q, g `pX qq ď 0 and Covpf ´pX q, g ´pX qq ď 0.

Since these expressions are equal to The lower bound is obtained by replacing f by ´f in the previous expression.

A similar inequality as in Theorem 2.5 can also be obtained for complex-valued functions since } pf q} A and } pf q} A are bounded by }f } A , where pf q and pf q refer to the real and imaginary part of f respectively. Corollary 2.6. Let X be an associated point process and A, B Ă R d be two disjoint bounded subsets. Let f : Ω Ñ C and g : Ω Ñ C be two functions such that f pX ∩ Aq and gpX ∩ Bq are bounded, then

|Covpf pX ∩ Aq, gpX ∩ Bqq| ď 4}f } A }g} B |CovpN pAq, N pBqq|.
Moreover, if X is PA then it also satisfies the same inequality for all A, B Ă R d not necessarily disjoint.

If the first two intensity functions of X are well-defined then D in (2.1) is well-defined. As a consequence of Theorem 2.5 and from (2.2), if |Dpx, yq| vanishes fast enough when |y ´x| goes to infinity then any two events respectively in EpAq and EpBq will get closer to independence as distpA, Bq tends to infinity, as specified by the following corollary. The final result is then a consequence of Theorem 2.5 and Corollary 2.6.

Application to α-mixing

Let us first recall some generalities about mixing. Consider a probability space pX , F, Pq and A , B two sub σ-algebras of F. The α-mixing coefficient is defined as the following measure of dependence between A and B:

αpA , Bq :" supt|PpA ∩ Bq ´PpAqPpBq| : A P A , B P Bu.

In particular, A and B are independent iff αpA , Bq " 0. This definition leads to the essential covariance inequality due to Davydov [START_REF] Yu | The convergence of distributions which are generated by stationary random processes[END_REF] and later generalised by Rio [START_REF] Rio | Covariance inequalities for strongly mixing processes[END_REF]: For all random variables X, Y measurable with respect to A and B respectively, |CovpX, Y q| ď 8α 1{r pA , Bq}X} p }Y } q , where p, q, r P r1, 8s and 1 p `1 q `1 r " 1.

(2.9)

This definition is adapted to random fields the following way (see [START_REF] Doukhan | Mixing: Properties and Examples[END_REF] or [START_REF] Guyon | Random Fields on a Network[END_REF]). Let Y " pY i q iPZ d be a random fields on Z d and define α p,q prq :" suptαpσptY i , i P Auq, σptY i , i P Buqq : |A| ď p, |B| ď q, distpA, Bq ą ru with the convention α p,8 prq " sup q α p,q prq. The coefficients α p,q prq describe how close two events happening far enough from each other are from being independent. The parameters p and q play an important role since, in general, we cannot get any information directly on the behaviour of α 8,8 prq.

We can adapt this definition to point processes the following way. For a point process X on R d , define α p,q prq :" suptαpEpAq, EpBqq : |A| ď p, |B| ď q, distpA, Bq ą ru with the convention α p,8 prq " sup q α p,q prq. As a consequence of Corollary 2.7, the α-mixing coefficients of an associated point process tend to 0 when Dpx, yq vanishes fast enough as |y ´x| goes to infinity. More precisely, we have the following inequalities. Proposition 2.8. Let X be an associated point process on R d whose first two intensity functions are well-defined, then for all p, q ą 0,

$ ' & ' % α p,q prq ď pq sup |x´y|ěr |Dpx, yq|, α p,8 prq ď ps d ż 8 r t d´1 sup |x´y|"t |Dpx, yq|dt.
(2.10) Proof. We can write αpEpAq, EpBqq " sup

A PEpAq BPEpBq Covp1 A pX ∩ Aq, 1 B pX ∩ Bqq so Proposition 2.
8 is a direct consequence of Theorem 2.5 and Corollary 2.7 applied to indicator functions.

Central limit theorem for associated point processes

Consider the lattice px i q iPZ d defined by x i " R ¨i, where R ą 0 is a fixed constant. We denote by C i , i P Z d , the d-dimensional cube with centre x i and side length s, where s ě R is another fixed constant. Note that the union of these cubes forms a covering of R d . Let X be an associated point process and pf i q iPZ d be a family of real-valued measurable functions defined on Ω. We consider the centred random field pY i q iPZ d defined by

Y i :" f i pX ∩ C i q ´Erf i pX ∩ C i qs, i P Z d , ( 3.1) 
and we are interested in this section by the asymptotic behavior of S n :" ř iPIn Y i , where pI n q nPN is a sequence of strictly increasing finite domains of Z d .

As a consequence of Proposition 2.8, we could directly use one of the different CLT for α-mixing random fields that already exist in the literature [START_REF] Bolthausen | On the central limit theorem for stationnary mixing random fields[END_REF][START_REF] Doukhan | Mixing: Properties and Examples[END_REF][START_REF] Guyon | Random Fields on a Network[END_REF] to get the asymptotic distribution of S n . But, the coefficients α p,8 decreasing much slower than the coefficients α p,q , this would imply an unnecessary strong assumption on D. Precisely, this would require Dpx, yq to decay at a rate at least op|y ´x| ´2pd`εq 2`δ δ q, where ε ą 0 and δ is a positive constant depending on the behaviour of the moments of X. In the next theorem, we bypass this issue by exploiting both the behaviour of the mixing coefficients α p,q when p ă 8 and q ă 8, and the association property through inequality (2.8). We show that we can still get a CLT when Dpx, yq decays at a rate op|y ´x| ´pd`εq 2`δ δ q. This improvement is important to include DPPs with a slow decaying kernel, thus inducing more repulsiveness, such as Bessel-type kernels, see the applications to DPPs in Section 4.2 and especially the discussion at the end of the section. Let us also remark that another technique, based on the convergence of moments, is sometimes used to establish a CLT for point processes. This has been exploited especially for Brillinger mixing point processes in [START_REF] Jolivet | Central limit theorem and convergence of empirical processes for stationary point processes[END_REF][START_REF] Heinrich | Central limit theorems for empirical product densities of stationary point processes. Statistical Inference for Stochastic Processes[END_REF] and other papers. As an example, DPPs have been proved to be Brillinger mixing in [START_REF] Biscio | Brillinger mixing of determinantal point processes and statistical applications[END_REF][START_REF] Heinrich | On the strong Brillinger-mixing property of α-determinantal point processes and some applications[END_REF]. However, this condition applies to stationary point processes only. Theorem 3.1. Consider the random field Y given by (3.1), a sequence pI n q nPN of strictly increasing finite domains of Z d and S n " ř iPIn Y i . Let σ 2 n :" VarpS n q. Assume that for some ε, δ ą 0 the following conditions are satisfied: (C1) X is an associated point process on R d whose first two intensity functions are well-defined;

(C2) sup iPZ d }Y i } 2`δ " M ă 8; (C3) sup |x´y|ěr |Dpx, yq| " o rÑ8 pr ´pd`εq 2`δ
δ q where D is given by (2.1);

(C4) lim inf n |I n | ´1σ 2 n ą 0. Then 1 σ n S n L ÝÑ N p0, 1q.
Proof. First, we notice that Y inherits its strong mixing coefficients from X. This is due to the fact that we have σptY i : i P Iuq Ă Ep iPI C i q for all I Ă Z d as a consequence of (3.1). Moreover, we have distpC i , C j q ě 1 ? 

d p|i ´j| 1 R
@p, q ą 0, @r ą sd R , α Y p,q prq ď α X ps d ,qs d ˆ1 ? d prR ´sdq ˙,
where we denote by α X , α Y the α-mixing coefficients of X and Y respectively. In particular, conditions (C1), (C3) and identity (2.10) yields @p, q ą 0, α Y p,q prq " o rÑ8 pr ´pd`εq 2`δ δ q.

(3.2)

We deal with the proof in two steps: first, we consider the case of bounded variables and then we extend the result to the more general case.

The first step of the proof follows the approach used by Bolthausen [START_REF] Bolthausen | On the central limit theorem for stationnary mixing random fields[END_REF] and Guyon [START_REF] Guyon | Random Fields on a Network[END_REF], while the second step exploits elements from [START_REF] Ibragimov | Independant and stationnary sequences of random variables[END_REF]. The main difference lies in the way we deal with the term A 3 that appears later on in the proof.

First step: Bounded variables. Without loss of generality, we consider that Erf i pX ∩C i qs " 0 for all i P Z d . Suppose that we have sup i }Y i } 8 :" sup i }f i p. ∩ C i q} 8 " M ă 8 instead of Assumption (C2). Since α Y p,q prq is non increasing in r and is a opr ´dq by (3.2), we can choose a sequence pr n q nPN such that

α Y p,q pr n q a |I n | Ñ 0 and r ´d n a |I n | Ñ 8.
For i P Z d , define

S i,n " ÿ jPIn |i´j|1ďrn Y j , S i,n " S n ´Si,n , a n " ÿ iPIn ErY i S i,n s, Sn " 1 ? a n S n , Si,n " 1 ? a n S i,n .
We have σ 2 n " VarpS n q " a n `řiPIn ErY i S i,n s and, as a consequence of the typical covariance inequality (2.9) for α-mixing random variables, we get

ˇˇˇˇÿ iPIn ErY i S i,n s ˇˇˇˇď ÿ i,jPIn |i´j|1ąrn |CovpY i , Y j q| ď 8M 2 ÿ i,jPIn |i´j|1ąrn α Y 1,1 p|i ´j| 1 q ď 8M 2 |I n | ÿ rąrn |tk P Z d : |k| 1 " ru|α Y 1,1 prq.
The number of k P Z d satisfying |k| 1 " r is bounded by 2p2r `1q d´1 . This is because each of the d ´1 first coordinates of k takes its values in t´r, ¨¨¨, ru and the last coordinate is fixed by the other ones, up to the sign, since |k| 1 " r. Therefore,

ˇˇˇˇÿ iPIn ErY i S i,n s ˇˇˇˇď 16M 2 |I n | ÿ rąrn p2r `1q d´1 α Y 1,1 prq.
By Assumption (3.2), this quantity is op|I n |q and thus σ 2 n " a n as a consequence of Assumption (C4). We then only need to prove the asymptotic normality of s S n . Moreover, since sup n Er s S 2 n s ă 8 then this will be a consequence of the following condition (see [START_REF] Biscio | A note on gaps in proofs of central limit theorems[END_REF][START_REF] Bolthausen | On the central limit theorem for stationnary mixing random fields[END_REF])

lim nÑ8
Erpiλ ´s S n q exppiλ s S n qs " 0, @λ P R.

We can split this expression into piλ ´s S n q exppiλ s S n q " A 1 ´A2 ´A3 where

$ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % A 1 " iλ exppiλ s S n q ˜1 ´1 a n ÿ jPIn Y j S j,n ¸, A 2 " 1 ? a n exppiλ s S n q ÿ jPIn Y j `1 ´iλ s S j,n ´expp´iλ s S j,n q ˘, A 3 " 1 ? a n ÿ jPIn Y j exp `iλp s S n ´s S j,n q ˘.
It was proved by Bolthausen [7] that ErA 2 1 s and Er|A 2 |s vanish when n goes to infinity if ř r d´1 α Y p,q prq ă 8 for p `q ď 4 which is the case here. We show that ErA 3 s vanishes at infinity using (2.8). Notice that we have

|ErA 3 s| ď |I n | ? a n sup jPIn ˇˇˇˇˇˇˇC ov ¨fj pX ∩ C j q, exp ¨iλ ? a n ÿ kPIn |k´j|1ąrn f k pX ∩ C k q ‹ ‹ ' ‹ ‹ ' ˇˇˇˇˇˇˇ.
Define the function

g j : X Þ Ñ exp ¨iλ ? a n ÿ kPIn |k´j|1ąrn f k pX ∩ C k q ‹ ‹ ' .
This function is bounded by 1 and EpB j q-measurable where B j :" kPIn, |k´j|1ąrn C k is a bounded set and distpC j , B j q ě pRr n ´sdq{ ? d (see Lemma B.2). We have }f j } Cj ď 2M and for all X P Ω, for all x P B j , if we denote by J x " tk : x P C k u the set of cubes that contain x then 

|g j pX ∪ txuq ´gj pXq| " ˇˇˇˇ1 ´exp ˜iλ ? a n ÿ kPJx pf k pX ∩ C k ∪ txuq ´fk pX ∩ C k qq ¸ˇˇˇˇď 2λM |J x | ? a n . Lemma B.
By assumption (C3) we have that t d´1 sup |x´y|ět |Dpx, yq| is integrable and by assumption (C4) we have |I n | " Opa n q which shows that lim nÑ8 ErA 3 s " 0 concluding the proof of the theorem for bounded variables.

Second step: General Case. For N ą 0, we define " S 1,n :" ř iPIn pF N pY i q ´ErF N pY i qsq where

F N : x Þ Ñ x1 |x|ďN , S 2,n :" ř iPIn p r F N pY i q ´Er r F N pY i qsq where r F N : x Þ Ñ x1 |x|ąN .
Let σ 2 n pN q :" VarpS 1,n q, from the first step of the proof we have σ n pN q ´1S 1,n

L ÝÑ N p0, 1q. Let 1 ą γ ą p1 `ε d p1 `δ 2 qq ´1 and define C N :" sup i }Y i 1 |Yi|ąN } 2`δγ .
By assumption (C2) we have that C N vanishes when N Ñ 8 and by assumption (C4) we have that |I n | ď cσ 2 n for a sufficiently large n, where c is a positive constant. By (2.9),

1 σ 2 n VarpS 2,n q " 1 σ 2 n ÿ i,jPIn Covp r F N pY i q, r F N pY j qq ď |I n | σ 2 n C 2 N sup iPIn ÿ jPIn 8α Y 1,1 p|i ´j| 1 q δγ 2`δγ ď 16 c C 2 N 8 ÿ r"0 p2r `1q d´1 α Y 1,1 prq δγ 2`δγ .
By assumption (C3) and the choice of γ we have ř p2r `1q d´1 α Y 1,1 prq δγ 2`δγ ă 8 so σ ´1 n S 2,n converges in mean square to 0 when N goes to infinity, uniformly in n. With the same reasoning, we also get the inequality

1 σ 2 n |CovpS 1,n , S 2,n q| ď 16 c M C N 8 ÿ r"0 p2r `1q d´1 α Y 1,1 prq δγ 2`δγ ,
where the right hand side tends to 0 when N goes to infinity, uniformly in n. Hence σ 2 n pN q tends to σ 

Application to determinantal point processes

In this section, we give a CLT for a wide class of functionals of DPPs. This result is a key tool for the asymptotic inference of DPPs. As an application treated in Section 4.3, we get the consistency and the asymptotic normality of the two-step estimation method of [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] for a parametric inhomogeneous DPP.

Negative association and α-mixing for DPPs

We recall that a DPP X on R d is defined trough its intensity functions with respect to the Lebesgue measure that must satisfy @n P N, @x P pR d q n , ρ n px 1 , ¨¨¨, x n q " detpKrxsq with Krxs :" pKpx i , x j qq i,jPt1,¨¨¨,nu .

The function K : pR d q 2 Ñ C is called the kernel of X and is assumed to satisfy the following standard general condition ensuring the existence of X.

Condition H: The function K : pR d q 2 Ñ C is a locally square integrable hermitian measurable function such that its associated integral operator K is locally of trace class with eigenvalues in r0, 1s. It is worth noticing that this result, and so the covariance inequality (2.7), is optimal in the sense that for a wide class of DPPs, the α-mixing coefficient α p,q prq do not decay faster than sup |A|ăp,|B|ăq distpA,Bqąr |CovpN pAq, N pBqq| when r goes to infinity, as stated in the following proposition. Proposition 4.3. Let X be a DPP with kernel K satisfying H. We further assume that K is bounded, takes its values in R `and is such that }K} ă 1 where }.} is the operator norm. Then, for all p, q, r ą 0, Proof. The upper bound for α p,q prq is just the one in (4.2). The lower bound is obtained through void probabilities. Let p, q, r ą 0 and A, B Ă R d such that |A| ă p, |B| ă q and distpA, Bq ą r. By definition, for any such sets A and B, α p,q prq ě |PpN pAq " 0qPpN pBq " 0q ´PpN pA ∪ Bq " 0q|. The void probabilities of DPPs are known (see [START_REF] Shirai | Random point fields associated with certain fredholm determinants i: fermion, poisson and boson point processes[END_REF]) and equal to

p1
PpN pAq " 0q " exp ˜´ÿ ně1

TrpK n A q n where K A is the projection of K on the set of square integrable functions f : A Ñ R. Moreover, PpN pAq " 0qPpN pBq " 0q ´PpN pA ∪ Bq " 0q ě 0 by negative association, and we have PpN pAq " 0qPpN pBq " 0q ´PpN pA ∪ Bq " 0q

" exp ˜´ÿ ně1 TrpK n A∪B q n ¸˜exp ˜ÿ ně1 TrpK n A∪B q ´TrpK n A q ´TrpK n B q n ¸´1 ȩ exp ˜´ÿ ně1 TrpK n A∪B q n ¸ÿ ně1 TrpK n A∪B q ´TrpK n A q ´TrpK n B q n . ( 4.4) 
Using the classical trace inequality we get

TrpK n A∪B q ď }K A∪B } n´1 TrpK A∪B q ď }K} n´1 TrpK n A∪B q ´TrpK n A q ´TrpK n B q "

ż pA∪Bq n Kpx 1 , x 2 q ¨¨¨Kpx n´1 , x n qKpx n , x 1 qdx 1 ¨¨¨dx n ´żA n ∪B n Kpx 1 , x 2 q ¨¨¨Kpx n´1 , x n qKpx n , x 1 qdx 1 ¨¨¨dx n , (4.6)
which vanishes when n " 1, is equal to 2 ş AˆB |Kpx, yq| 2 when n " 2 and is non-negative for n ě 3 since K is assumed to be non-negative. Finally, by combining (4.4), (4.5) and (4.6) we get the lower bound in (4.3).

Central limit theorem for functionals of DPPs

We investigate the asymptotic distribution of functions that can be written as a sum over subsets of close enough points of X, namely f pXq :"

ÿ SĂX f 0 pSq, (4.7) 
where f 0 is a bounded function vanishing when diampSq ą τ for a certain fixed constant τ ą 0. The typical example, encountered in asymptotic inference, concerns functions f 0 that are supported on sets S having exactly p elements, in which case (4.7) often takes the form

f pXq " 1 p! ‰ ÿ x1,¨¨¨,xpPX f 0 px 1 , ¨¨¨, x p q, (4.8) 
where the sum is done over ordered p-tuples of X and the symbol ‰ means that we consider distinct points. The asymptotic distribution of (4.8) has been investigated in [START_REF] Soshnikov | Determinantal random point fields[END_REF] when p " 1 and in [START_REF] Biscio | Brillinger mixing of determinantal point processes and statistical applications[END_REF] for general p and stationary DPPs.

In the next theorem, we extend these settings to functionals like (4.7) applied to general non stationary DPPs. Some discussion and comments are provided after its proof. We use Minkwoski's notation and write A ' r for the set xPA Bpx, rq. Theorem 4.4. Let X be a DPP associated to a kernel K that satisfies H and that is further bounded. Let τ ą 0 and f : Ω Ñ R be a function of the form

f pXq :" ÿ SĂX f 0 pSq
where f 0 is a bounded function vanishing when diampSq ą τ . Let pW n q nPN be a sequence of increasing subsets of R d such that |W n | Ñ 8 and let σ 2 n :" Varpf pX ∩ W n qq. Assume that there exists ε ą 0 and ν ą 0 such that the following conditions are satisfied:

(H1) |BW n ' pτ `νq| " op|W n |q; (H2) ωprq " opr ´pd`εq{2 q; (H3) lim inf n |W n | ´1σ 2 n ą 0. Then, 1 σ n pf pX ∩ W n q ´Erf pX ∩ W n qsq L ÝÑ N p0, 1q.
Proof. In order to apply Theorem 3.1, we would like to rewrite f as a sum over cubes of a lattice. Unfortunately, for disjoint sets A, B Ă R d , f pX ∩ Aq `f pX ∩ Bq ‰ f pX ∩ pA ∪ Bqq in general. Instead, we apply Theorem 3.1 to an auxiliary function, close to f , as follows. Define S 0 as the barycentre of the set S. We write f W pXq "

ÿ SĂX f 0 pSq1 W pS 0 q (4.9)
for the sum over the subsets of points of X with barycentre in W Ă R d . Now, we split R d into little cubes the following way. Let C 0 be a given d-dimensional cube with a given side-length 0 ă s ď ν{ ? d. For all i P Z d , let C i be the translation of C 0 by the vector s ¨i. Let I n :" ti : C i ' τ Ă W n u and Ă W n " iPIn C i . An illustration of these definitions is provided in Figure 1. Since f Ă Wn pXq " ř iPIn f Ci pXq and each f Ci are EpC i ' τ q-measurable then f Ă Wn is the ideal candidate to use Theorem 3.1 on. Thus, we first prove that the difference between f Ă Wn and f pX ∩W n q is asymptotically negligible and then that f Ă Wn satisfies the conditions of Theorem 3.1.

First of all, notice that distpC i , BW n q ě τ for all i P I n . Therefore, for any point in W n at a distance greater than τ `s? d from BW n , the cube C i of side-length s containing it is at a distance at least τ from BW n , hence it is one of the C i in Ă

W n and we get

|W n z Ă W n | ď |BW n ' pτ `s? dq|.
Hence, by Assumption (H1), Here, the black border is BWn, the grey area corresponds to pBWn ' τ q ∩ Wn and the square lattice corresponds to Ă Wn.

|W n | " | Ă W n |. Now, f pX ∩ W n q ´fĂ Wn pXq " ÿ SĂX∩Wn f 0 pSq1 Wnz Ă Wn pS 0 q. (4.10)
Since f 0 vanishes when two points of S are at distance further than τ , then the sum in (4.10) only concerns the subsets S of X ∩ ppW n z Ă W n q ' τ q ∩ W n q. By Lemma B.6, the variance of f pX ∩ W n q ´fĂ Wn pXq is then a

Op|pW n z Ă W n q ' τ |q, whence a op|W n |q and finally a opσ 2 n q by Assumption (H3). Therefore, σ ´1 n pf pX ∩ W n q Érf pX ∩ W n qsq has the same limiting distribution as σ ´1 n pf Ă Wn pXq ´Erf Ă Wn pXqsq. Moreover, we have

|Covpf Ă Wn pXq, f pX ∩ W n q ´fĂ Wn pXqq| ď σ n b Varpf pX ∩ W n q ´fĂ Wn pXqq " σ n op a |W n |q " opσ 2 n q
by Assumptions (H1), (H3) and Lemma B.6 proving that σ ´1 n pf pX ∩ W n q ´Erf pX ∩ W n qsq has the same limiting distribution as Varpf

Ă Wn pXqq ´1{2 pf Ă Wn pXq ´Erf Ă Wn pXqsq.
We conclude by showing that the random variables Y i " f Ci pXq ´Erf Ci pXqs satisfy the assumptions of Theorem 3.1. A rough bound on f gives us |f Ci pXq| ď }f 0 } 8 2 N pCi'τ q so, by Lemma B.5,

@n P N, sup iPZ d Er|Y i | n s ă 8.
This means that the Y i 's satisfy Assumption (C2) for all δ ą 0 and thus (C3) as a consequence of (H2). We highlight some extensions of this result.

i) Since the superposition of independent PA (respectively NA) point processes remains a PA (respectively NA) point process, then Theorem 4.4 holds true for α-determinantal point processes where α P t´1{m : m P N ˚u, see [START_REF] Shirai | Random point fields associated with certain fredholm determinants i: fermion, poisson and boson point processes[END_REF] for more information about α-DPPs. ii) Theorem 4.4 also extends to R q -valued functions f where q ě 2. Let Σ n :" Varpf pX ∩ W n qq. If we replace (H3) by lim inf n |W n | ´1λ min pΣ n q ą 0 where λ min pΣ n q denotes the smallest eigenvalue of Σ n , then Theorem 4.4 holds true with the conclusion

Σ ´1{2 n pf pX ∩ W n q ´Erf pX ∩ W n qsq L ÝÑ N p0, Id q q
where Id q is the q ˆq identity matrix. Since Σ n does not necessary converge, this result is not a direct application of the Cramér-Wold device. Instead, a detailed proof is given in [START_REF] Biscio | A note on gaps in proofs of central limit theorems[END_REF].

iii) In (4.7), f 0 only depends on finite subsets of R d and not on the order of the points in each subset. Nonetheless, we can easily extend (4.7) to functions of the form

f pXq " ÿ ně0 1 n! ‰ ÿ x1,¨¨¨,xnPX f 0 px 1 , ¨¨¨, x n q
where f 0 is a bounded function on ně0 pR d q n that vanishes when two of its coordinates are at a distance greater than τ . Then f still satisfy Theorem 4.4. This is because we can write

f pXq " ÿ SĂX f sym 0 pSq
where f sym 0 is the symmetrization of f 0 defined by

f sym 0 ptx 1 , ¨¨¨, x n uq :" 1 n! ÿ σPSn f 0 px σp1q , ¨¨¨, x σpnq q
where S n is the symmetric group on t1, ¨¨¨, nu. Since f sym 0 is also bounded and vanishes when diampSq ą τ then it satisfies the required assumptions for Theorem 4.4.

Let us comment the assumptions of Theorem 4.4.

• Condition (H1) makes clear the idea that W n must grow to R d as n Ñ 8, without being a too irregular set. In the simple case where W n is the Cartesian product of intervals, i.e. W n " ∆ • Condition (H2) is not really restrictive and is satisfied by all classical kernel families. For example, the kernels of the Ginibre ensemble and of the Gaussian unitary ensemble (see [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF]) have an exponential decay. Moreover, all translation-invariant kernels used in spatial statistics (see [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] and [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF]) satisfy ωprq " Opr ´pd`1q{2 q: the Gaussian and the Laguerre-Gaussian covariance functions have an exponential decay; the Whittle-Matérn and the Cauchy covariance functions satisfy ωprq " opr ´dq; and in the case of the most repulsive DPP in dimension d (as determined in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF][START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF]), which is the slowest decaying Bessel-type kernel, its kernel is given by

Kpx, yq " b ρΓp d 2 `1q π d 4 J d 2 p2 ? πΓp d 2 `1q 1 d ρ 1 d ||y ´x||q ||y ´x|| d 2 ñ ωprq " O ´r´d `1 2 ¯,
where ρ ą 0 is a constant. While this DPP satisfies Condition (H2), we point out that its α-mixing coefficients decay too slowly to be able to derive a CLT only from them, see the discussion before Theorem 3.1. This justifies the importance of Condition (C3) in this theorem, obtained by the NA property, and which leads to Condition (H2). • Condition (H3) is harder to control in the broad setting of Theorem 4.4, but we can get sufficient conditions in some particular cases. For example, if f 0 pSq " 1 |S|"1 and K is a translation-invariant continuous kernel then it was shown in [START_REF] Soshnikov | Determinantal random point fields[END_REF] that Condition (H3) holds when K is not the Fourier transform of an indicator function. In the peculiar case where K is the Fourier transform of an indicator function, [START_REF] Soshnikov | Determinantal random point fields[END_REF] proved that the limiting distribution is still Gaussian but the rate of convergence is different. As another example extending the previous one, assume that f 0 is a non-negative function supported on the set tS Ă X : |S| " pu for a given integer p ą 0 and assume that the highest eigenvalue of the integral operator K associated to K is less than 1. Then, we show in Proposition B.7 that lim inf

n 1 |W n | ż W p n f 0 pxq detpKrxsqdx ą 0
implies (H3) and is much easier to verify.

Application to the two-step estimation of an inhomogeneous DPP

In this section, we consider DPPs on R 2 with kernel of the form

K β,ψ px, yq " b ρ β pxqC ψ py ´xq b ρ β pyq, @x, y P R 2 , ( 4.11) 
where β P R p and ψ P R q are two parameters, C ψ is a correlation function and ρ β is of the form ρ β pxq " ρpzpxqβ T q where ρ is a known positive strictly increasing function and z is a p-variate bounded function called covariates. This form implies that the first order intensity, corresponding to ρ β pxq, is inhomogeneous and depends on the covariates zpxq through the parameter β. But all higher order intensity functions once normalized, i.e. ρ pnq px 1 , . . . , x n q{pρ β px 1 q . . . ρ β px n qq, are translation-invariant for n ě 2. In particular, the pair correlation (the case n " 2) is invariant by translation. This kind of inhomogeneity is sometimes named second-order intensity reweighted stationarity and is frequently assumed in the spatial point process community.

Existence of DPPs with a kernel like above is for instance ensured if ρ β pxq is bounded by ρ max and C ψ is a continuous, square-integrable correlation function on R d whose Fourier transform is less than 1{ρ max , see [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]. For later use, we call H 1 the previous assumptions on K β,ψ .

Consider the observation of a DPP X with kernel K β ˚,ψ ˚, along with the covariates z, within a window W n :" ran, bns ˆrcn, dns where b ą a and d ą c. Waagepetersen and Guan [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] have proposed the following two-step estimation procedure of pβ ˚, ψ ˚q for second-order intensity reweighted stationary models. First, βn is obtained by solving u n,1 pβq :" The asymptotic properties of this two-step procedure are established in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF], under various moments and mixing assumptions, with a view to inference for Cox processes. We state hereafter the asymptotic normality of p βn , ψn q in the case of DPPs with kernel of the form (4.11). This setting allows us to apply Theorem 4.4 and get rid of some restrictive mixing assumptions needed in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF].

The asymptotic covariance matrix of p βn , ψn q depends on two matrices defined in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF]Section 3.1], where they are denoted by r Σ n and I n . We do not reproduce their expression, which is hardly tractable. An assumption in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] ensures the asymptotic non-degeneracy of this covariance matrix and we also need this assumption in our case, see (W4) below. Unfortunately, as discussed in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF], it is hard to check this assumption for a given model, particularly because it depends on the covariates z. We are confronted by the same limitation in our setting. On the other hand, the other assumptions of the following theorem are not restrictive. In particular almost all standard kernels satisfy (W3) below, see the discussion after Theorem 4.4. Theorem 4.5. Let X be a DPP with kernel K β ˚,ψ ˚given by (4.11) and satisfying H 1 . Let p βn , ψn q the two-step estimator defined above. We assume the following.

(W1) r l ą 0 if c ă 1; otherwise r l ě 0, (W2) ρ β and K ψ are twice continuously differentiable as functions of β and ψ, (W3) sup }x}ěr C ψ ˚pxq " Opr ´1´ε q, (W4) Condition N3 in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] (concerning the matrices I n and r Σ n ) is satisfied.

Then, there exists a sequence tp βn , ψn q : n ě 1u for which u n p βn , ψn q " 0 with a probability tending to one and

|W n | 1{2 rp βn , ψn q ´pβ ˚, ψ ˚qsI n r Σ ´1{2 n L ÝÑ N p0, Idq.
Proof. Let ρ k be the kth intensity function of the DPP with kernel px, yq Þ Ñ C ψ ˚py ´xq. In order to apply Theorem 1 in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] we need to show that (i) ρ 2 , ρ 3 are bounded and there is a constant M such that for all u 1 , u 2 P R 2 , ş |ρ 3 p0, v, v `u1 q ρ1 p0qρ 2 p0, u 1 q|dv ă M and ş |ρ 4 p0, u 1 , v, v `u2 q ´ρ2 p0, u 1 qρ 2 p0, u 2 q|dv ă M , (ii) }ρ 4`2δ } 8 ă 8 for some δ ą 0, (iii) α a,8 prq " Opr ´dq for some a ą 8r 2 and d ą 2p2 `δq{δ.

The first property (i) is a consequence of (W3). This is because we can write |ρ 3 p0, v, v `u1 q ´ρ1 p0qρ 2 p0, u 1 q| " |2C ψ ˚pvqC ψ ˚pu 1 qC ψ ˚pv `u1 q ´Cψ ˚p0qpC ψ ˚pv `u1 q 2 `Cψ ˚pvq 2 q| which is bounded by 2|C ψ ˚p0q|pC ψ ˚pv `u1 q 2 `Cψ ˚pvq 2 q and ż R 2

C ψ ˚pvq 2 dv ď 2π ż 8 0 r sup }x}"r |C ψ ˚pxq| 2 dr
which is finite by Assumption (W3). The term ρ 4 p0, u 1 , v, v `u2 q ´ρ2 p0, u 1 qρ 2 p0, u 2 q can be treated the same way. For a DPP, (ii) is satisfied for any δ ą 0. Finally, (iii) is the one that causes an issue since, as stated before, the α-mixing coefficient we get in Corollary 4.2 decreases slower than what we desire. But, the only place this assumption is used in [START_REF] Waagepetersen | Two-step estimation for inhomogeneous spatial point processes[END_REF] is to prove the asymptotic normality of their estimator in their Lemma 5, which can also be derived as a consequence of our Theorem 4.4 with Assumption (W3).

• Stability of S by bounded monotonic convergence: Since (A.1) is invariant if we add a constant to f and f is bounded then we can consider f to be positive. Now, notice that for all functions h and k, h ď k ñ ĥ ď k and h ě k ñ ĥ ě k. So, if we take a positive bounded monotonic sequence f n P S that converges to a bounded function f , then fn is also a positive bounded monotonic sequence that consequently converges to a function g. Suppose that pf n q n is an increasing sequence (the decreasing case can be treated similarly) and let us show that g " f . Let X P Ω A , for all Y Ă X, f n pY q ď f pY q. Taking the supremum then the limit gives us gpXq ď f pXq. Moreover, for all Y Ă X, gpXq ě fn pXq ě f n pY q. Taking the limit gives us that gpXq ě f pY q for all Y Ă X so gpXq ě f pXq which proves that g " f . Using the monotone convergence theorem we conclude that Er fn pX ∩ Aqs Ñ Er f pX ∩ Aqs and Er fn pX ∩ AqgpN pB 1 q, ¨¨¨, N pB k qqs Ñ Er f pX ∩ AqgpN pB 1 q, ¨¨¨, N pB k qqs, (A.2) which proves that f P S • Stability of S by uniform convergence: Let f n be a sequence over S converging uniformly to a function f then, by Lemma B.1, fn also converges uniformly (and therefore in L 1 ) to f . As a consequence, (A.2) is also satisfied in this case so f P S. • C is an algebra: It is easily shown that C is a linear space containing r 1 so we only need to prove that C is stable by multiplication. Let A 1 , ¨¨¨, A r and A 1 1 ¨¨¨, A 1 s be two sequences of pairwise distinct Borel subsets of A. Let f " f pN pA 1 q, ¨¨¨, N pA r qq P C and h " hpN pA 1 1 q, ¨¨¨, N pA 1 r qq P C. We can write

N pA i q " N pA i z ∪ j A 1 j q `ÿ j N pA i ∩ A 1 j q and N pA 1 i q " N pA 1 i z ∪ j A j q `ÿ j N pA 1 i ∩ A j q,
so f ¨h can be expressed as a function of the number of points in the subsets

A i z ∪ j A 1 j , A 1 i z ∪ j A j and A i ∩ A 1
j that are all pairwise distinct Borel subsets of A, proving that C is stable by multiplication. This concludes the proof that S contains all bounded functions supported over Ω A . By doing the same exact reasoning on the set of bounded functions g satisfying Erf pX ∩ AqgpX ∩ Bqs ď Erf pX ∩ AqsErgpX ∩ Bqs for a fixed f we obtain the same result which concludes the proof. 

" p ÿ k"0 E » - - - ÿ U ĂX∩W |U |"2p´k ÿ S 1 ĂSĂU |S 1 |"k,|S|"p gpSqgpS 1 ∪ pU zSqq fi ffi ffi fl " p ÿ k"0 1 p2p ´kq! ż W 2p´k ÿ S 1 ĂSĂtx1,¨¨¨,x 2p´k u |S 1 |"k,|S|"p gpSqgpS 1 ∪ pU zSqqρ 2p´k px 1 , ¨¨¨, x 2p´k qdx 1 ¨¨¨dx 2p´k " p ÿ k"0 1 p2p ´kq! ˆp k ˙ˆ2p ´k p ˙żW 2p´k gpx 1 , ¨¨¨, x p qgpx 1 , ¨¨¨, x k , x p`1 , ¨¨¨, x 2p´k qρ 2p´k pxqdx. (B.4)
Since the determinant of a positive semi-definite matrix is smaller than the product of its diagonal terms, we have |ρ 2p´k pxq| ď }K} 2p´k

8

. Moreover, as a consequence of our assumptions on g, each term for k ě 1 in (B.4) is bounded by where C 1 " 2p1 `}K} 8 q 2 p1 `Bp0, τ qq 2 is a constant independent from p and W . However, even if all terms for k ě 1 in (B.4) are Op|W |q, this is not the case of the term for k " 0 which is a Op|W | 2 q. Instead of controlling this term alone, we consider its difference with the remaining term in the variance we are looking at, that is where we define K ax as the vector pKpa, x 1 q, ¨¨¨, Kpa, x p qq. Moreover, since we look at our point process in a compact window W , a well-known property of DPPs (see [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF]) is that there exists a sequence of eigenvalues λ i in r0, }K}s and an orthonormal basis of L 2 pW q of eigenfunctions φ i such that Kpx, yq " ÿ i λ i φ i pxq φi pyq @x, y P W.

1 p!pp ´kq! ˆp k ˙ż W 2p´k }g} 2 8 }K} 2p´k 8 1 t0ď|xi´x1|ďτ, @iu dx ď |W | p! ˆp k ˙}g} 2 8 }K} 2p´k 8 |Bp0, τ q| 2p´k´1 ď |W | p! ˆp k ˙}g} 2 8 p1 `}K} 8 q 2p p1 `|Bp0, τ q|q 2p .
As a consequence, @x, y P W , ż W Kpx, aqKpa, yqda " 

  ď }K} n´1 pp `qq}K} 8 , A and B are disjoint sets, we can write

Figure 1 .

 1 Figure 1. Example of illustration of the definition of ĂWn. Here, the black border is BWn, the grey area corresponds to pBWn ' τ q ∩ Wn and the square lattice corresponds to Ă Wn.

  Finally, since |I n | " s ´d| Ă W n | " Op|W n |q and Varpf Ă Wn pXqq " σ 2 n , we have lim inf n |I n | ´1Varpf Ă Wn pXqq ą 0 by Assumption (H3), which concludes the proof of the theorem.

  ) is equivalent to |∆ pkq n | Ñ 8 for all k.

ρ

  ÿ uPX∩Wn ∇ρ β puq ρ β puq ´żWn ∇ρ β puqdu " 0.where ∇ρ β denotes the gradient with respect to β. In the second step, ψn is obtained by minimizing m n, βn wherem n,β pψq :" β puqρ β pvq|W n ∩ W n,u´v | ¸c ´Kψ ptq c ¸2 dt.Here r l , r and c are user-specified non-negative constants, W n,u´v is W n translated by u ´v and K ψ is the Ripley K-function defined byK ψ ptq :" ż }u}ďt g ψ puqduwhere g ψ puq :" 1 ´Cψ puq 2 {C ψ p0q 2 is the pair correlation function of X. If we define u n,2 pβ, ψq :" ´|W n | Bm n,β pψq Bψ , then the two-step procedure amounts to solve u n pβ, ψq :" pu n,1 pβq, u n,2 pβ, ψqq " 0.

  Looking at the variance of each term individually, we start by developing E

ÿ i λ 2 iWK 2 pW qq ě p1 ´}K}q 2

 222 φ i pxq φi pyq which we define as Lpx, yq. Therefore, for all x P W p , Lrxs ď }K}Krxs where ď is the Loewner order for positive definite symmetric matrices and we getż ax Krxs ´1K T ax da " Tr ˆKrxs ´1 ż W K T ax K ax da ˙"TrpKrxs ´1Lrxsq ď p}K}. (B.10) Finally, since f is non negative, by combining (B.8), (B.9) and (B.10) we get the lower bound VarpF pX ∩ W qq ě CovpF pX ∩ W q, N pW qq VarpN Cpp ´1q! 2 |W | ˆżW p f pxq detpKrxsqdx ˙2 which proves the proposition.

  Covpf ˘pX q, g ˘pX qq " Covpf pX ∩ Aq, gpX ∩ Bqq `}f } A }g} B CovpN pAq, N pBqq ˘p}g} B Covpf pX ∩ Aq, N pBqq `}f } A CovpN pAq, gpX ∩ Bqqq, Aq, gpX ∩ Bqq ď ´}f } A }g} B CovpN pAq, N pBqq.

	adding these two expressions together yields the upper bound in (2.7):
	Covpf pX ∩

Corollary 2.7. Let

  X be an associated point process on R d whose first two intensity functions are welldefined. Let A, B be two bounded disjoint sets of R d such that distpA, Bq ě r. Then, for all functions f : Ω Ñ R and g : Ω Ñ R such that f pX ∩ Aq and gpX ∩ Bq are bounded,|Covpf pX ∩ Aq, gpX ∩ Bqq| ď s d |A| }f } A }g} B

			ż 8
			t d´1 sup	|Dpx, yq|dt,	(2.8)
			r	|x´y|"t
			sup	|Dpx, uq|dy
	Bpx,rq c	uPR d
			|u´x|"|y´x|
	ż 8		
	ď |A|s d	t d´1 sup
	r		

where s d is the pd ´1q-dimensional area measure of the unit sphere in R d . Moreover, if f and/or g are complex-valued functions, the same inequality holds true with an extra factor 4 on the right hand side. Proof. Consider A, B to be two bounded disjoint sets of R d such that distpA, Bq ě r then, from (2.2), |CovpN pAq, N pBqq| " ˇˇˇż AˆB Dpx, yqdxdy ˇˇď |A| sup xPA ż B |Dpx, yq|dy ď |A| sup xPA ż Bpx,rq c |Dpx, yq|dy ď |A| sup xPA ż |u´v|"t |Dpu, vq|dt.

  ´sdq as a consequence of Lemma B.2, and since | iPI C i | ď s d |I|, this gives us the inequality

  2 gives us the bound |J x | ď p2sd{R `1q d and thus }g j } Bj ď 2λM p2sd{R `1q d { ? a n . Finally, using Corollary 2.7 we get |ErA 3 s| ď 4|I n |s d ? a n |C j |}f j } Cj }g j } Bj

				ż 8			
				distpBj,Cjq	|x´y|ět t d´1 sup	|Dpx, yq|dt
	ď 16s d M 2 ˆ2s 2 d R	`s˙d	λ	|I n | a n	ż 8 1 ? d	pRrn´sdq	t d´1 sup

|x´y|ět |Dpx, yq|dt.

(

2 n

 2 uniformly in n as N goes to infinity.Finally, for all constants ν ą 0 arbitrary small, we can choose N such that Erσ ´1 n |S 2,n |s ď ν and |1 σn pN q{σ n | ď ν for all n sufficiently large. By looking at the characteristic function of σ ´1 n S n we get

	ˇˇE	´e ixSn σn ¯´e ´1 2 x 2 ˇˇď ˇˇˇE	ˆe ixS 1,n σn	˙´E	ˆe ixS 1,n σn pN q	˙ˇˇˇ`ˇˇˇE ˆe ixS 1,n σn pN q ˙´e ´1 2 x 2 ˇˇˇ`ˇˇˇE	ˆe ixS 2,n σn	´1˙ˇˇˇď
		xE	ˆˇˇˇS 1,n σ n pN q	ˇˇˇ˙ˇˇˇ1 ´σn pN q σ n	ˇˇˇ`o p1q `xν
		ď 2xν `op1q				
	concluding the proof.						

  ´}K}q

	pp`qq}K}8 }K}	sup	ż	|Kpx, yq| 2 ď α p,q prq ď	sup	ż	|Kpx, yq| 2 .	(4.3)
		|A|ăp,|B|ăq	AˆB		|A|ăp,|B|ăq	AˆB		
		distpA,Bqąr			distpA,Bqąr			

  2p px, yq ´ρp pxqρ p pyqqdxdy. Using Proposition B.4, we get |ρ 2p px, yq ´ρp pxqρ p pyq| ď p 2 }K} 2p´2Kpx i , y j q 2 . Now, notice that for all y P R d and 1 ď i ď p,ż W p 1 t0ă|x k ´xj |ďτ, @j,ku |Kpx i , yq| 2 dx ď |Bp0, τ q| p´1 ż W |Kpx i , yq| 2 dx i ď |Bp0, τ q| p´1 s d ż R d r d´1 ωprq 2 drwhich is finite because of our assumption on ωprq. Thus, we obtain the inequalityż W 2p gpxqgpyq|Kpx i , y j q| 2 dxdy ď }g} 8 |Bp0, τ q| p´1 ż W p`1 gpxq|Kpx i , y 1 q| 2 dxdy 1 ď |W |}g} 2 8 |Bp0, τ q| 2p´2 s dLet X be a DPP with kernel K satisfying Condition H such that }K} ă 1 where }K} is the operator norm of the integral operator associated with K. If, for a given increasing sequence of compact setsW n Ă R d , VarpF pX ∩ W n qq ą 0.Proof. Let W be a compact subset of R d . The Cauchy-Schwartz inequality gives us CovpF pX ∩ W q, N pW qq 2 ď VarpF pX ∩ W qqVarpN pW qq.We showed in Lemma B.6 that |W | ´1VarpN pW qq is bounded by a constant C ą 0 so we are only interested in the behaviour of CovpF pX ∩ W q, N pW qq. We start by developing ErF pX ∩ W qN pW qs:ErF pX ∩ W qN pW qs " E Kpa, aq ´detpKrx, asq detpKrxsq ´1 " K ax Krxs ´1K T

				»					fi
				ÿ |S|"p SĂX∩W --	f pSq	ÿ xPX∩W	1	ffi fl	ż R d	r d´1 ωprq 2 dr.	(B.6)
	By combining (B.5) and (B.6), we get the bound »		fi
				Var " E --SĂX∩W ¨ÿ SĂX∩W |S|"p ÿ ÿ xPS gpSq ‹ 'ď |W |}g} 2 f pSztxuq `p ÿ 8 ˆCp f pSq SĂX∩W 1 p! |S|"p`1 |S|"p `C2 ffi fl p! " ż p`1 ÿ 1 pp `1q! W p`1 i"1 f pzztz i uq detpKrzsqdz `1 p! ẇhere ż W p pf pxq detpKrxsqdx
				C 2 :" ˜sup pě0 " 1 p! ˆżW p p 4 }K} 2p´2 8 f pxq ˆp detpKrxsq |Bp0, τ q| 2p´2 p! `żW ¸sd detpKrx, asqda ˙dx ż R d r d´1 ωprq 2 dr	˙.
	is a constant independent from p and W . Finally, ÿ pě0 Var ¨ÿ SĂX∩W We also have ErF pX ∩ W qsErN pW qs " W p p! 1 ż	gpSq ‹ '" Op|W |q f pxq detpKrxsqdx	ż
							|S|"p
	and								(B.8)
	ÿ pąqě0 Using Schur's complement, we get Cov ¨ÿ SĂX∩W gpSq, SĂX∩W ÿ	gpSq ‹ 'ď |W |}g} 2 8	ÿ p,qě0	ˆCp 1 p! d	`C2 p!	1 q! ˙ˆC q	`C2 q!	˙" Op|W |q
			|S|"p	|S|"q				
	concluding the proof.					
								ÿ
						F pXq "	f pSq.
								SĂX
								|S|"p
	1 pp!q 2 then	ż W 2p	gpxqgpyqρ 2p px, yqdxdy lim inf ´E «˜ÿ n ż 1 |W n | W p n SĂX∩W 1 lim inf n |W n |	gpSq1 |S|"p f pxq detpKrxsqdx ą 0, ¸ff2 " 1 pp!q 2 ż W 2p	(B.7)
									ÿ
									8
									1ďi,jďp

gpxqgpyqpρ Proposition B.7. Let p P N, f : R p Ñ R `be a symmetrical measurable function and define W Kpa, aqda, hence CovpF pX ∩ W q, N pW qq " 1 p! ż W p f pxq detpKrxsq ˆp ´żW `Kpa, aq ´detpKrx, asq detpKrxsq ´1˘d a ˙dx. ax (B.9)

Appendix A: Proof of Theorem 2.3

We use the following variant of the monotone class theorem (see [START_REF] Dellacherie | Probabilities and Potential[END_REF]Theorem 22.1]).

Theorem A.1. Let S be a set of bounded functions stable by bounded monotone convergence and uniform convergence. Let C be a subspace of S such that C is an algebra containing the constant function r 1. Then, S contains all bounded functions measurable over σpCq. Now, let A, B 1 , ¨¨¨, B k be pairwise distinct Borel subsets of R d and g : N k Þ Ñ R be a coordinate-wise increasing function. We denote by Ω A the set of locally finite point configurations in A and we define S as the set of functions f :

where f pXq :" sup Y ďX f pY q. Note that f is an increasing function and that f is increasing iff f " f . Our goal is to prove that S contains all bounded functions supported over A. Because of the definition of NA point processes (2.4), we know that S contains the set C of functions of the form f pN pA 1 q, ¨¨¨, N pA k qq where the A i are pairwise disjoints Borel subsets of A. In particular, since point processes over A are generated by the set of random vectors tpN pA 1 q, ¨¨¨, N pA k qq : A i Ă A disjoints, k P Nu, then we only need to verify that S and C satisfy the hypothesis of Theorem A.1 to conclude. Taking the supremum yields the first inequality. Moreover, by symmetry of f and g the second one follows similarly.

Appendix B: Auxiliary results

Lemma

Lemma B.2. Let i, j P Z d such that |i ´j| 1 :" ř d l"1 |i l ´jl | " r. Let s, R ą 0 and C i , C j be the ddimensional cubes with side length s and respective centre x i " R ¨i and x j " R ¨j. Then,

Moreover, each cube intersects at most p2sd{Rq d other cubes with centers on R ¨Zd and side length s.

Proof. Since each point of a d-dimensional square with side length s is at distance at most s ? d{2 from its centre, we get distpC i , C j q ě a pRi 1 ´Rj 1 q 2 `¨¨¨`pRi d ´Rj d q 2 ´s? d which takes its minimum when |i l ´jl | " r{d for all 1 ď l ď d hence distpC i , C j q ě rR{

Lemma B.3. Let M and N be two n ˆn semi-positive definite matrices such that 0 ď M ď N ´1 where ď denotes the Loewner order. Then, detpId ´M N q ě 1 ´TrpM N q

Proof. First, let us consider the case where N " Id. If TrpM q ě 1 then detpId ´M q ě 0 ě 1 ´TrpM q.

Otherwise, we denote by SppM q the spectrum of M and since all eigenvalues are in [0,1[, we can write detpId ´M q "

Getting back to the general case, we can write N as S T S and by Sylvester's determinant identity we get that detpId ´M N q " detpId ´SM S T q. Since we assumed that 0 ď M ď N ´1 then 0 ď SM S T ď Id and by applying (B.1) this concludes the proof: detpId ´M N q " detpId ´SM S T q ě 1 ´TrpSM S T q " 1 ´TrpM N q.

Proposition B.4. Let M be a n ˆn semi-definite positive matrix of the form M " ˆM1 N N T M 2 ˙where M 1 is a k ˆk semi-definite positive matrix, M 2 is a pn ´kq ˆpn ´kq semi-definite positive matrix and N is a k ˆpn ´kq matrix. We define ||A|| 8 :" sup |a i,j | for any matrix A. Then, 0 ď detpM 1 q detpM 2 q ´detpM q ď kpn ´kqTrpN T N q||M || n´2 8 .

Proof. First, we assume that M 1 and M 2 are invertible. Using Schur's complement, we can write detpM q " detpM 1 q detpM 2 q detpId ´M ´1 1 N T M ´1 2 N q where 0 ď N T M ´1 2 N ď M 1 with ď being the Loewner order. N T M ´1 2 N being semi-definite positive implies detpM q ď detpM 1 q detpM 2 q, while the inequality

Therefore, 0 ď detpM 1 q detpM 2 q ´detpM q ď TrpadjpM 1 qN T adjpM 2 qN q ď TrpadjpM 1 qqTrpadjpM 2 qqTrpN T N q "

where ∆ i pM 1 q means the pi, iq minor of the matrix M 1 and adjpM 1 q is the transpose of the matrix of cofactor of M 1 . But, since all principal sub-matrices of M 1 and M 2 are positive definite matrices then their determinant is lower than the product of their diagonal entries, meaning that ∆ i pM 1 q ď ś j‰i M 1 pj, jq ď ||M || k´1 8 . Doing the same thing for the terms ∆ j pM 2 q gives us the desired result.

If M 1 or M 2 is not invertible, a limit argument using the continuity of the determinant leads to the same conclusion.

Lemma B.5. Let X be a DPP with bounded kernel K satisfying H, s ą 0 and n ą 0, then sup AĂR d ,|A|"s Er2 nN pAq s ă 8

Proof. Let n P N and A Ă R d such that |A| " s. Since the determinant of a positive semi-definite matrix is always smaller than the product of its diagonal coefficients we get

detpKrxsqdx ď e p2 n ´1q}K}8|A| ă 8.

Lemma B.6. Let X be a DPP on R d with bounded kernel K satisfying H such that ωprq " Opr ´d`ε 2 q for a certain ε ą 0. Then, for all bounded Borel sets W Ă R d and all bounded functions g : pą0 pR d q p Ñ R such that gpSq vanishes when diampSq ą τ for a given constant τ ą 0,