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Positively (resp. negatively) associated point processes are a class of point processes that induce attraction (resp.
inhibition) between the points. As an important example, determinantal point processes (DPPs) are negatively
associated. We prove α-mixing properties for associated spatial point processes by controlling their α-coefficients in
terms of the first two intensity functions. A central limit theorem for functionals of associated point processes is
deduced, using both the association and the α-mixing properties. We discuss in detail the case of DPPs, for which
we obtain the limiting distribution of sums, over subsets of close enough points of the process, of any bounded
function of the DPP. As an application, we get the asymptotic properties of the parametric two-step estimator of
some inhomogeneous DPPs.

Keywords: determinantal point process, parametric estimation, strong mixing, negative association, positive associa-
tion.

1. Introduction
Positive association (PA) and negative association (NA) [1, 15] are properties that quantify the dependence
between random variables. They have found many applications in limit theorems for random fields [8, 32].
Even if the extension of PA to point processes have been used in analysis of functionals of random measures
[10, 16], there are no general applications of PA or NA to limit theorems for point processes. We contribute
in this paper to this aspect for spatial point processes on Rd. We especially discuss in detail the case of
determinantal point processes (DPPs for short), that are an important example of negatively associated
point processes. DPPs are a type of repulsive point processes that were first introduced by Macchi [25] in
1975 to model systems of fermions in the context of quantum mechanics. They have been extensively studied
in Probability theory with applications ranging from random matrix theory to non-intersecting random
walks, random spanning trees and more (see [20]). From a statistical perspective, DPPs have applications in
machine learning [22], telecommunication [13, 26, 18], biology, forestry [23] and computational statistics [2].

As a first result, we relate the association property of a point process to its α-mixing properties. First
introduced in [28], α-mixing is a measure of dependence between random variables, which is actually more
popular than PA or NA. It has been used extensively to prove central limit theorems for dependent random
variables [6, 14, 19, 21, 28]. More details about mixing can be found in [7, 14]. We derive in Section 2 an
important covariance inequality for associated point processes (Theorem 2.5). We show that this inequality
implies α-mixing and precisely allows to control the α-mixing coefficients by the first two intensity functions
of the point process. This implication for point processes is in contrast with the case of random fields, where
it is known that association does not imply α-mixing in general (see Examples 5.10-5.11 in [8]).

We then establish in Section 3 a general central limit theorem (CLT) for random fields defined as a
function of an associated point process (Theorem 3.1). A standard method for proving this kind of theorems
is to rely on sufficiently fast decaying α-mixing coefficients along with some moment assumptions. We use
an alternative procedure that exploits both the mixing properties and the association property. This results
in weaker assumptions on the underlying point process, that can have slower decaying mixing coefficients.
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This improvement allows in particular to include all standard DPPs, some of them being otherwise excluded
with the first approach (like for instance DPPs associated to the Bessel-type kernels [4]).

Section 4 discusses in detail the case of DPPs, where we derive a tight explicit bound for their α-mixing
coefficients and prove a central limit theorem for certain functionals of a DPP (Theorem 4.4). Specifically,
these functionals write as a sum of a bounded function of the DPP, over subsets of close-enough points
of the DPP. A particular case concerns sums over p-tuple of close enough points of the DPP, which are
frequently encountered in asymptotic inference. Limit theorems in this setting have been established in [30]
when p “ 1, and in [3] for stationary DPPs and p ě 1. We thus extend these studies to sums over any
subsets and without the stationary assumption. As a statistical application, we consider the parametric
estimation of second-order intensity reweighted stationary DPPs. These DPPs have an inhomogeneous first
order intensity, but translation-invariant higher order (reweighted) intensities. We prove that the two-step
estimator introduced in [31], designed for this kind of inhomogeneous point process models, is consistent and
asymptotically normal when applied to DPPs.

2. Associated point processes and α-mixing

2.1. Notation

In this paper, we consider locally finite simple point processes on Rd, for a fixed d P N. Some theoretical
background on point processes can be found in [11, 27]. We denote by Ω the set of locally finite point
configurations in Rd. For X P Ω and A Ă Rd, we denote by NpAq the cardinal of X XA, by BpAq the Borel
σ-algebra of A and by EpAq the σ-algebra generated by X XA, defined by

EpAq :“ σptX P Ω : NpBq “ mu, B P BpAq,m P Nq.

The notation |.| will have a different meaning depending on the object it is applied. For x P Rd, |x| stands
for the euclidean norm, while for i P Zd, |i| denotes the `1-norm. For a set A Ă Rd, |A| :“

ş

A
dx is the

euclidean volume of A, and for a set I Ă Zd we write |I| for the cardinal of I. For A,B two subsets of Rd
(resp. Zd) we define distpA,Bq as infxPA,yPB |y´x| and diampAq as supx,yPA |y´x| where |.| is the associated
norm on Rd (resp. Zd). Finally, we write Bpx, rq for the euclidean ball centred at x with radius r and }.}p
for the p-norm of random variables and functions where 1 ď p ď 8.

We recall that the intensity functions of a point process (when they exist), with respect to the Lebesgue
measure, are defined as follows.

Definition 2.1. Let X P Ω and n ě 1 be an integer. If there exists a non-negative function ρn : pRdqn Ñ R
such that

E

«

‰
ÿ

x1,¨¨¨ ,xnPX

fpx1, ¨ ¨ ¨ , xnq

ff

“

ż

pRdqn
fpx1, ¨ ¨ ¨ , xnqρnpx1, ¨ ¨ ¨ , xnqdx1 ¨ ¨ ¨ dxn

for all locally integrable function f : pRdqn Ñ R then ρn is called the nth order intensity function of X.

In particular, ρnpx1, ¨ ¨ ¨ , xnqdx1 ¨ ¨ ¨ dxn can be viewed as the probability that X has a point in each of
the infinitesimally small sets around x1, ¨ ¨ ¨ , xn with volumes dx1, ¨ ¨ ¨ ,dxn respectively.

We further introduce the notation

Dpx, yq :“ ρ2px, yq ´ ρ1pxqρ1pyq. (2.1)

This quantity is involved in the following equality, deduced from the previous definition and used several
times throughout the paper:

CovpNpAq, NpBqq “
ż

AˆB

Dpx, yqdxdy. (2.2)
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2.2. Negative and positive association

Our goal in this section is to prove a crucial covariance inequality and to deduce an α-mixing property
for associated point processes. We recall that associated point processes are defined the following way (see
Definitions 2.11-2.12 in [5] for example).

Definition 2.2. A point process is said to be negatively associated (NA for short) if, for all family of
pairwise disjoint Borel sets pAiq1ďiďk and pBiq1ďiďl such that

pYiAiq X pYjBjq “ H (2.3)

and for all coordinate-wise increasing functions F : Nk ÞÑ R and G : Nl ÞÑ R it satisfies

ErF pNpA1q, ¨ ¨ ¨ , NpAkqqGpNpB1q, ¨ ¨ ¨ , NpBlqqs

ď ErF pNpA1q, ¨ ¨ ¨ , NpAkqqsErGpNpB1q, ¨ ¨ ¨ , NpBlqqs. (2.4)

Similarly, a point process is said to be positively associated (PA for short) if it satisfies the reverse inequality
for all family of pairwise disjoint Borel sets pAiq1ďiďk and pBiq1ďiďl (but not necessarily satisfying (2.3)).
If a point process is NA or PA it is said to be associated.

The main difference between the definition of PA and NA is the restriction (2.3) that only affects NA
point processes. Notice that without (2.3), ErNpAqs2 ě ErNpAq2s contradicts (2.4) hence the need to consider
functions depending on disjoint sets for NA point processes.

These inequalities extend to the more general case of functionals of point processes. The first thing we
need is a more general notion of increasing functions. We associate to Ω the partial order X ď Y iff X Ă Y
and then call a function on Ω increasing if it is increasing respective to this partial order. The association
property can then be extended to these functions. A proof in a general setting can be found in [24, Lemma
3.6] but we give an alternative elementary one in Appendix A.

Theorem 2.3. Let X be a NA point process on Rd and A,B be disjoint subsets of Rd. Let F : Ω ÞÑ R and
G : Ω ÞÑ R be bounded increasing functions, then

ErF pX XAqGpX XBqs ď ErF pX XAqsErGpX XBqs. (2.5)

If X is PA then, for all A,B Ă Rd non necessarily disjoint,

ErF pX XAqGpX XBqs ě ErF pX XAqsErGpX XBqs. (2.6)

Association is a very strong dependence condition. As proved in the following theorem, it implies a strong
covariance inequality that is only controlled by the behaviour of the first two intensity functions of X
(assuming their existence). To state this result, we need to introduce the following seminorm for functionals
over point processes.

Definition 2.4. For any A Ă Rd, }.}A is the seminorm on the functions f : Ω ÞÑ C defined by

}f}A :“ sup
XPΩ,XĂA

xPA

|fpXq ´ fpX Y txuq|.

Note that }.}A is a Lipschitz norm in the sense that it controls the way fpXq changes when a point is
added to X XA.

Theorem 2.5. Let X be an associated point process and A,B Ă Rd be two disjoint bounded subsets. Let
f : Ω Ñ R and g : Ω Ñ R be two functions such that fpX XAq and gpX XBq are bounded, then

|CovpfpX XAq, gpX XBqq| ď }f}A}g}B |CovpNpAq, NpBqq|. (2.7)

Moreover, if X is PA then it also satisfies the same inequality for all A,B Ă Rd not necessarily disjoint.
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Proof. The proof mimics the one from [9] for associated random fields. We only consider the case of NA
point processes but the PA case can be treated in the same way.
Consider the functions f`, f´ : Ω Ñ R, EpAq-measurable, and g`, g´ : Ω Ñ R, EpBq-measurable, defined by

"

f˘pXq “ fpX XAq ˘ }f}ANpAq,
g˘pXq “ gpX XBq ˘ }g}BNpBq.

For all x P AzX, f`pX Y txuq ´ f`pXq “ fpX Y txu XAq ´ fpX XAq ` }f}A which is positive by definition
of }f}A. f` is thus an increasing function. With the same reasoning, g` is also increasing and f´, g´
are decreasing. f` is not bounded but it is non-negative and almost surely finite so it can be seen as an
increasing limit of the sequence of functions minpf`, kq when k goes to infinity. These functions are non-
negative, increasing and bounded so for any k and any bounded increasing function g, (2.5) applies where f
is replaced by minpf`, kq. By a limiting argument, the same inequality holds true for f “ f`. We can also
treat the other functions the same way and we get from (2.5)

Covpf`pXq, g`pXqq ď 0 and Covpf´pXq, g´pXqq ď 0.

Since these expressions are equal to

Covpf˘pXq, g˘pXqq “ CovpfpX XAq, gpX XBqq ` }f}A}g}BCovpNpAq, NpBqq
˘ p}g}BCovpfpX XAq, NpBqq ` }f}ACovpNpAq, gpX XBqqq,

adding these two expressions together yields the upper bound in (2.7):

CovpfpX XAq, gpX XBqq ď ´}f}A}g}BCovpNpAq, NpBqq.

The lower bound is obtained by replacing f by ´f in the previous expression.

A similar inequality as in Theorem 2.5 can also be obtained for complex-valued functions since }<pfq}A and
}=pfq}A are bounded by }f}A, where <pfq and =pfq refers to the real and imaginary part of f respectively.

Corollary 2.6. Let X be an associated point process and A,B Ă Rd be two disjoint bounded subsets. Let
f : Ω Ñ C and g : Ω Ñ C be two functions such that fpX XAq and gpX XBq is bounded, then

|CovpfpX XAq, gpX XBqq| ď 4}f}A}g}B |CovpNpAq, NpBqq|.

Moreover, if X is PA then it also satisfies the same inequality for all A,B Ă Rd not necessarily disjoint.

If the first two intensity functions of X are well-defined then D in (2.1) is well-defined. As a consequence
of Theorem 2.5 and from (2.2), if |Dpx, yq| vanishes fast enough when |y ´ x| goes to infinity then any
two events respectively in EpAq and EpBq will get closer to independence as distpA,Bq tends to infinity, as
specified by the following corollary.

Corollary 2.7. Let X be an associated point process on Rd whose first two intensity functions are well-
defined. Let A,B be two bounded disjoint sets of Rd such that distpA,Bq ě r. Then, for all functions
f : Ω Ñ R and g : Ω Ñ R such that fpX XAq and gpX XBq is bounded,

|CovpfpX XAq, gpX XBqq| ď sd|A| }f}A}g}B

ż 8

r

td´1 sup
|x´y|“t

|Dpx, yq|dt. (2.8)

where sd is the pd ´ 1q-dimensional area measure of the unit sphere in Rd. Moreover, if f and/or g are
complex-valued functions, the same inequality holds true with an extra factor 4 on the right hand side.
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Proof. Consider A,B to be two bounded disjoint sets of Rd such that distpA,Bq ě r then, from (2.2),

|CovpNpAq, NpBq| “
ż

AˆB

|Dpx, yq|dxdy

ď |A| sup
xPA

ż

B

|Dpx, yq|dy

ď |A| sup
xPA

ż

Bpx,rqc
|Dpx, yq|dy

ď |A| sup
xPA

ż

Bpx,rqc
sup
uPRd

|u´x|“|y´x|

|Dpx, uq|dy

ď |A|sd

ż 8

r

td´1 sup
|u´v|“t

|Dpu, vq|dt.

The final result is then a consequence of Theorem 2.5 and Corollary 2.6.

2.3. Application to α-mixing

Let us first recall some generalities about mixing. Consider a probability space pX ,F ,Pq and A ,B two sub
σ-algebra of F . The α-mixing coefficient is defined as the following measure of dependence between A and
B:

αpA ,Bq :“ supt|PpAXBq ´ PpAqPpBq| : A P A , B P Bu.

In particular, A and B are independent iff αpA ,Bq “ 0. This definition leads to the essential covariance
inequality due to Davydov (see [14] for example): For all random variables X,Y measurable with respect to
A and B respectively,

|CovpX,Y q| ď 8α1{rpA ,Bq}X}p}Y }q, where p, q, r P r1,8s and 1
p
`

1
q
`

1
r
“ 1. (2.9)

This definition is adapted to random fields the following way (see [14] or [19]). Let Y “ pYiqiPZd be a random
fields on Zd and define

αp,qprq :“ suptαpσptYi, i P Auq, σptYi, i P Buqq : |A| ď p, |B| ď q,distpA,Bq ą ru

with the convention αp,8prq “ supq αp,qprq. The coefficients αp,qprq describe how close two events happening
far enough from each other are from being independent. The parameters p and q play an important role
since, in general, we cannot get any information directly on the behaviour of α8,8prq.

We can adapt this definition to point processes the following way. For a point process X on Rd, define

αp,qprq :“ suptαpEpAq, EpBqq : |A| ď p, |B| ď q,distpA,Bq ą ru

with the convention αp,8prq “ supq αp,qprq.
As a consequence of Corollary 2.7, the α-mixing coefficients of an associated point process tends to 0 when

Dpx, yq vanishes fast enough as |y ´ x| goes to infinity. More precisely, we have the following inequalities.

Proposition 2.8. Let X be an associated point process on Rd whose first two intensity functions are
well-defined, then for all p, q ą 0,

$

’

&

’

%

αp,qprq ď pq sup
|x´y|ěr

|Dpx, yq|,

αp,8prq ď psd

ż 8

r

td´1 sup
|x´y|“t

|Dpx, yq|dt.
(2.10)

Proof. This is a direct consequence of Theorem 2.5 and Corollary 2.7 applied to indicator functions.
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3. Central limit theorem for associated point processes
Consider the lattice pxiqiPZd defined by xi “ R ¨ i, where R ą 0 is a fixed constant. We denote by Ci, i P Zd,
the d-dimensional cube with centre xi and side length s, where s ě R is another fixed constant. Note that the
union of these cubes forms a covering of Rd. Let X be an associated point process and pfiqiPZd be a family
of real-valued measurable functions defined on Ω. We consider the centred random field pYiqiPZd defined by

Yi :“ fipX X Ciq ´ ErfipX X Ciqs, i P Zd, (3.1)

and we are interested in this section by the asymptotic behavior of Sn :“
ř

iPIn
Yi, where pInqnPN is a

sequence of strictly increasing finite domains of Zd.
As a consequence of Proposition 2.8, we could directly use one of the different CLT for α-mixing random

fields that already exist in the literature [6, 14, 19] to get the asymptotic distribution of Sn. But, the
coefficients αp,8 decreasing much slower than the coefficients αp,q, this would imply an unnecessary strong
assumption on D. Precisely, this would require Dpx, yq to decay at a rate at least op|y´x|´2pd`εq 2`δ

δ q, where
ε ą 0 and δ is a positive constant depending on the behaviour of the moments of X. In the next theorem, we
bypass this issue by exploiting both the behaviour of the mixing coefficients αp,q when p ă 8 and q ă 8, and
the association property through inequality (2.8). We show that we can still get a CLT when Dpx, yq decays
at a rate op|y ´ x|´pd`εq 2`δ

δ q. This improvement is important to include DPPs with a slow decaying kernel,
thus inducing more repulsiveness, such as Bessel-type kernels, see the applications to DPPs in Section 4.2
and especially the discussion at the end of the section.

Theorem 3.1. Consider the random field Y given by (3.1), a sequence pInqnPN of strictly increasing finite
domains of Zd and Sn “

ř

iPIn
Yi. Let σ2

n :“ VarpSnq. Assume that for some ε, δ ą 0 the following conditions
are satisfied:

(C1) X is an associated point process on Rd whose first two intensity functions are well-defined;
(C2) supiPZd }Yi}2`δ “M ă 8;
(C3) sup|x´y|ěr |Dpx, yq| “ o

rÑ8
pr´pd`εq

2`δ
δ q where D is given by (2.1);

(C4) lim infn |In|´1σ2
n ą 0.

Then
1
σn
Sn

L
ÝÑ N p0, 1q.

Proof. First, we notice that Y inherits its strong mixing coefficients from X. This is due to the fact that we
have σptYi : i P Iuq Ă Ep

Ť

iPI Ciq for all I Ă Zd as a consequence of (3.1). Moreover, we have distpCi, Cjq ě
1?
d
p|i´ j|R´ sdq as a consequence of Lemma B.2, and since |

Ť

iPI Ci| ď sd|I|, this gives us the inequality

@p, q ą 0, @r ą sd

R
, αYp,qprq ď αXpsd,qsd

ˆ

1
?
d
prR´ sdq

˙

,

where we denote by αX , αY the α-mixing coefficients of X and Y respectively. In particular, conditions (C1),
(C3) and identity (2.10) yields

@p, q ą 0, αYp,qprq “ o
rÑ8

pr´pd`εq
2`δ
δ q. (3.2)

We deal with the proof in two steps: first, we consider the case of bounded variables and then we extend
the result to the more general case.

The first step of the proof follows the approach used by Bolthausen [6] and Guyon [19], while the second
step exploits elements from [21]. The main difference lies in the way we deal with the term A3 that appears
later on in the proof.
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First step: Bounded variables. Without loss of generality, we consider that ErfipXXCiqs “ 0 for all i P Zd.
Suppose that we have supi }Yi}8 :“ supi }fip.X Ciq}8 “M ă 8 instead of Assumption (C2). Since αYp,qprq
is non increasing in r and is a opr´dq by (3.2), we can choose a sequence prnqnPN such that

αYp,qprnq
a

|In| Ñ 0 and r´dn
a

|In| Ñ 8.

For i P Zd, define

Si,n “
ÿ

jPIn
|j´i|ďrn

Yj , S˚i,n “ Sn ´ Si,n, an “
ÿ

iPIn

ErYiSi,ns, S̄n “
1
?
an
Sn, S̄i,n “

1
?
an
Si,n.

We have σ2
n “ VarpSnq “ an`

ř

iPIn
ErYiS˚i,ns and, as a consequence of the typical covariance inequality (2.9)

for α-mixing random variables, we get
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPIn

ErYiS˚i,ns

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

i,jPIn
|i´j|ąrn

|CovpYi, Yjq| ď 8M2
ÿ

i,jPIn
|i´j|ąrn

αY1,1p|i´ j|q ď 8M2|In|
ÿ

rąrn

|tk P Zd : |k| “ ru|αY1,1prq.

The number of k P Zd satisfying |k| “ r is bounded by 2p2r ` 1qd´1. This is because each of the d´ 1 first
coordinates of k takes their values in t´r, ¨ ¨ ¨ , ru and the last coordinate is fixed by the other ones, up to
the sign, since |k| “ r. Therefore,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPIn

ErYiS˚i,ns

ˇ

ˇ

ˇ

ˇ

ˇ

ď 16M2|In|
ÿ

rąrn

p2r ` 1qd´1αY1,1prq.

By Assumption (3.2), this quantity is op|In|q and thus σ2
n „ an as a consequence of Assumption (C4). We

then only need to prove the asymptotic normality of ĎSn. Moreover, since supn ErĎSn
2
s ă 8 then, by Stein’s

Lemma, this will be a consequence of the condition

lim
nÑ8

Erpiλ´ sSnq exppiλsSnqs “ 0, @λ P R.

We can split this expression into piλ´ sSnq exppiλsSnq “ A1 ´A2 ´A3 where
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

A1 “ iλ exppiλsSnq
˜

1´ 1
an

ÿ

jPIn

YjSj,n

¸

,

A2 “
1
?
an

exppiλsSnq
ÿ

jPIn

Yj
`

1´ iλsSj,n ´ expp´iλsSj,nq
˘

,

A3 “
1
?
an

ÿ

jPIn

Yj exp
`

iλpsSn ´ sSj,nq
˘

.

It was proved by Bolthausen [6] that ErA2
1s and Er|A2|s vanish when n goes to infinity if

ř

rd´1αYp,qprq ă 8
for p` q ď 4 which is the case here. We show that ErA3s vanishes at infinity using (2.8). Notice that we have

|ErA3s| ď
|In|
?
an

sup
jPIn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Cov

¨

˚

˚

˝

fjpX X Cjq, exp

¨

˚

˚

˝

iλ
?
an

ÿ

kPIn
|k´j|ąrn

fkpX X Ckq

˛

‹

‹

‚

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Define the function

gj : X ÞÑ exp

¨

˚

˚

˝

iλ
?
an

ÿ

kPIn
|k´j|ąrn

fkpX X Ckq

˛

‹

‹

‚

.
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This function is bounded by 1 and EpBjq-measurable where Bj :“
Ť

kPIn, |k´j|ąrn
Ck is a bounded set and

distpCj , Bjq ě pRrn ´ sdq{
?
d (see Lemma B.2). We have }fj}Cj ď 2M and for all X P Ω, for all x P Bj , if

we denote by Jx “ tk : x P Cku the set of cubes that contains x then

|gjpX Y txuq ´ gjpXq| “

ˇ

ˇ

ˇ

ˇ

ˇ

1´ exp
˜

iλ
?
an

ÿ

kPJx

pfkpX X Ck Y txuq ´ fkpX X Ckqq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď
2λM |Jx|
?
an

.

Lemma B.2 gives us the bound |Jx| ď p2sd{Rqd and thus }gj}Bj ď
2λMp2sdqd
Rd
?
an

. Finally, using Corollary 2.7
we get

|ErA3s| ď
4|In|sd
?
an

|Cj |}fj}Cj }gj}Bj

ż 8

distpBj ,Cjq
td´1 sup

|x´y|ět

|Dpx, yq|dt

ď 16sdλM2
ˆ

2s2d

R

˙d
|In|

an

ż 8

1?
d
pRrn´sdq

td´1 sup
|x´y|ět

|Dpx, yq|dt. (3.3)

By assumption (C3) we have that td´1 sup|x´y|ět |Dpx, yq| is integrable and by assumption (C4) we have
|In| “ Opanq which shows that limnÑ8 ErA3s “ 0 concluding the proof of the theorem for bounded variables.

Second step: General Case. For N ą 0, we define
"

S1,n :“
ř

iPIn
pFN pYiq ´ ErFN pYiqsq where FN : x ÞÑ x1|x|ďN ,

S2,n :“
ř

iPIn
p rFN pYiq ´ Er rFN pYiqsq where rFN : x ÞÑ x1|x|ąN .

Let σ2
npNq :“ VarpS1,nq, from the first step of the proof we have σnpNq´1S1,n

L
ÝÑ N p0, 1q. Let 1 ą γ ą

p1 ` ε
d p1 `

δ
2 qq

´1 and define CN :“ supi }Yi1|Yi|ąN }2`δγ . By assumption (C2) we have that CN vanishes
when N Ñ8 and by assumption (C4) we have that |In| ď cσ2

n for a sufficiently large n, where c is a positive
constant. By (2.9),

1
σ2
n

VarpS2,nq “
1
σ2
n

ÿ

i,jPIn

Covp rFN pYiq, rFN pYjqq

ď
|In|

σ2
n

C2
N sup
iPIn

ÿ

jPIn

8αY1,1p|i´ j|q
δγ

2`δγ

ď 16 cC2
N

8
ÿ

r“0
p2r ` 1qd´1αY1,1prq

δγ
2`δγ .

By assumption (C3) and the choice of γ we have
ř

p2r`1qd´1αY1,1prq
δγ

2`δγ ă 8 so σ´1
n S2,n converges in mean

square to 0 when N goes to infinity, uniformly in n. With the same reasoning, we also get the inequality

1
σ2
n

|CovpS1,n, S2,nq| ď 16 cMCN

8
ÿ

r“0
p2r ` 1qd´1αY1,1prq

δγ
2`δγ ,

where the right hand side tends to 0 when N goes to infinity, uniformly in n. Hence σ2
npNq tends to σ2

n

uniformly in n as N goes to infinity.
Finally, for all constant ν ą 0 arbitrary small, we can choose N such that Erσ´1

n |S2,n|s ď ν and |1 ´
σnpNq{σn| ď ν for all n sufficiently large. By looking at the characteristic function of σ´1

n Sn we get
ˇ

ˇ

ˇ
E
´

e
ixSn
σn

¯

´ e´
1
2x

2
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

E
ˆ

e
ixS1,n
σn

˙

´ E
ˆ

e
ixS1,n
σnpNq

˙
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

E
ˆ

e
ixS1,n
σnpNq

˙

´ e´
1
2x

2
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

E
ˆ

e
ixS2,n
σn ´ 1

˙
ˇ

ˇ

ˇ

ˇ

ď xE
ˆ
ˇ

ˇ

ˇ

ˇ

S1,n

σnpNq

ˇ

ˇ

ˇ

ˇ

˙
ˇ

ˇ

ˇ

ˇ

1´ σnpNq

σn

ˇ

ˇ

ˇ

ˇ

` op1q ` xν

ď 2xν ` op1q

concluding the proof.
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4. Application to determinantal point processes
In this section, we give a CLT for a wide class of functionals of DPPs. This result is a key tool for the
asymptotic inference of DPPs. As an application treated in Section 4.3, we get the consistency and the
asymptotic normality of the two-step estimation method of [31] for a parametric inhomogeneous DPP.

4.1. Negative association and α-mixing for DPPs

We recall that a DPP X on Rd is defined trough its intensity functions with respect to the Lebesgue measure
that must satisfy

@n P N, @x P pRdqn, ρnpx1, ¨ ¨ ¨ , xnq “ detpKrxsq with Krxs :“ pKpxi, xjqqi,jPt1,¨¨¨ ,nu.

The function K : pRdq2 Ñ C is called the kernel of X and is assumed to satisfy the following standard
general condition ensuring the existence of X.

Condition H: The function K : pRdq2 Ñ C is a locally square integrable hermitian measurable function
such that its associated integral operator K is locally of trace class with eigenvalues in r0, 1s.

This condition is not necessary for existence, in particular there are examples of DPPs having a non-hermitian
kernel. It is nonetheless very general and is assumed in most studies on DPPs. Basic properties of DPPs can
be found in [20, 29, 24]. In particular, from [17, Theorem 1.4] and [24, Theorem 3.7], we know that DPPs
are NA.

Theorem 4.1 ([17, 24]). Let K satisfy Condition H, then a DPP with kernel K is NA.

By definition, for a DPP with kernel K, we have Dpx, yq “ ´|Kpx, yq|2, where D is introduced in (2.1).
Hence, using the last theorem and Proposition 2.8 we get the following strong mixing coefficients of a DPP,
where we define

ωprq :“ sup
|x´y|ěr

|Kpx, yq|. (4.1)

Corollary 4.2. Let X be a DPP with kernel K satisfying H. Then, for all p, q ą 0,
$

’

&

’

%

αp,qprq ď sup
|A|ăp,|B|ăq
distpA,Bqąr

ş

AˆB
|Kpx, yq|2 ď pqωprq2,

αp,8prq ď psd
ş8

r
ω2ptqtd´1dt.

(4.2)

It is worth noticing that this result, and so the covariance inequality (2.7), is optimal in the sense that for a
wide class of DPPs, the α-mixing coefficient αp,qprq do not decay faster than sup|A|ăp,|B|ăq

distpA,Bqąr

|CovpNpAq, NpBqq|

when r goes to infinity, as stated in the following proposition.

Proposition 4.3. Let X be a DPP with kernel K satisfying H. We further assume that K is bounded,
takes its values in R` and is such that }K} ă 1 where }.} is the operator norm. Then, for all p, q, r ą 0,

p1´ }K}q
pp`qq}K}8

}K} sup
|A|ăp,|B|ăq
distpA,Bqąr

ż

AˆB

|Kpx, yq|2 ď αp,qprq ď sup
|A|ăp,|B|ăq
distpA,Bqąr

ż

AˆB

|Kpx, yq|2. (4.3)

Proof. The upper bound for αp,qprq is just the one in (4.2). The lower bound is obtained through void
probabilities. Let p, q, r ą 0 and A,B Ă Rd such that |A| ă p, |B| ă q and distpA,Bq ą r. By definition, for

9



any such sets A and B, αp,qprq ě |PpNpAq “ 0qPpNpBq “ 0q ´ PpNpAYBq “ 0q|. The void probabilities of
DPPs are known (see [29]) and equal to

PpNpAq “ 0q “ exp
˜

´
ÿ

ně1

TrpKnAq
n

¸

where KA is the projection of K on the set of square integrable functions f : A Ñ R. Moreover, PpNpAq “
0qPpNpBq “ 0q ´ PpNpAYBq “ 0q ě 0 by negative association, and we have

PpNpAq “ 0qPpNpBq “ 0q ´ PpNpAYBq “ 0q

“ exp
˜

´
ÿ

ně1

TrpKnAYBq
n

¸˜

exp
˜

ÿ

ně1

TrpKnAYBq ´ TrpKnAq ´ TrpKnBq
n

¸

´ 1
¸

ě exp
˜

´
ÿ

ně1

TrpKnAYBq
n

¸

ÿ

ně1

TrpKnAYBq ´ TrpKnAq ´ TrpKnBq
n

. (4.4)

Using the classical trace inequality we get

TrpKnAYBq ď }KAYB}n´1TrpKAYBq ď }K}n´1
ż

AYB

Kpx, xqdx ď }K}n´1pp` qq}K}8,

thus

exp
˜

´
ÿ

ně1

TrpKnAYBq
n

¸

ě p1´ }K}q
pp`qq}K}8

}K} . (4.5)

Moreover, since A and B are disjoint sets, we can write

TrpKnAYBq ´ TrpKnAq ´ TrpKnBq “
ż

pAYBqn
Kpx1, x2q ¨ ¨ ¨Kpxn´1, xnqKpxn, x1qdx1 ¨ ¨ ¨ dxn

´

ż

AnYBn
Kpx1, x2q ¨ ¨ ¨Kpxn´1, xnqKpxn, x1qdx1 ¨ ¨ ¨ dxn, (4.6)

which vanishes when n “ 1, is equal to 2
ş

AˆB
|Kpx, yq|2 when n “ 2 and is non-negative for n ě 3 since K is

assumed to be non-negative. Finally, by combining (4.4), (4.5) and (4.6) we get the lower bound in (4.3).

4.2. Central limit theorem for functionals of DPPs

We investigate the asymptotic distribution of functions that can be written as a sum over subsets of close
enough points of X, namely

fpXq :“
ÿ

SĂX

f0pSq, (4.7)

where f0 is a bounded function vanishing when diampSq ą τ for a certain fixed constant τ ą 0. The typical
example, encountered in asymptotic inference, concerns functions f0 that are supported on sets S having
exactly p elements, in which case (4.7) often takes the form

fpXq “
1
p!

‰
ÿ

x1,¨¨¨ ,xpPX

f0px1, ¨ ¨ ¨ , xpq, (4.8)

where the sum is done over ordered p-tuples of X and the symbol ‰ means that we consider distinct points.
The asymptotic distribution of (4.8) has been investigated in [30] when p “ 1 and in [3] for general p and
stationary DPPs.

In the next theorem, we extend these settings to functionals like (4.7) applied to general non stationary
DPPs. Some discussion and comments are provided after its proof. We use Minkwoski’s notation and write
A‘ r for the set

Ť

xPA Bpx, rq.
10



Theorem 4.4. Let X be a DPP associated to a kernel K that satisfies H and that is further bounded. Let
τ ą 0 and f : Ω Ñ R be a function of the form

fpXq :“
ÿ

SĂX

f0pSq

where f0 is a bounded function vanishing when diampSq ą τ . Let pWnqnPN be a sequence of increasing subsets
of Rd such that |Wn| Ñ 8 and let σ2

n :“ VarpfpX XWnqq. Assume that there exists ε ą 0 and ν ą 0 such
that the following conditions are satisfied:

(H1) |BWn ‘ pτ ` νq| “ op|Wn|q;
(H2) ωprq “ opr´pd`εq{2q;
(H3) lim infn |Wn|

´1σ2
n ą 0.

Then,
1
σn
pfpX XWnq ´ ErfpX XWnqsq

L
ÝÑ N p0, 1q.

Proof. In order to apply Theorem 3.1, we would like to rewrite f as a sum over cubes of a lattice. Unfor-
tunately, for disjoint sets A,B Ă Rd, fpX XAq ` fpX XBq ‰ fpX X pAYBqq in general. Instead, we apply
Theorem 3.1 to an auxiliary function, close to f , as follows. Define S0 as the barycentre of the set S. We
write

fW pXq “
ÿ

SĂX

f0pSq1W pS
0q (4.9)

for the sum over the subsets of points of X with barycentre in W Ă Rd. Now, we split Rd into little cubes
the following way. Let C0 be a given d-dimensional cube with a given side-length 0 ă s ď ν{

?
d. For all

i P Zd, let Ci be the translation of C0 by the vector s ¨ i. Let In :“ ti : Ci ‘ τ Ă Wnu and ĂWn “
Ť

iPIn
Ci.

An illustration of these definitions is provided in Figure 1. Since f
ĂWn
pXq “

ř

iPIn
fCipXq and each fCi are

EpCi ‘ τq-measurable then f
ĂWn

is the ideal candidate to use Theorem 3.1 on. Thus, we first prove that the
difference between f

ĂWn
and fpXXWnq is asymptotically negligible and then that f

ĂWn
satisfies the conditions

of Theorem 3.1.

Figure 1. Example of illustration of the definition of ĂWn. Here, the black border is BWn, the grey area corresponds to
pBWn ‘ τq X Wn and the square lattice corresponds to ĂWn.

First of all, notice that distpCi, BWnq ě τ for all i P In. Therefore, for any point in Wn at a distance
greater than τ ` s

?
d from BWn, the cube Ci of side-length s containing it is at a distance at least τ from

BWn, hence it is one of the Ci in ĂWn and we get

|WnzĂWn| ď |BWn ‘ pτ ` s
?
dq|.

Hence, by Assumption (H1), |Wn| „ |ĂWn|. Now,

fpX XWnq ´ f
ĂWn
pXq “

ÿ

SĂXXWn

f0pSq1WnzĂWn
pS0q. (4.10)

11



Since f0 vanishes when two points of S are at distance further than τ , then the sum in (4.10) only concerns
the subsets S of X X ppWnzĂWnq ‘ τq XWnq. By Lemma B.6, the variance of fpX XWnq ´ f

ĂWn
pXq is then a

Op|pWnzĂWnq‘ τ |q, whence a op|Wn|q and finally a opσ2
nq by Assumption (H3). Therefore, σ´1

n pfpX XWnq´

ErfpX XWnqsq has the same limiting distribution as σ´1
n pfĂWn

pXq ´ Erf
ĂWn
pXqsq. Moreover, we have

|Covpf
ĂWn
pXq, fpX XWnq ´ f

ĂWn
pXqq| ď σn

b

VarpfpX XWnq ´ f
ĂWn
pXqq “ σnop

a

|Wn|q “ opσ2
nq

by Assumptions (H1), (H3) and Lemma B.6 proving that σ´1
n pfpX XWnq ´ ErfpX XWnqsq has the same

limiting distribution as Varpf
ĂWn
pXqq´1{2pf

ĂWn
pXq ´ Erf

ĂWn
pXqsq.

We conclude by showing that the random variables Yi “ fCipXq ´ ErfCipXqs satisfy the assumptions of
Theorem 3.1. A rough bound on f gives us |fCipXq| ď }f0}82NpCi‘τq so, by Lemma B.5,

@n P N, sup
iPZd

Er|Yi|ns ă 8.

This means that the Yi’s satisfy Assumption (C2) for all δ ą 0 and thus (C3) as a consequence of (H2).
Finally, since |In| “ s´d|ĂWn| “ Op|Wn|q and Varpf

ĂWn
pXqq „ σ2

n, we have

lim inf
n

|In|
´1Varpf

ĂWn
pXqq ą 0

by Assumption (H3), which concludes the proof of the theorem.

We highlight two direct extensions of this result.

i) Since the superposition of independent PA (respectively NA) point processes remains a PA (respectively
NA) point process, then Theorem 4.4 holds true for α-determinantal point processes where α P t´1{m :
m P N˚u, see [29] for more information about α-DPPs.

ii) Theorem 4.4 also extends to Rq-valued functions f where q ě 2. Let Σn :“ VarpfpX XWnqq. If we
replace (H3) by

lim inf
n

|Wn|
´1λminpΣnq ą 0

where λminpΣnq denotes the smallest eigenvalue of Σn, then Theorem 4.4 holds true with the conclusion

pΣnq´1{2pfpX XWnq ´ ErfpX XWnqsq
L
ÝÑ N p0, Idqq

where Idq is the q ˆ q identity matrix.

Let us comment the assumptions of Theorem 4.4.

• Condition (H1) makes clear the idea thatWn must grow to Rd as nÑ8, without being a too irregular
set. In the simple case where Wn is the Cartesian product of intervals, i.e. Wn “ ∆p1qn ˆ ¨ ¨ ¨ ˆ ∆pdqn ,
then (H1) is equivalent to |∆pkqn | Ñ 8 for all k.
• Condition (H2) is not really restrictive and is satisfied by all classical kernel families. For example, the
kernels of the Ginibre ensemble and of the Gaussian unitary ensemble (see [20]) have an exponential
decay. Moreover, all translation-invariant kernels used in spatial statistics (see [23] and [4]) satisfy
ωprq “ Opr´pd`1q{2q: the Gaussian and the Laguerre-Gaussian covariance functions have an exponential
decay; the Whittle-Matérn and the Cauchy covariance functions satisfy ωprq “ opr´dq; and in the case
of the most repulsive DPP in dimension d (as determined in [23, 4]), which is the slowest decaying
Bessel-type kernel, its kernel is given by

Kpx, yq “

b

ρΓpd2 ` 1q

π
d
4

J d
2
p2
?
πΓpd2 ` 1q 1

d ρ
1
d ||y ´ x||q

||y ´ x||
d
2

ñ ωprq “ O
´

r´
d`1

2

¯

,

where ρ ą 0 is a constant. While this DPP satisfies Condition (H2), we point out that its α-mixing
coefficients decay too slowly to be able to derive a CLT only from them, see the discussion before
Theorem 3.1. This justifies the importance of Condition (C3) in this theorem, obtained by the NA
property, and which leads to Condition (H2).
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• Condition (H3) is harder to control in the broad setting of Theorem 4.4, but we can get sufficient
conditions in some particular cases. For example, if f0pSq “ 1|S|“1 and K is a translation-invariant
continuous kernel then it was shown in [30] that Condition (H3) holds when K is not the Fourier
transform of an indicator function. In the peculiar case where K is the Fourier transform of an indicator
function, [30] proved that the limiting distribution is still Gaussian but the rate of convergence is
different. As another example extending the previous one, assume that f0 is a non-negative function
supported on the set tS Ă X : |S| “ pu for a given integer p ą 0 and assume that the highest eigenvalue
of the integral operator K associated to K is less than 1. Then, we show in Proposition B.7 that

lim inf
n

1
|Wn|

ż

Wp
n

f0pxqdetpKrxsqdx ą 0

implies (H3) and is much easier to verify.

4.3. Application to the two-step estimation of an inhomogeneous DPP

In this section, we consider DPPs on R2 with kernel of the form

Kβ,ψpx, yq “
b

ρβpxqCψpy ´ xq
b

ρβpyq, @x, y P R2, (4.11)

where β P Rp and ψ P Rq are two parameters, Cψ is a correlation function and ρβ is of the form ρβpxq “
ρpzpxqβT q where ρ is a known positive strictly increasing function and z is a p-variate bounded function
called covariates. This form implies that the first order intensity, corresponding to ρβpxq, is inhomogeneous
and depends on the covariates zpxq through the parameter β. But all higher order intensity functions once
normalized, i.e. ρpnqpx1, . . . , xnq{pρβpx1q . . . ρβpxnqq, are translation-invariant for n ě 2. In particular, the
pair correlation (the case n “ 2) is invariant by translation. This kind of inhomogeneity is sometimes
named second-order intensity reweighted stationarity and is frequently assumed in the spatial point process
community.

Existence of DPPs with a kernel like above is for instance ensured if ρβpxq is bounded by ρmax and Cψ
is a continuous, square-integrable correlation function on Rd whose Fourier transform is less than 1{ρmax,
see [23]. For later use, we call H1 the previous assumptions on Kβ,ψ.

Consider the observation of a DPP X with kernel Kβ˚,ψ˚ , along with the covariates z, within a window
Wn :“ ran, bns ˆ rcn, dns where b ą a and d ą c. Waagepetersen and Guan [31] have proposed the following
two-step estimation procedure of pβ˚, ψ˚q for second-order intensity reweighted stationary models. First, β̂n
is obtained by solving

un,1pβq :“
ÿ

uPXXWn

∇ρβpuq
ρβpuq

´

ż

Wn

∇ρβpuqdu “ 0.

where ∇ρβ denotes the gradient with respect to β. In the second step, ψ̂n is obtained by minimizing mn,β̂n
where

mn,βpψq :“
ż r

rl

˜˜

ÿ

u,vPXXWn

1t0ă|u´v|ďtu

ρβpuqρβpvq|Wn XWn,u´v|

¸c

´Kψptq
c

¸2

dt.

Here rl, r and c are user-specified non-negative constants, Wn,u´v is Wn translated by u´ v and Kψ is the
Ripley K-function defined by

Kψptq :“
ż

}u}ďt

gψpuqdu

where gψpuq :“ 1´ Cψpuq2{Cψp0q2 is the pair correlation function of X. If we define

un,2pβ, ψq :“ ´|Wn|
Bmn,βpψq

Bψ
,
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then the two-step procedure amounts to solve

unpβ, ψq :“ pun,1pβq, un,2pβ, ψqq “ 0.

The asymptotic properties of this two-step procedure are established in [31], under various moments and
mixing assumptions, with a view to inference for Cox processes. We state hereafter the asymptotic normality
of pβ̂n, ψ̂nq in the case of DPPs with kernel of the form (4.11). This setting allows us to apply Theorem 4.4
and get rid of some restrictive mixing assumptions needed in [31].

The asymptotic covariance matrix of pβ̂n, ψ̂nq depends on two matrices defined in [31, Section 3.1], where
they are denoted by rΣn and In. We do not reproduce their expression, which is hardly tractable. An assump-
tion in [31] ensures the asymptotic non-degeneracy of this covariance matrix and we also need this assumption
in our case, see (W4) below. Unfortunately, as discussed in [31], it is hard to check this assumption for a
given model, particularly because it depends on the covariates z. We are confronted by the same limitation
in our setting. On the other hand, the other assumptions of the following theorem are not restrictive. In
particular almost all standard kernels satisfy (W3) below, see the discussion after Theorem 4.4.

Theorem 4.5. Let X be a DPP with kernel Kβ˚,ψ˚ given by (4.11) and satisfying H1. Let pβ̂n, ψ̂nq the
two-step estimator defined above. We assume the following.

(W1) rl ą 0 if c ă 1; otherwise rl ě 0,
(W2) ρβ and Kψ are twice continuously differentiable as functions of β and ψ,
(W3) sup}x}ěr Cψ˚pxq “ Opr´1´εq,
(W4) Condition N3 in [31] (concerning the matrices In and rΣn) is satisfied.

Then, there exists a sequence tpβ̂n, ψ̂nq : n ě 1u for which unpβ̂n, ψ̂nq “ 0 with a probability tending to one
and

|Wn|
1{2rpβ̂n, ψ̂nq ´ pβ

˚, ψ˚qsInrΣ´1{2
n

L
ÝÑ N p0, Idq.

Proof. Let ρk be the kth intensity function of the DPP with kernel px, yq ÞÑ Cψ˚py ´ xq. In order to apply
Theorem 1 in [31] we need to show that

(i) ρ2, ρ3 are bounded and there is a constant M such that for all u1, u2 P R2,
ş

|ρ3p0, v, v ` u1q ´
ρ1p0qρ2p0, u1q|dv ăM and

ş

|ρ4p0, u1, v, v ` u2q ´ ρ2p0, u1qρ2p0, u2q|dv ăM ,
(ii) }ρ4`2δ}8 ă 8 for some δ ą 0,
(iii) αa,8prq “ Opr´dq for some a ą 8r2 and d ą 2p2` δq{δ.

The first property (i) is a consequence of (W3). This is because we can write

|ρ3p0, v, v ` u1q ´ ρ1p0qρ2p0, u1q| “ |2Cψ˚pvqCψ˚pu1qCψ˚pv ` u1q ´ Cψ˚p0qpCψ˚pv ` u1q
2 ` Cψ˚pvq

2q|

which is bounded by 2|Cψ˚p0q|pCψ˚pv ` u1q
2 ` Cψ˚pvq

2q and
ż

R2
Cψ˚pvq

2dv ď 2π
ż 8

0
r sup
}x}“r

|Cψ˚pxq|
2dr

which is finite by Assumption (W3). The term ρ4p0, u1, v, v ` u2q ´ ρ2p0, u1qρ2p0, u2q can be treated the
same way. For a DPP, (ii) is satisfied for any δ ą 0. Finally, (iii) is the one that causes an issue since, as
stated before, the α-mixing coefficient we get in Corollary 4.2 decreases slower than what we desire. But,
the only place this assumption is used in [31] is to prove the asymptotic normality of their estimator in their
Lemma 5, which can also be derived as a consequence of our Theorem 4.4 with Assumption (W3).

Appendix A: Proof of Theorem 2.3
We use the following variant of the monotone class theorem (see [12, Theorem 22.1]).
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Theorem A.1. Let S be a set of bounded functions stable by bounded monotone convergence and uniform
convergence. Let C be a subspace of S such that C is an algebra containing the constant function r1. Then, S
contains all bounded functions measurable over σpCq.

Now, let A,B1, ¨ ¨ ¨ , Bk be pairwise distinct Borel subsets of Rd and g : Nk ÞÑ R be a coordinate-wise
increasing function. We denote by ΩA the set of locally finite point configuration in A and we define S as
the set of functions f : ΩA ÞÑ R such that

Erf̂pX XAqgpNpB1q, ¨ ¨ ¨ , NpBkqqs ď Erf̂pX XAqsErgpNpB1q, ¨ ¨ ¨ , NpBkqs, (A.1)

where f̂pXq :“ supYďX fpY q. Note that f̂ is an increasing function and that f is increasing iff f̂ “ f . Our
goal is to prove that S contains all bounded functions supported over A. Because of the definition of NA
point processes (2.4), we know that S contains the set C of functions of the form fpNpA1q, ¨ ¨ ¨ , NpAkqq where
the Ai are pairwise disjoints Borel subsets of A. In particular, since point processes over A are generated by
the set of random vectors tpNpA1q, ¨ ¨ ¨ , NpAkqq : Ai Ă A disjoints, k P Nu, then we only need to verify that
S and C satisfy the hypothesis of Theorem A.1 to conclude.

• Stability of S by bounded monotonic convergence: Since (A.1) is invariant if we add a constant to f
and f is bounded then we can consider f to be positive. Now, notice that for all functions h and k,
h ď k ñ ĥ ď k̂ and h ě k ñ ĥ ě k̂. So, if we take a positive bounded monotonic sequence fn P S
that converges to a bounded function f , then f̂n is also a positive bounded monotonic sequence that
consequently converges to a function g. Suppose that pfnqn is an increasing sequence (the decreasing
case can be treated similarly) and let us show that g “ f̂ . Let X P ΩA, for all Y Ă X, fnpY q ď fpY q.
Taking the suppremum then the limit gives us gpXq ď f̂pXq. Moreover, for all Y Ă X, gpXq ě f̂npXq ě

fnpY q. Taking the limit gives us that gpXq ě fpY q for all Y Ă X so gpXq ě f̂pXq which proves that
g “ f̂ . Using the monotone convergence theorem we conclude that

Erf̂npX XAqs Ñ Erf̂pX XAqs

and Erf̂npX XAqgpNpB1q, ¨ ¨ ¨ , NpBkqqs Ñ Erf̂pX XAqgpNpB1q, ¨ ¨ ¨ , NpBkqqs, (A.2)

which proves that f P S
• Stability of S by uniform convergence: Let fn be a sequence over S converging uniformly to a function
f then, by Lemma B.1, f̂n also converges uniformly (and therefore in L1) to f̂ . As a consequence, (A.2)
is also satisfied in this case so f P S.

• C is an algebra: It is easily shown that C is a linear space containing r1 so we only need to prove that C
is stable by multiplication. Let A1, ¨ ¨ ¨ , Ar and A11 ¨ ¨ ¨ , A1s be two sequences of pairwise distinct Borel
subsets of A. Let f “ fpNpA1q, ¨ ¨ ¨ , NpArqq P C and h “ hpNpA11q, ¨ ¨ ¨ , NpA

1
rqq P C. We can write

NpAiq “ NpAiz Yj A
1
jq `

ÿ

j

NpAi XA
1
jq and NpA1iq “ NpA1iz Yj Ajq `

ÿ

j

NpA1i XAjq,

so f ¨h can be expressed as a function of the number of points in the subsets AizYj A1j , A1izYj Aj and
Ai XA

1
j that are all pairwise distinct Borel subsets of A, proving that C is stable by multiplication.

This concludes the proof that S contains all bounded functions supported over ΩA. By doing the same
exact reasoning on the set of bounded functions g which satisfy ErfpXXAqgpXXBqs ď ErfpXXAqsErgpXX
Bqs for a fixed f we obtain the same result which concludes the proof.

Appendix B: Auxiliary results
Lemma B.1. Let E be a set and f, g : E Ñ R be two functions, then

ˇ

ˇ

ˇ

ˇ

sup
xPE

fpxq ´ sup
yPE

gpyq

ˇ

ˇ

ˇ

ˇ

ď }f ´ g}8
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Proof. The proposition becomes trivial once we write

fpxq ď gpxq ` }f ´ g}8 ď sup
yPE

gpyq ` }f ´ g}8

Taking the supremum yields the first inequality. Moreover, by symmetry of f and g the second one follows
similarly.

Lemma B.2. Let i, j P Zd such that |i´j| :“
řd
l“1 |il´jl| “ r. Let s,R ą 0 and Ci, Cj be the d-dimensional

cubes with side length s and respective centre xi “ R ¨ i and xj “ R ¨ j. Then,

distpCi, Cjq ě
1
?
d
prR´ sdq.

Moreover, each cube intersects at most p2sd{Rqd other cubes.

Proof. Since each point of a d-dimensional square with side length s is at distance at most s
?
d{2 from it’s

centre, we get distpCi, Cjq ě
a

pRi1 ´Rj1q2 ` ¨ ¨ ¨ ` pRid ´Rjdq2 ´ s
?
d which takes it’s minimum when

|il ´ jl| “ r{d for all 1 ď l ď d hence distpCi, Cjq ě rR{
?
d´ s

?
d.

In particular, if |i´ j| ą sd{R then Ci X Cj “ H, hence for all i P Zd

|tj P Zd : Ci X Cj ‰ H, i ‰ ju| ď |tj : 0 ă |i´ j| ď sd{Ru| ď

ˆ

2sd
R

˙d

Lemma B.3. Let M and N be two nˆn semi-positive definite matrices such that 0 ďM ď N´1 where ď
denotes the Loewner order. Then,

detpId´MNq ě 1´ TrpMNq

Proof. First, let’s consider the case where N “ Id. If TrpMq ě 1 then detpId ´Mq ě 0 ě 1 ´ TrpMq.
Otherwise, we denote by SppMq the spectrum of M and since all eigenvalues are in [0,1[, we can write

detpId´Mq “
ź

λPSppMq
expplnp1´ λqq

“
ź

λPSppMq
exp

˜

´

8
ÿ

n“0

λn

n

¸

“ exp
˜

´

8
ÿ

n“0

TrpMnq

n

¸

ě exp
˜

´

8
ÿ

n“0

TrpMqn

n

¸

“ expplogp1´ TrpMqqq
“ 1´ TrpMq. (B.1)

Getting back to the general case, we can write N as STS and by Sylvester’s determinant identity we get
that detpId ´MNq “ detpId ´ SMST q. Since we assumed that 0 ď M ď N´1 then 0 ď SMST ď Id and
by applying (B.1) this concludes the proof:

detpId´MNq “ detpId´ SMST q ě 1´ TrpSMST q “ 1´ TrpMNq

16



Proposition B.4. Let M be a n ˆ n semi-definite positive matrix of the form M “

ˆ

M1 N
NT M2

˙

where

M1 is a k ˆ k semi-definite positive matrix, M2 is a pn ´ kq ˆ pn ´ kq semi-definite positive matrix and N
is a k ˆ pn´ kq matrix. We define ||A||8 “ sup |ai,j |. Then,

0 ď detpM1qdetpM2q ´ detpMq ď kpn´ kqTrpNTNq||M ||n´2
8 .

Proof. First, we assume that M1 and M2 are invertible. Using Schur’s complement, we can write

detpMq “ detpM1qdetpM2qdetpId´M´1
1 NTM´1

2 Nq

where 0 ď NTM´1
2 N ďM1 with ď being the Loewner order. NTM´1

2 N being semi-definite positive implies

detpMq ď detpM1qdetpM2q,

while the inequality NTM´1
2 N ďM1 gives us (see Lemma B.3)

detpMq ě detpM1qdetpM2qp1´ TrpM´1
1 NTM´1

2 Nqq.

Therefore,

0 ď detpM1qdetpM2q ´ detpMq ď TrpadjpM1qN
T adjpM2qNq

ď TrpadjpM1qqTrpadjpM2qqTrpNTNq “
k
ÿ

i“1
∆ipM1q

n´k
ÿ

j“1
∆jpM2qTrpNTNq,

where ∆ipM1q means the pi, iq minor of the matrixM1 and adjpM1q is the transpose of the matrix of cofactor
ofM1. But, since all principal sub-matrices ofM1 andM2 are positive definite matrices then their determinant
is lower than the product of their diagonal entries, meaning that ∆ipM1q ď

ś

j‰iM1pj, jq ď ||M ||
k´1
8 . Doing

the same thing for the terms ∆jpM2q gives us the desired result.
If M1 or M2 is not invertible, a limit argument using the continuity of the determinant leads to the same

conclusion.

Lemma B.5. Let X be a DPP with bounded kernel K satisfying H, s ą 0 and n ą 0, then

sup
AĂRd,|A|“s

Er2nNpAqs ă 8

Proof. Let n P N and A Ă Rd such that |A| “ s. Since the determinant of a positive semi-definite matrix is
always smaller than the product of its diagonal coefficients we get

Er2nNpAqs “ E

«

8
ÿ

k“0

ˆ

NpAq

k

˙

p2n ´ 1qk
ff

“

8
ÿ

k“0

p2n ´ 1qk

k!

ż

Ak
detpKrxsqdx

ď ep2
n
´1q}K}8|A| ă 8.

Lemma B.6. Let X be a DPP on Rd with bounded kernel K satisfying H such that ωprq “ Opr´
d`ε

2 q for
a certain ε ą 0. Then, for all bounded Borel sets W Ă Rd and all bounded functions g :

Ť

pą0pRdqp Ñ R
such that gpSq vanishes when diampSq ą τ for a given constant τ ą 0,

Var
˜

ÿ

SĂXXW

gpSq

¸

“ Op|W |q. (B.2)
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Proof. Since W is bounded then NpW q is almost surely finite and we can write
ÿ

SĂXXW

gpSq “
ÿ

pě0

ÿ

SĂXXW
|S|“p

gpSq.

Looking at the variance of each term individually, we start by developing E

»

–

˜

ÿ

SĂXXW

gpSq1|S|“p

¸2
fi

fl as

p
ÿ

k“0
E

»

—

—

–

ÿ

S,TĂXXW
|S|“|T |“p,|SXT |“k

gpSqgpT q

fi

ffi

ffi

fl

(B.3)

“

p
ÿ

k“0
E

»

—

—

–

ÿ

UĂXXW
|U |“2p´k

ÿ

S1ĂSĂU
|S1|“k,|S|“p

gpSqgpS1 Y pUzSqq

fi

ffi

ffi

fl

“

p
ÿ

k“0

1
p2p´ kq!

ż

W 2p´k

ÿ

S1ĂSĂtx1,¨¨¨ ,x2p´ku

|S1|“k,|S|“p

gpSqgpS1 Y pUzSqqρ2p´kpx1, ¨ ¨ ¨ , x2p´kqdx1 ¨ ¨ ¨ dx2p´k

“

p
ÿ

k“0

1
p2p´ kq!

ˆ

p

k

˙ˆ

2p´ k
p

˙
ż

W 2p´k
gpx1, ¨ ¨ ¨ , xpqgpx1, ¨ ¨ ¨ , xk, xp`1, ¨ ¨ ¨ , x2p´kqρ2p´kpxqdx. (B.4)

Since the determinant of a positive semi-definite matrix is smaller than the product of its diagonal terms,
we have |ρ2p´kpxq| ď }K}

2p´k
8 . Moreover, as a consequence of our assumptions on g, each term for k ě 1

in (B.4) is bounded by

1
p!pp´ kq!

ˆ

p

k

˙
ż

W 2p´k

}g}28}K}
2p´k
8 1t0ď|xi´x1|ďτ, @iudx ď

|W |

p!

ˆ

p

k

˙

}g}28}K}
2p´k
8 |Bp0, τq|2p´k´1

ď
|W |

p!

ˆ

p

k

˙

}g}28p1` }K}8q2pp1` |Bp0, τq|q2p.

Hence,
p
ÿ

k“1
E

»

—

—

–

ÿ

S,TĂXXW
|S|“|T |“p,|SXT |“k

gpSqgpT q

fi

ffi

ffi

fl

ď |W |}g}28
Cp1
p! (B.5)

where C1 “ 2p1` }K}8q2p1`Bp0, τqq2 is a constant independent from p and W . However, even if all terms
for k ě 1 in (B.4) are a Op|W |q, this is not the case of the term for k “ 0 which is a Op|W |2q. Instead of
controlling this term alone, we consider its difference with the remaining term in the variance we are looking
at, that is

1
pp!q2

ż

W 2p
gpxqgpyqρ2ppx, yqdxdy ´ E

«˜

ÿ

SĂXXW

gpSq1|S|“p

¸ff2

“
1
pp!q2

ż

W 2p
gpxqgpyqpρ2ppx, yq ´ ρppxqρppyqqdxdy.

Using Proposition B.4, we get

|ρ2ppx, yq ´ ρppxqρppyq| ď p2}K}2p´2
8

ÿ

1ďi,jďp
Kpxi, yjq

2.
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Now, notice that for all y P Rd and 1 ď i ď p,
ż

Wp

1t0ă|xk´xj |ďτ, @j,ku|Kpxi, yq|
2dx ď |Bp0, τq|p´1

ż

W

|Kpxi, yq|
2dxi ď |Bp0, τq|p´1sd

ż

Rd
rd´1ωprq2dr

which is finite because of our assumption on ωprq. Thus, we obtain the inequality
ż

W 2p
gpxqgpyq|Kpxi, yjq|

2dxdy ď }g}8|Bp0, τq|p´1
ż

Wp`1
gpxq|Kpxi, y1q|

2dxdy1

ď |W |}g}28|Bp0, τq|2p´2sd

ż

Rd
rd´1ωprq2dr. (B.6)

By combining (B.5) and (B.6), we get the bound

Var

¨

˚

˝

ÿ

SĂXXW
|S|“p

gpSq

˛

‹

‚

ď |W |}g}28

ˆ

Cp1
p! `

C2

p!

˙

where

C2 :“
˜

sup
pě0

p4}K}2p´2
8 |Bp0, τq|2p´2

p!

¸

sd

ż

Rd
rd´1ωprq2dr

is a constant independent from p and W . Finally,

ÿ

pě0
Var

¨

˚

˝

ÿ

SĂXXW
|S|“p

gpSq

˛

‹

‚

“ Op|W |q

and

ÿ

pąqě0
Cov

¨

˚

˝

ÿ

SĂXXW
|S|“p

gpSq,
ÿ

SĂXXW
|S|“q

gpSq

˛

‹

‚

ď |W |}g}28
ÿ

p,qě0

d

ˆ

Cp1
p! `

C2

p!

˙ˆ

Cq1
q! `

C2

q!

˙

“ Op|W |q

concluding the proof.

Proposition B.7. Let p P N, f : Rp Ñ R` be a symmetrical measurable function and define

F pXq “
ÿ

SĂX
|S|“p

fpSq.

Let X be a DPP with kernel K satisfying Condition H such that }K} ă 1 where }K} is the operator norm of
the integral operator associated with K. If, for a given increasing sequence of compact sets Wn Ă Rd,

lim inf
n

1
|Wn|

ż

Wp
n

fpxqdetpKrxsqdx ą 0, (B.7)

then
lim inf

n

1
|Wn|

VarpF pX XWnqq ą 0.

Proof. Let W be a compact subset of Rd. The Cauchy-Schwartz inequality gives us

CovpF pX XW q, NpW qq2 ď VarpF pX XW qqVarpNpW qq.
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We showed in Lemma B.6 that |W |´1VarpNpW qq is bounded by a constant C ą 0 so we are only interested
in the behaviour of CovpF pX XW q, NpW qq. We start by developing ErF pX XW qNpW qs:

ErF pX XW qNpW qs “ E

»

—

–

ÿ

SĂXXW
|S|“p

fpSq
ÿ

xPXXW

1

fi

ffi

fl

“ E

»

—

–

ÿ

SĂXXW
|S|“p`1

ÿ

xPS

fpSztxuq ` p
ÿ

SĂXXW
|S|“p

fpSq

fi

ffi

fl

“
1

pp` 1q!

ż

Wp`1

p`1
ÿ

i“1
fpzztziuq detpKrzsqdz ` 1

p!

ż

Wp

pfpxqdetpKrxsqdx

“
1
p!

ˆ
ż

Wp

fpxq

ˆ

p detpKrxsq `
ż

W

detpKrx, asqda
˙

dx
˙

.

We also have
ErF pX XW qsErNpW qs “

1
p!

ż

Wp

fpxqdetpKrxsqdx
ż

W

Kpa, aqda,

hence

CovpF pX XW q, NpW qq “ 1
p!

ż

Wp

fpxqdetpKrxsq
ˆ

p´

ż

W

Kpa, aq ´ detpKrx, asqdetpKrxsq´1da
˙

dx.

(B.8)
Using Schur’s complement, we get

Kpa, aq ´ detpKrx, asqdetpKrxsq´1 “ KaxKrxs
´1KT

ax (B.9)

where we define Kax as the vector pKpa, x1q, ¨ ¨ ¨ ,Kpa, xpqq. Moreover, since we look at our point process in
a compact windowW , a well-known property of DPPs (see [20]) is that there exists a sequence of eigenvalues
λi in r0, }K}s and an orthonormal basis of L2pW q of eigenfunctions φi such that

Kpx, yq “
ÿ

i

λiφipxqφ̄ipyq @x, y PW.

As a consequence, @x, y PW ,
ż

W

Kpx, aqKpa, yqda “
ÿ

i

λ2
iφipxqφ̄ipyq

which we define as Lpx, yq. Therefore, for all x P W p, Lrxs ď }K}Krxs where ď is the Loewner order for
positive definite symmetric matrices and we get

ż

W

KaxKrxs
´1KT

axda “ Tr
ˆ

Krxs´1
ż

W

KT
axKaxda

˙

“ TrpKrxs´1Lrxsq ď p}K}. (B.10)

Finally, since f is non negative, by combining (B.8), (B.9) and (B.10) we get the lower bound

VarpF pX XW qq ě CovpF pX XW q, NpW qq2

VarpNpW qq ě
p1´ }K}q2

Cpp´ 1q!2|W |

ˆ
ż

Wp

fpxqdetpKrxsqdx
˙2

which proves the proposition.
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