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Positively (resp. negatively) associated point processes are a class of point processes that induce attraction (resp.
inhibition) between the points. As an important example, determinantal point processes (DPPs) are negatively
associated. We prove a-mixing properties for associated spatial point processes by controlling their a-coefficients in
terms of the first two intensity functions. A central limit theorem for functionals of associated point processes is
deduced, using both the association and the a-mixing properties. We discuss in detail the case of DPPs, for which
we obtain the limiting distribution of sums, over subsets of close enough points of the process, of any bounded
function of the DPP. As an application, we get the asymptotic properties of the parametric two-step estimator of
some inhomogeneous DPPs.

Keywords: determinantal point process, parametric estimation, strong mixing, negative association, positive associa-
tion.

1. Introduction

Positive association (PA) and negative association (NA) [1, 15] are properties that quantify the dependence
between random variables. They have found many applications in limit theorems for random fields [8, 32].
Even if the extension of PA to point processes have been used in analysis of functionals of random measures
[10, 16], there are no general applications of PA or NA to limit theorems for point processes. We contribute
in this paper to this aspect for spatial point processes on R?. We especially discuss in detail the case of
determinantal point processes (DPPs for short), that are an important example of negatively associated
point processes. DPPs are a type of repulsive point processes that were first introduced by Macchi [25] in
1975 to model systems of fermions in the context of quantum mechanics. They have been extensively studied
in Probability theory with applications ranging from random matrix theory to non-intersecting random
walks, random spanning trees and more (see [20]). From a statistical perspective, DPPs have applications in
machine learning [22], telecommunication [13, 26, 18], biology, forestry [23] and computational statistics [2].

As a first result, we relate the association property of a point process to its a-mixing properties. First
introduced in [28], c-mixing is a measure of dependence between random variables, which is actually more
popular than PA or NA. It has been used extensively to prove central limit theorems for dependent random
variables [6, 14, 19, 21, 28]. More details about mixing can be found in [7, 14]. We derive in Section 2 an
important covariance inequality for associated point processes (Theorem 2.5). We show that this inequality
implies a-mixing and precisely allows to control the a-mixing coefficients by the first two intensity functions
of the point process. This implication for point processes is in contrast with the case of random fields, where
it is known that association does not imply c-mixing in general (see Examples 5.10-5.11 in [8]).

We then establish in Section 3 a general central limit theorem (CLT) for random fields defined as a
function of an associated point process (Theorem 3.1). A standard method for proving this kind of theorems
is to rely on sufficiently fast decaying a-mixing coefficients along with some moment assumptions. We use
an alternative procedure that exploits both the mixing properties and the association property. This results
in weaker assumptions on the underlying point process, that can have slower decaying mixing coefficients.
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This improvement allows in particular to include all standard DPPs, some of them being otherwise excluded
with the first approach (like for instance DPPs associated to the Bessel-type kernels [4]).

Section 4 discusses in detail the case of DPPs, where we derive a tight explicit bound for their a-mixing
coefficients and prove a central limit theorem for certain functionals of a DPP (Theorem 4.4). Specifically,
these functionals write as a sum of a bounded function of the DPP, over subsets of close-enough points
of the DPP. A particular case concerns sums over p-tuple of close enough points of the DPP, which are
frequently encountered in asymptotic inference. Limit theorems in this setting have been established in [30]
when p = 1, and in [3] for stationary DPPs and p > 1. We thus extend these studies to sums over any
subsets and without the stationary assumption. As a statistical application, we consider the parametric
estimation of second-order intensity reweighted stationary DPPs. These DPPs have an inhomogeneous first
order intensity, but translation-invariant higher order (reweighted) intensities. We prove that the two-step
estimator introduced in [31], designed for this kind of inhomogeneous point process models, is consistent and
asymptotically normal when applied to DPPs.

2. Associated point processes and a-mixing

2.1. Notation

In this paper, we consider locally finite simple point processes on R?, for a fixed d € N. Some theoretical
background on point processes can be found in [11, 27]. We denote by Q the set of locally finite point
configurations in R%. For X € Q and A < R?, we denote by N(A) the cardinal of X n A, by %(A) the Borel
o-algebra of A and by £(A) the o-algebra generated by X n A, defined by

E(A):=0({Xe:N(B)=m},Be B(A),meN).

The notation |.| will have a different meaning depending on the object it is applied. For x € R4, |z| stands
for the euclidean norm, while for i € Z%, |i| denotes the ¢;-norm. For a set A < R%, |A] := {, dz is the
euclidean volume of A, and for a set I = Z¢ we write |I| for the cardinal of I. For A, B two subsets of R?
(resp. Z%) we define dist(A, B) as infyea yep |y — | and diam(A) as sup,, ¢ 4 |y — x| where |.| is the associated
norm on RY (resp. Z%). Finally, we write B(x,r) for the euclidean ball centred at = with radius r and |.|,
for the p-norm of random variables and functions where 1 < p < o0.

We recall that the intensity functions of a point process (when they exist), with respect to the Lebesgue
measure, are defined as follows.

Definition 2.1. Let X € Q andn > 1 be an integer. If there exists a non-negative function p, : (R%)" — R

such that
£

E Z f(l'la"'axn) :J f(l'la"'axn)pn(xly"'azn)dxl"'dxn
(RE)™

T1,,Tn€X

for all locally integrable function f : (R?)"™ — R then p, is called the nth order intensity function of X.

In particular, p, (1, ,x,)dx; - - - dz, can be viewed as the probability that X has a point in each of
the infinitesimally small sets around z1,--- , z, with volumes dz1,--- ,dz, respectively.
We further introduce the notation

D(z,y) := p2(x,y) — p1(x)p1(y)- (2.1)

This quantity is involved in the following equality, deduced from the previous definition and used several
times throughout the paper:

Cov(N(A), N(B)) = L  Dla.y)dady. (2.2)



2.2. Negative and positive association

Our goal in this section is to prove a crucial covariance inequality and to deduce an a-mixing property
for associated point processes. We recall that associated point processes are defined the following way (see
Definitions 2.11-2.12 in [5] for example).

Definition 2.2. A point process is said to be negatively associated (NA for short) if, for all family of
pairwise disjoint Borel sets (A;)1<i<k and (B;)1<i<i such that

(UiAi) N (Uij) = @ (23)

and for all coordinate-wise increasing functions F : N¥F — R and G : N* — R it satisfies

< E[F(N(A1), -+, N(AR)IE[G(N(By), -, N(B1))].  (2:4)

Similarly, a point process is said to be positively associated (PA for short) if it satisfies the reverse inequality
for all family of pairwise disjoint Borel sets (A;)1<i<k and (Bi)i1<i<i (but not necessarily satisfying (2.3)).
If a point process is NA or PA it is said to be associated.

The main difference between the definition of PA and NA is the restriction (2.3) that only affects NA
point processes. Notice that without (2.3), E[N(A)]? > E[N(A)?] contradicts (2.4) hence the need to consider
functions depending on disjoint sets for NA point processes.

These inequalities extend to the more general case of functionals of point processes. The first thing we
need is a more general notion of increasing functions. We associate to €2 the partial order X < Y iff X c Y
and then call a function on € increasing if it is increasing respective to this partial order. The association
property can then be extended to these functions. A proof in a general setting can be found in [24, Lemma
3.6] but we give an alternative elementary one in Appendix A.

Theorem 2.3. Let X be a NA point process on R* and A, B be disjoint subsets of R, Let F : Q +— R and
G : Q — R be bounded increasing functions, then

E[F(X n A)G(X n B)] <E[F(X n A)]E[G(X n B)]. (2.5)
If X is PA then, for all A, B c R non necessarily disjoint,
E[F(X n A)G(X n B)] 2 E[F(X n A)JE[G(X n B)]. (2.6)

Association is a very strong dependence condition. As proved in the following theorem, it implies a strong
covariance inequality that is only controlled by the behaviour of the first two intensity functions of X
(assuming their existence). To state this result, we need to introduce the following seminorm for functionals
over point processes.

Definition 2.4. For any A < R?, |.||4 is the seminorm on the functions f : Q + C defined by
I flas=_sup [f(X)—f(XuU{z})]
XeQ,XCA

3

€A

Note that |.| 4 is a Lipschitz norm in the sense that it controls the way f(X) changes when a point is
added to X n A.

Theorem 2.5. Let X be an associated point process and A, B < R? be two disjoint bounded subsets. Let
f:Q—>Randg:Q— R be two functions such that f(X n A) and g(X n B) are bounded, then

|Cou(f(X n A),g(X n B))| < |[flalgls|Coo(N(A), N(B))]|. (2.7)

Moreover, if X is PA then it also satisfies the same inequality for all A, B < R% not necessarily disjoint.
3



Proof. The proof mimics the one from [9] for associated random fields. We only consider the case of NA
point processes but the PA case can be treated in the same way.
Consider the functions fy, f_ : Q — R, £(A)-measurable, and g, ,g_ : Q@ — R, £(B)-measurable, defined by

{ f+(X) = f(X n A) L[ faN(A),
9+(X) = g(X n B) £ |g|zN(B).

For all z € A\X, fo (X u{z})— fr(X) = f(Xu{z}nA)— f(X nA)+|f]|a which is positive by definition
of |fla. f+ is thus an increasing function. With the same reasoning, g, is also increasing and f_,g_
are decreasing. fi is not bounded but it is non-negative and almost surely finite so it can be seen as an
increasing limit of the sequence of functions min(fy,%k) when k goes to infinity. These functions are non-
negative, increasing and bounded so for any k and any bounded increasing function g, (2.5) applies where f
is replaced by min(f, k). By a limiting argument, the same inequality holds true for f = f.. We can also
treat the other functions the same way and we get from (2.5)

Cov(f+(X), 9+(X)) <0 and Cov(f_(X),g_(X)) <O0.
Since these expressions are equal to

Cov(f+(X), 9+(X)) = Cov(f(X n A),g(X n B)) + [ flalglzCov(N(A), N(B))
£ (lglCov(f(X n A), N(B)) + [ f|aCov(N(A), g(X n B))),

adding these two expressions together yields the upper bound in (2.7):
Cov(f(X n A),g(X n B)) < —|flalglzCov(N(A), N(B)).

The lower bound is obtained by replacing f by —f in the previous expression. O

A similar inequality as in Theorem 2.5 can also be obtained for complex-valued functions since |R(f)| 4 and
|S(f)]la are bounded by | f].4, where R(f) and J(f) refers to the real and imaginary part of f respectively.

Corollary 2.6. Let X be an associated point process and A, B < R% be two disjoint bounded subsets. Let
f:Q—>Candg:Q— C be two functions such that f(X n A) and g(X n B) is bounded, then

|Cov(f(X n A), g(X n B))| < 4] f]alglzlCov(N(A), N(B))|.

Moreover, if X is PA then it also satisfies the same inequality for all A, B < R® not necessarily disjoint.

If the first two intensity functions of X are well-defined then D in (2.1) is well-defined. As a consequence
of Theorem 2.5 and from (2.2), if |D(z,y)| vanishes fast enough when |y — x| goes to infinity then any
two events respectively in £(A) and £(B) will get closer to independence as dist(A, B) tends to infinity, as
specified by the following corollary.

Corollary 2.7. Let X be an associated point process on R? whose first two intensity functions are well-
defined. Let A, B be two bounded disjoint sets of R? such that dist(A,B) = r. Then, for all functions
f:Q>Randg:Q— R such that (X n A) and g(X n B) is bounded,

Q0

|Cou(f(X N A),9(X n B))| < sal4 HfHAHg\IBJ 77 sup |D(z,y)ldt. (2.8)

T rz—y|=t

where sq is the (d — 1)-dimensional area measure of the unit sphere in R%. Moreover, if f and/or g are
complez-valued functions, the same inequality holds true with an extra factor 4 on the right hand side.



Proof. Consider A, B to be two bounded disjoint sets of R? such that dist(A4, B) = r then, from (2.2),

Cov(N(A), N(B)| = L ID(a.y)ldrdy

< |Alsup f D(z, )dy
€A JB

< |A]sup f D, y)|dy
z€A JB(z,r)°

<[lsup | sup  |D(w,w)ldy
z€A JB(x,r)c ueR?
[u—z|=ly—z|

0
<|A|sdJ t4=Y sup | D(u,v)|dt.

r lu—v|=t

The final result is then a consequence of Theorem 2.5 and Corollary 2.6. O

2.3. Application to a-mixing

Let us first recall some generalities about mixing. Consider a probability space (X, F,P) and 7, % two sub
o-algebra of F. The a-mixing coefficient is defined as the following measure of dependence between 7 and
B:

a(d, B) = sup{|P(An B) —P(A)P(B)|: Ae &, B e A}.

In particular, & and 2 are independent iff o (7, %) = 0. This definition leads to the essential covariance
inequality due to Davydov (see [14] for example): For all random variables X, Y measurable with respect to
o/ and % respectively,
1 1 1
|Cov(X,Y)| < 8a'/" (o, B)|X|,||Y |4, where p,q,re[l,0]and = + = + = = 1. (2.9)
p q T
This definition is adapted to random fields the following way (see [14] or [19]). Let Y = (Y;);eza be a random
fields on Z¢ and define

apq(r) :=sup{a(o({Yi,i€ A}),o({Yi i € BY)) : |A| < p,|B| < ¢, dist(4, B) > r}

with the convention v, (1) = sup, @y 4(r). The coefficients oy, ,(r) describe how close two events happening
far enough from each other are from being independent. The parameters p and ¢ play an important role
since, in general, we cannot get any information directly on the behaviour of g o0 (7).

We can adapt this definition to point processes the following way. For a point process X on R?, define

apq(r) :=sup{a(E(A),E(B)) : |A| < p,|B| < q,dist(4, B) > r}

with the convention oy, oo () = sup, a; 4(7).
As a consequence of Corollary 2.7, the a-mixing coefficients of an associated point process tends to 0 when
D(z,y) vanishes fast enough as |y — x| goes to infinity. More precisely, we have the following inequalities.

Proposition 2.8. Let X be an associated point process on R% whose first two intensity functions are
well-defined, then for all p,q > 0,

OLPv‘I(T) < pg sup |D(I7y)|7

lo—y|>r
0 (2.10)
pe(r) < psa [ 1971 sup (Dl
r lz—y|=t
Proof. This is a direct consequence of Theorem 2.5 and Corollary 2.7 applied to indicator functions. O

5



3. Central limit theorem for associated point processes

Consider the lattice (2;);cza defined by z; = R -i, where R > 0 is a fixed constant. We denote by C;, i € Z<,
the d-dimensional cube with centre x; and side length s, where s > R is another fixed constant. Note that the
union of these cubes forms a covering of R?. Let X be an associated point process and (f;);cze be a family
of real-valued measurable functions defined on 2. We consider the centred random field (Y;);cz« defined by

Y= fi(X 0 Cy) —E[fi(X n Cy)], ieZf, (3.1)

and we are interested in this section by the asymptotic behavior of S, := ] Y;, where (I,,)nen is a

i€l
sequence of strictly increasing finite domains of Z¢.

As a consequence of Proposition 2.8, we could directly use one of the different CLT for a-mixing random
fields that already exist in the literature [6, 14, 19] to get the asymptotic distribution of S,. But, the
coefficients ;o decreasing much slower than the coefficients «y, 4, this would imply an unnecessary strong
assumption on D. Precisely, this would require D(z,y) to decay at a rate at least o(|y — ac|_2(d/+5)2%(S ), where
€ > 0 and 0 is a positive constant depending on the behaviour of the moments of X. In the next theorem, we
bypass this issue by exploiting both the behaviour of the mixing coefficients oy, ; when p < 00 and ¢ < o0, and
the association property through inequality (2.8). We show that we can still get a CLT when D(x,y) decays
at a rate o(|ly — x|_(d+€)26j). This improvement is important to include DPPs with a slow decaying kernel,
thus inducing more repulsiveness, such as Bessel-type kernels, see the applications to DPPs in Section 4.2

and especially the discussion at the end of the section.

Theorem 3.1. Consider the random field Y given by (3.1), a sequence (I,)nen of strictly increasing finite
domains of Z¢ and S, =Y. Y;. Let 02 := Var(S,). Assume that for some ,8 > 0 the following conditions
are satisfied:

i€l,

(C1) X is an associated point process on R? whose first two intensity functions are well-defined;
(C2) supyea [Vilass = M < o0; 5
24
(C3) sup|y_y =, |D(z,y)| = o (r=(4+) =57 where D is given by (2.1);
7—00
(C4) liminf, |I,|7'o2 > 0.

Then 1
— S, -5 N(0,1).

On

Proof. First, we notice that Y inherits its strong mixing coefficients from X. This is due to the fact that we
have o({Y; : i € I}) < E(U;; Ci) for all I < Z¢ as a consequence of (3.1). Moreover, we have dist(C;, C;) >

ﬁ(h — j|R — sd) as a consequence of Lemma B.2, and since || J,.; Ci| < s?|1|, this gives us the inequality

sd 1
Vp,q >0, Vr > T oz;iq(r) < O‘;)fsd,qsd (\/E(TR sd)) ,

where we denote by aX, ¥ the a-mixing coefficients of X and Y respectively. In particular, conditions (C1),
(C3) and identity (2.10) yields

Vp.q >0, a) (r) = Tgw(r*(d+5)%76). (3.2)
We deal with the proof in two steps: first, we consider the case of bounded variables and then we extend
the result to the more general case.
The first step of the proof follows the approach used by Bolthausen [6] and Guyon [19], while the second
step exploits elements from [21]. The main difference lies in the way we deal with the term Aj that appears
later on in the proof.



First step: Bounded variables. Without loss of generality, we consider that E[f;(X nC;)] = 0 for all i € Z9.
Suppose that we have sup; | Y;| := sup; | fi(. 0 Ci)[c = M < o0 instead of Assumption (C2). Since o) (r)
is non increasing in r and is a o(r~%) by (3.2), we can choose a sequence (7, )nen such that

a;/’q(rn)\/ﬁn\ — 0 and 7, %/|I,] — .

For i € Z%, define

}/}7 Sl*n = S - Si,nv Up = E[Y;Sz,n]a Sn = 7Sna Si,n = 7Si,n'
JGZI: z;i Van Van

\j—i\érn

We have 02 = Var(S,,) = an+,, 1, E[YiS}, ] and, as a consequence of the typical covariance inequality (2.9)
for a-mixing random variables, we get

EIEYS*

iel,

< ) Cov(Yi Yl <8M® YT oy (li—jl) < 8MP|L| Y, [{k e 2 [k| = r}ay,(r).

i,J€1, i,J€1, r>T,
|[i—j|>7rn l[i—j|>7n

The number of k € Z? satisfying |k| = 7 is bounded by 2(2r + 1)9~1. This is because each of the d — 1 first
coordinates of k takes their values in {—r,--- ,r} and the last coordinate is fixed by the other ones, up to
the sign, since |k| = r. Therefore,

> E[Y;S),]

i€l,

<16MP[L| Y. (2r + 1) a), (n).

r>7y

By Assumption (3.2), this quantity is o(|1,]) and thus 02 ~ a, as a consequence of Assumption (C4). We

then only need to prove the asymptotic normality of S,,. Moreover, since sup,, IE[SjLQ] < o then, by Stein’s
Lemma, this will be a consequence of the condition

lim E[(i\ — S,,) exp(iAS,)] =0, VAeR.

n—o0

We can split this expression into (i — S,,) exp(iAS,) = A; — Ay — A3 where

. . Yl 1
Ay =ihexp(iASy) (1 o Z Yij,n> )

" jel,

1 _ _

Ay = exp(i\Sy,) Z Y —iASjp — GXP(—i/\Sj7n)) )
\/@ jel,

As = (iMSn — Sjn)) -

J
Van jeT,

It was proved by Bolthausen [6] that E[A7] and E[|As|] vanish when n goes to infinity if >} 7% ') ,(r) < o0
for p + ¢ < 4 which is the case here. We show that E[A3] vanishes at infinity using (2.8). Notice that we have

| 1| A
E[Asz]] < sup |Cov | fi(X n C)), ex XnC
| [ 3]' «\/@]EIIZ f]( j) p \/@ keZIn fk( k?)
|k_j‘>7'n
Define the function
g; : X — exp Z fe(X n Cy)
Van kel,
|k—j\>rn

7



This function is bounded by 1 and £(B;)-measurable where B; := [J;c; lk—j|=r,, Ck 1s a bounded set and

dist(Cj, Bj) = (Rry, — sd)/v/d (see Lemma B.2). We have | f;|c, < 2M and for all X € Q, for all z € Bj, if
we denote by J, = {k : z € Ci} the set of cubes that contains x then

2AM| ], |
N

lg;(X v {a}) — g;(X)] = <

1 —exp (\;27 k;m(fk(X N Cufa}) = fu(X n Ck)))

Lemma B.2 gives us the bound |J,| < (2sd/R)? and thus |g;||p, < W. Finally, using Corollary 2.7
we get
4|In|5d * d—1
Bl < 2 G 1o gl [ # sup Dyl
an T ! dist(B;,c;) |z—y|=t
2s2d\ " |I,| [~

< 165gAM? ( > > Ha] t4=1 sup | D(x,y)|dt. (3.3)

R an ﬁ(an—sd) lx—y|=>t

By assumption (C3) we have that ¢! Sup|,_y|>¢ | D(7,y)| is integrable and by assumption (C4) we have

|I,| = O(a,) which shows that lim,_,o E[A3] = 0 concluding the proof of the theorem for bounded variables.

Second step: General Case. For N > 0, we define

{ Stn = er, (EN(Yi) —E[Fn(Yi)]) where Fiy @z — xljgj<n,
So 1= Zieln (Fn(Y;) —E[FN(Y;)]) where Fy :z— >N

Let 02(N) := Var(S;,,), from the first step of the proof we have o, (N)~15;,, £, N(0,1). Let 1 > v >

(1+5(1+ 2))7! and define Cy := sup; [Yiljy, > n||2+5, By assumption (C2) we have that Cy vanishes
when N — o0 and by assumption (C4) we have that |I,,| < co? for a sufficiently large n, where c is a positive

constant. By (2.9),

Var(S5,) =~ 3 Cov(Fy(¥:), F(¥7))

n " 4,5€l,

1 N 2
< Lol oz sup 37 sad (i - )7
On i€l jer,
2\ d-1_Y (52
< 16eCy 2(27" + 1) g 4 (r)7F.
r=0

By assumption (C3) and the choice of v we have > (2r + 1)d*1a{1(r)2’jsr7gv < @ so 0, 1S3, converges in mean
square to 0 when N goes to infinity, uniformly in n. With the same reasoning, we also get the inequality

1 © .

= |Cov(S1,m, S2n)| < 16cMCy 2 (2r + 1)d_1a{1(r)m,

n r=0
where the right hand side tends to 0 when N goes to infinity, uniformly in n. Hence o2 (N) tends to o2
uniformly in n as N goes to infinity.
Finally, for all constant v > 0 arbitrary small, we can choose N such that E[o;,}|S2,|] < v and |1 —

on(N)/o,| < v for all n sufficiently large. By looking at the characteristic function of o, 15,, we get

iwSn 12 Sy, iwS1,, @St 1.2 iwSy .,
‘]E(e o )76 S Bl —Efleon®™ ||+ |Efeon®™ | —e 2% |+ | Efle o —1

Sl,n U7L(N)
ng((%(N))‘l p ’—!—0(1)—1—1;1/

< 2zv + o(1)

concluding the proof. O



4. Application to determinantal point processes

In this section, we give a CLT for a wide class of functionals of DPPs. This result is a key tool for the
asymptotic inference of DPPs. As an application treated in Section 4.3, we get the consistency and the
asymptotic normality of the two-step estimation method of [31] for a parametric inhomogeneous DPP.

4.1. Negative association and a-mixing for DPPs

We recall that a DPP X on R? is defined trough its intensity functions with respect to the Lebesgue measure
that must satisfy

VneN, Vo e (RY™, pu(z1, -, 2,) = det(K[z]) with K[z] := (K (i, ;)i je(1,. n}-

The function K : (R%)? — C is called the kernel of X and is assumed to satisfy the following standard
general condition ensuring the existence of X.

Condition #: The function K : (R?)? — C is a locally square integrable hermitian measurable function
such that its associated integral operator K is locally of trace class with eigenvalues in [0, 1].

This condition is not necessary for existence, in particular there are examples of DPPs having a non-hermitian
kernel. It is nonetheless very general and is assumed in most studies on DPPs. Basic properties of DPPs can
be found in [20, 29, 24]. In particular, from [17, Theorem 1.4] and [24, Theorem 3.7], we know that DPPs
are NA.

Theorem 4.1 ([17, 24]). Let K satisfy Condition H, then a DPP with kernel K is NA.

By definition, for a DPP with kernel K, we have D(x,y) = —|K(z,y)|?, where D is introduced in (2.1).
Hence, using the last theorem and Proposition 2.8 we get the following strong mixing coefficients of a DPP,
where we define

w(r) = sup |K(z,y)| (4.1)

|z—y|=r
Corollary 4.2. Let X be a DPP with kernel K satisfying H. Then, for all p,q > 0,

apﬂ(r) < Sup SAXB |K($,y)|2 < pqw(r)Q,
|Al<p,|B|<q 4.9
dist(A,B)>r ( . )

0p.oo (1) < psq S:O w2 (t)td-de.

It is worth noticing that this result, and so the covariance inequality (2.7), is optimal in the sense that for a

wide class of DPPs, the a-mixing coefficient a, 4 (1) do not decay faster than supaj<p,|j<q |Cov(N(A), N(B))]
dist(A,B)>r
when r goes to infinity, as stated in the following proposition.

Proposition 4.3. Let X be a DPP with kernel K satisfying H. We further assume that K is bounded,
takes its values in Ry and is such that |K| < 1 where |.| is the operator norm. Then, for all p,q,r > 0,

P+ Kl
(1— I = sup J K(2,9) < apg(r) < sup f K@y (43)
|A|<p,|Bl<q JAxB |Al<p,|B|<q JAxB
dist(A,B)>r dist(A,B)>r

Proof. The upper bound for «, ,(r) is just the one in (4.2). The lower bound is obtained through void
probabilities. Let p, ¢, > 0 and A, B  R? such that |A| < p, |B| < q and dist(A, B) > r. By definition, for



any such sets A and B, a, 4(r) = |P(N(A) = 0)P(N(B) =0) —P(N(A v B) = 0)|. The void probabilities of
DPPs are known (see [29]) and equal to

P(N(A) = 0) = exp (- > W)
n=1

where K4 is the projection of K on the set of square integrable functions f : A — R. Moreover, P(N(A) =
0)P(N(B) =0) —P(N(A U B) =0) = 0 by negative association, and we have

P(N(A) = 0)P(N(B) = 0) — P(N(A U B) = 0)

. (_ 5 Tr(/c}w) <exp (Z ) = T Tr(/%)) i 1)

n=1 n>=1
Tr(K% Tr(K% —Tr(K%) — Tr(K%
= exp (- Z ( ;;luB)) Z ( AUB) n( A) ( B). (44)
n=1 n>=1

Using the classical trace inequality we get
Tr(K%op) < [Kavs[" ' Tr(Kaog) < H’CH”_IJ K(z,2)dz < [K]" (p + @) K oo,
AuB

thus
T ’Cn P+a) Koo
exp (— y, hius) ,fuB)) > (1 o)) e, (45)
n=1

Moreover, since A and B are disjoint sets, we can write
Tr(K%g) — Tr(K%) — Tr(Kg) = J K(xy,29) K(xp_1,2n)K(xy,z1)dzy - - - dxy
(AuB)"

- J K(x1,22)  K(Tn—1,%n) K(2p, x1)dzy - - - dwn,  (4.6)

AnUB™
which vanishes when n = 1, is equal to 2§, |K(x, y)|* when n = 2 and is non-negative for n > 3 since K is
assumed to be non-negative. Finally, by combining (4.4), (4.5) and (4.6) we get the lower bound in (4.3). O

4.2. Central limit theorem for functionals of DPPs

We investigate the asymptotic distribution of functions that can be written as a sum over subsets of close
enough points of X, namely
F(X) =] folS), (4.7)
ScX
where fj is a bounded function vanishing when diam(.S) > 7 for a certain fixed constant 7 > 0. The typical
example, encountered in asymptotic inference, concerns functions f; that are supported on sets S having
exactly p elements, in which case (4.7) often takes the form

#

X == flene ), (48)

Cmy,e,xp€X

where the sum is done over ordered p-tuples of X and the symbol # means that we consider distinct points.
The asymptotic distribution of (4.8) has been investigated in [30] when p = 1 and in [3] for general p and
stationary DPPs.

In the next theorem, we extend these settings to functionals like (4.7) applied to general non stationary
DPPs. Some discussion and comments are provided after its proof. We use Minkwoski’s notation and write
A@r for the set | J, .4 B(z,r).

10



Theorem 4.4. Let X be a DPP associated to a kernel K that satisfies H and that is further bounded. Let
7>0 and f:Q — R be a function of the form
= > folS)

ScX

where fo is a bounded function vanishing when diam(S) > 7. Let (Wy,)nen be a sequence of increasing subsets
of R such that |W,| — oo and let 02 := Var(f(X n W,)). Assume that there exists ¢ > 0 and v > 0 such
that the following conditions are satisfied:

(H1) [0Wn @ (1 + v)| = o(|[Wal);
(H2) w(r) = olr ),
(H3) liminf, |W,|"ta2 > 0.

Then,
L (FX A W) —ELF(X W) 2 N(0,1).

On

Proof. In order to apply Theorem 3.1, we would like to rewrite f as a sum over cubes of a lattice. Unfor-
tunately, for disjoint sets 4, B < R, f(X n A) + f(X n B) # f(X n (AU B)) in general. Instead, we apply
Theorem 3.1 to an auxiliary function, close to f, as follows. Define S° as the barycentre of the set S. We
write
= > fo(S)1w(S°) (4.9)
ScX
for the sum over the subsets of points of X with barycentre in W < R%. Now, we split R? into little cubes
the following way. Let Cy be a given d-dimensional cube with a given side-length 0 < s < y/f For all
i€ Z%, let C; be the translation of Cy by the vector s -i. Let I, := {i : C; @7 < W,,} and W, = User, C
An illustration of these definitions is provided in Figure 1. Since fWﬂ( ) = Dier, fo:(X) and each fc, are
£(C; @ 7)-measurable then f5; is the ideal candidate to use Theorem 3.1 on. Thus, we first prove that the
difference between fvT/,L and f(X nW,) is asymptotically negligible and then that fvT/,L satisfies the conditions
of Theorem 3.1.

Figure 1. Example of illustration of the definition of Wn Here, the black border is 0W,, the grey area corresponds to
(OWn @ 7) n Wy, and the square lattice corresponds to W,.

First of all, notice that dist(C;,dW,,) = 7 for all i € I,,. Therefore, for any point in W,, at a distance
greater than 7 + sv/d from oW, the cube C; of side-length s containing it is at a distance at least 7 from
0W,,, hence it is one of the C; in W and we get

(W \Wo| < [0W,, @ (1 + sVd)].
Hence, by Assumption (H1), |W,| ~ |I/I~/,L| Now,
FXAWa) = fp (X) = X fo(S)Ly, . (5°). (4.10)

ScXAW,
11



Since fp vanishes when two points of S are at distance further than 7, then the sum in (4.10) only concerns
the subsets S of X n ((W,\W,) ®7) nW,,). By Lemma B.6, the variance of f(X nW,) — f; (X) is then a

O(|(Wo\W,) @7|), whence a o(|[W,|) and finally a o(c2) by Assumption (H3). Therefore, oL (f(X A W,,) —
E[f(X n W,)]) has the same limiting distribution as Ugl(fwn (X) — E[f (X)]). Moreover, we have

|Cov(fip, (X), (X n W) = fip (X))] < O’n\/Var(f(X N Wa) = i, (X)) = ono(v/[Wal) = o(o7)

by Assumptions (H1), (H3) and Lemma B.6 proving that o, (f(X n W,,) — E[f(X n W,,)]) has the same
limiting distribution as Var(fg (X))’l/Q(an (X) = E[f, (X))

We conclude by showing that the random variables Y; = f¢,(X) — E[fc, (X)] satisfy the assumptions of
Theorem 3.1. A rough bound on f gives us |fc, (X)] < || follx2™(€®7) so, by Lemma B.5,

VneN, supE[|Y;|"] < .
1€Zd

This means that the Y;’s satisfy Assumption (C2) for all § > 0 and thus (C3) as a consequence of (H2).
Finally, since |I,,| = s~¢|W,,| = O(|W,,|) and Var(f (X)) ~ o2, we have

lim inf |I,,| "' Var(fz (X)) >0
by Assumption (H3), which concludes the proof of the theorem. O

We highlight two direct extensions of this result.

i) Since the superposition of independent PA (respectively NA) point processes remains a PA (respectively
NA) point process, then Theorem 4.4 holds true for a-determinantal point processes where o € {—1/m :
m € N*}, see [29] for more information about a-DPPs.
ii) Theorem 4.4 also extends to R%-valued functions f where ¢ > 2. Let X, := Var(f(X n W,,)). If we
replace (H3) by
lim inf W™ Amin(Zn) > 0

where Apin (X,,) denotes the smallest eigenvalue of 3, then Theorem 4.4 holds true with the conclusion

(£)2(F(X A W) = E[f(X A W,)]) =5 N (0, Id,)
where Id, is the ¢ x ¢ identity matrix.
Let us comment the assumptions of Theorem 4.4.

e Condition (H1) makes clear the idea that W,, must grow to R as n — oo, without being a too irregular
set. In the simple case where W, is the Cartesian product of intervals, i.e. W,, = A%l) X oo X A%d),
then (H1) is equivalent to |A£lk)| — oo for all k.

e Condition (H2) is not really restrictive and is satisfied by all classical kernel families. For example, the
kernels of the Ginibre ensemble and of the Gaussian unitary ensemble (see [20]) have an exponential
decay. Moreover, all translation-invariant kernels used in spatial statistics (see [23] and [4]) satisfy
w(r) = O(r~—(@+1/2): the Gaussian and the Laguerre-Gaussian covariance functions have an exponential
decay; the Whittle-Matérn and the Cauchy covariance functions satisfy w(r) = o(r~%); and in the case
of the most repulsive DPP in dimension d (as determined in [23, 4]), which is the slowest decaying
Bessel-type kernel, its kernel is given by

\JPD(§ +1) Ja(2y/al(4 + V) api|ly —a "
K(z,y) = ! $ VAT + D207 ly - =) 3w(r)=O<T7T>,

4 4
i Iy —||2

where p > 0 is a constant. While this DPP satisfies Condition (H2), we point out that its a-mixing
coefficients decay too slowly to be able to derive a CLT only from them, see the discussion before
Theorem 3.1. This justifies the importance of Condition (C3) in this theorem, obtained by the NA
property, and which leads to Condition (H2).

12



e Condition (H3) is harder to control in the broad setting of Theorem 4.4, but we can get sufficient
conditions in some particular cases. For example, if fo(S) = 1jgj—1 and K is a translation-invariant
continuous kernel then it was shown in [30] that Condition (H3) holds when K is not the Fourier
transform of an indicator function. In the peculiar case where K is the Fourier transform of an indicator
function, [30] proved that the limiting distribution is still Gaussian but the rate of convergence is
different. As another example extending the previous one, assume that fy is a non-negative function
supported on the set {S < X : |S| = p} for a given integer p > 0 and assume that the highest eigenvalue
of the integral operator K associated to K is less than 1. Then, we show in Proposition B.7 that

fo(z) det(K[z])dz > 0

lim inf
n

|Wn| wpr

implies (H3) and is much easier to verify.

4.3. Application to the two-step estimation of an inhomogeneous DPP

In this section, we consider DPPs on R? with kernel of the form

where § € R?” and ¢ € R? are two parameters, Cy, is a correlation function and pg is of the form pg(z) =
p(z(x)BT) where p is a known positive strictly increasing function and z is a p-variate bounded function
called covariates. This form implies that the first order intensity, corresponding to pg(x), is inhomogeneous
and depends on the covariates z(x) through the parameter 8. But all higher order intensity functions once
normalized, i.e. p™(z1,...,2,)/(ps(21) ... ps(xy,)), are translation-invariant for n > 2. In particular, the
pair correlation (the case n = 2) is invariant by translation. This kind of inhomogeneity is sometimes
named second-order intensity reweighted stationarity and is frequently assumed in the spatial point process
community.

Existence of DPPs with a kernel like above is for instance ensured if pg(z) is bounded by pmax and Cy
is a continuous, square-integrable correlation function on R¢ whose Fourier transform is less than 1/pmax,
see [23]. For later use, we call ' the previous assumptions on Kpg 4.

Consider the observation of a DPP X with kernel Kz« =, along with the covariates z, within a window
W, := [an,bn] X [en,dn] where b > a and d > ¢. Waagepetersen and Guan [31] have proposed the following
two-step estimation procedure of (8*,*) for second-order intensity reweighted stationary models. First, 3n
is obtained by solving

Vps(u)
n, = — \Y% du = 0.

where Vpg denotes the gradient with respect to 8. In the second step, 1% is obtained by minimizing m,, R

where |
" 1
{0<|u—v|<t} .
Mt f — Ky(t dt.
s(¥) r <<u,v€;ﬂ/vn pa(u)pg(v)|W,, N Wmu_v) (1) >

Here r;,r and c are user-specified non-negative constants, W,, ,,—, is W,, translated by u — v and Ky is the
Ripley K-function defined by

Ky(t) = J gy (u)du
lul <t
where gy (u) := 1 — Cy(u)?/Cy(0)? is the pair correlation function of X. If we define

5mn,ﬁ(1/))

un,Q(va) = _|Wn‘Ta

13



then the two-step procedure amounts to solve

un(8,9) := (un,1(8), un2(8,9)) = 0.

The asymptotic properties of this two-step procedure are established in [31], under various moments and
mixing assumptions, with a view to inference for Cox processes. We state hereafter the asymptotic normality
of (Bn, 12)”) in the case of DPPs with kernel of the form (4.11). This setting allows us to apply Theorem 4.4
and get rid of some restrictive mixing assumptions needed in [31].

The asymptotic covariance matrix of (Bn, 1[)71) depends on two matrices defined in [31, Section 3.1], where
they are denoted by f]n and I,,. We do not reproduce their expression, which is hardly tractable. An assump-
tion in [31] ensures the asymptotic non-degeneracy of this covariance matrix and we also need this assumption
in our case, see (W4) below. Unfortunately, as discussed in [31], it is hard to check this assumption for a
given model, particularly because it depends on the covariates z. We are confronted by the same limitation
in our setting. On the other hand, the other assumptions of the following theorem are not restrictive. In
particular almost all standard kernels satisfy (W3) below, see the discussion after Theorem 4.4.

Theorem 4.5. Let X be a DPP with kernel Kgx g+ given by (4.11) and satisfying H'. Let (ﬁn,z/;n) the
two-step estimator defined above. We assume the following.

(W1) rp >0 if ¢ < 1; otherwise r; = 0,

(W2) pg and K, are twice continuously differentiable as functions of B and 1,
(Wg) SUP| x| =r Cw* (1‘) = O(T7176>} N

(W4) Condition N3 in [31] (concerning the matrices I,, and ) is satisfied.

Then, there exists a sequence {(,@n,z/;n) :n = 1} for which uy, (Bnﬂﬁn) = 0 with a probability tending to one
and

(Wl Y2[(Brs ) — (B, 0*)] 1,E712 55 N (0, 1d).

Proof. Let pj, be the kth intensity function of the DPP with kernel (x,y) — Cyx(y — x). In order to apply
Theorem 1 in [31] we need to show that

(i) p2,ps are bounded and there is a constant M such that for all ui,us € R?, {|p3(0,v,v + uy) —
p1(0)p2(0,u1)|dv < M and §[pa(0,u1,v,v + u2) — p2(0,u1)p2(0,uz)|dv < M,
(ii) |pat2s]o < oo for some § > 0,
(iii) g,00(r) = O(r=?) for some a > 82 and d > 2(2 + 4) /9.

The first property (i) is a consequence of (W3). This is because we can write
1p3(0,v,v +u1) — p1(0)p2(0,u1)| = |20y (V) Cy (u1) Cope (v + 1) — Cype (0)(Cype (v + u1)* + Cye (v)?)]

which is bounded by 2|Cysx (0)[(Cyx (v + u1)? + Cyx (v)?) and

oe]
Cyx (v)2dv < 27TJ 7 sup |Cyx(z)|*dr

R2 0 |x|=r

which is finite by Assumption (W3). The term p4(0,u1,v,v + u2) — p2(0,u1)p2(0,u2) can be treated the
same way. For a DPP, (ii) is satisfied for any ¢ > 0. Finally, (iii) is the one that causes an issue since, as
stated before, the a-mixing coefficient we get in Corollary 4.2 decreases slower than what we desire. But,
the only place this assumption is used in [31] is to prove the asymptotic normality of their estimator in their
Lemma 5, which can also be derived as a consequence of our Theorem 4.4 with Assumption (W3). O

Appendix A: Proof of Theorem 2.3

We use the following variant of the monotone class theorem (see [12, Theorem 22.1]).

14



Theorem A.1. LetS be a set of bounded functions stable by bounded monotone convergence and uniform
convergence. Let C be a subspace of S such that C is an algebra containing the constant function 1. Then, S
contains all bounded functions measurable over o(C).

Now, let A, By,---, By be pairwise distinct Borel subsets of R? and g : N¥ +— R be a coordinate-wise
increasing function. We denote by €24 the set of locally finite point configuration in A and we define S as
the set of functions f : Q4 — R such that

A PN

E[f(X 0 A)g(N(B1),- -, N(Bg))] < E[f(X n A)]E[g(N(B1),---, N(B)], (A1)

where f(X) = supy<x f(Y). Note that f is an increasing function and that f is increasing iff f = f. Our
goal is to prove that S contains all bounded functions supported over A. Because of the definition of NA
point processes (2.4), we know that S contains the set C of functions of the form f(N(A;), -, N(Ax)) where
the A; are pairwise disjoints Borel subsets of A. In particular, since point processes over A are generated by
the set of random vectors {(N (A1), - ,N(Ax)) : A; < A disjoints, k € N}, then we only need to verify that
S and C satisfy the hypothesis of Theorem A.1 to conclude.

e Stability of S by bounded monotonic convergence: Since (A.1) is invariant if we add a constant to f
and f is bounded then we can consider f to be positive. Now, notice that for all functions h and k,
h<k=h<kandh >k = h > k. So, if we take a positive bounded monotonic sequence f, € S
that converges to a bounded function f, then fn is also a positive bounded monotonic sequence that
consequently converges to a function g. Suppose that (f,), is an increasing sequence (the decreasing
case can be treated similarly) and let us show that g = f. Let X € Qq, forall Y < X, f,(Y) < f(Y).
Taking the suppremum then the limit gives us g(X) < f(X). Moreover, for all Y « X, g(X) > fn(X) >

fn(Y). Taking the limit gives us that g(X) = f(Y) for all Y < X so ¢g(X) = f(X) which proves that
g = f. Using the monotone convergence theorem we conclude that

E[fn(X 0 A)] - E[f(X n A)]
and  E[fu(X 0 A)g(N(B1),- ,N(By))] = E[f(X n A)g(N(B1), - ,N(By))]l,  (A.2)

which proves that fe S
e Stability of S by uniform convergence: Let f, be a sequence over S converging uniformly to a function

f then, by Lemma B.1, f,, also converges uniformly (and therefore in L') to f. As a consequence, (A.2)
is also satisfied in this case so f € S.

e C is an algebra: It is easily shown that C is a linear space containing 1 so we only need to prove that C
is stable by multiplication. Let A;,---, A, and A} --- , A’ be two sequences of pairwise distinct Borel
subsets of A. Let f = f(N(A1),---,N(A,)) € Cand h = h(N(A4}), -+ ,N(A])) € C. We can write

so f-h can be expressed as a function of the number of points in the subsets A;\ u; A}, AN\Uj A and
A;n A;- that are all pairwise distinct Borel subsets of A, proving that C is stable by multiplication.

This concludes the proof that S contains all bounded functions supported over 4. By doing the same
exact reasoning on the set of bounded functions g which satisfy E[f(X n A)g(X nB)] < E[f(X nA)]E[g(X n
B)] for a fixed f we obtain the same result which concludes the proof.

Appendix B: Auxiliary results
Lemma B.1. Let F be a set and f,g: E — R be two functions, then

sup f(z) —supg(y)| < [f — gl
zeE yelE
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Proof. The proposition becomes trivial once we write

fl@)<g(@) +f —glw < sugg(y) +[f = gl
yE

Taking the supremum yields the first inequality. Moreover, by symmetry of f and g the second one follows
similarly. O

Lemma B.2. Leti,je Z% such that |i—j| := Zle liy—ji| = r. Let s, R > 0 and C;, C; be the d-dimensional
cubes with side length s and respective centre x; = R-i and x; = R - j. Then,

dist(Cy, C;) > %(TR — sd).

Moreover, each cube intersects at most (2sd/R)¢ other cubes.

Proof. Since each point of a d-dimensional square with side length s is at distance at most 5\/8/ 2 from it’s
centre, we get dist(C;,C;) = \/(Ri1 — Rj1)2 + -+ + (Rig — Rjq)? — sv/d which takes it’s minimum when
lit — 51| = r/d for all 1 <1 < d hence dist(C;,C;) = rR/v/d — sv/d.

In particular, if |i — j| > sd/R then C; n C; = &, hence for all i € Z¢

2sd\ ¢
Uezhcﬂmg¢@J¢jnsuy0<u—ﬂ<szH<(;;)

O

Lemma B.3. Let M and N be two n x n semi-positive definite matrices such that 0 < M < N~! where <

denotes the Loewner order. Then,
det(Id — MN) =>1— Tr(MN)

Proof. First, let’s consider the case where N = Id. If Tr(M) > 1 then det(Ild — M) > 0 > 1 — Tr(M).
Otherwise, we denote by Sp(M) the spectrum of M and since all eigenvalues are in [0,1], we can write

H exp(In(1 — \))

AeSP(M)

_ r[em<—§}f>

AeSpP(M)

o ( Tr(M™)

)
ox (_ i Tr(ff)”)

= exp(log(1 — Tr(M)))
=1 - Te(M). (B.1)

det(Id — M)

Vv

Getting back to the general case, we can write N as ST.S and by Sylvester’s determinant identity we get
that det(Id — MN) = det(Id — SMST). Since we assumed that 0 < M < N~! then 0 < SM ST < Id and
by applying (B.1) this concludes the proof:

det(Id — MN) = det(Id — SMST) > 1 — Tr(SMST) =1 — Tr(MN)

16



Proposition B.4. Let M be a n x n semi-definite positive matriz of the form M = (]]\\{% ﬁ) where
2

M is a k x k semi-definite positive matriz, My is a (n — k) x (n — k) semi-definite positive matriz and N
is a k x (n — k) matriz. We define ||Al|c = sup|a; j|. Then,
0 < det(M;) det(My) — det(M) < k(n — k) Tr(NTN)||M||% 2.

Proof. First, we assume that M; and Ms are invertible. Using Schur’s complement, we can write

det(M) = det(M;) det(Ms) det(Id — M; ' NT M, N)
where 0 < NTMQIN < M; with < being the Loewner order. NTMglN being semi-definite positive implies

det(M) < det(M7) det(Ma),

while the inequality NTM; ' N < M; gives us (see Lemma B.3)

det(M) = det(M;) det(Ms)(1 — Tr(M;*NT M, *N)).

Therefore,

0 < det(My) det(My) — det(M) < Tr(adj(M;)NTadj(M2)N)

k
< Tr(adj(M;))Tr(adj(My))Tr(NTN) = Z Z (M2)Tr(NTN),

where A;(M7) means the (¢,7) minor of the matrix M; and adj(M;) is the transpose of the matrix of cofactor
of M. But, since all principal sub-matrices of M7 and Ms are positive definite matrices then their determinant
is lower than the product of their diagonal entries, meaning that A;(M1) < [[;; M1(4,j) < [[M| k=1, Doing
the same thing for the terms A;(Ms) gives us the desired result.

If My or M, is not invertible, a limit argument using the continuity of the determinant leads to the same

conclusion.
O

Lemma B.5. Let X be a DPP with bounded kernel K satisfying H, s > 0 and n > 0, then

sup  E[2"VA] < 0
AcR?,|Al=s

Proof. Let n e N and A c R? such that |A| = s. Since the determinant of a positive semi-definite matrix is
always smaller than the product of its diagonal coefficients we get

E[2"N ()] — li (N;{A)) (2" — 1)k1

k=0
0

?rM

2” — 1
f det(K[z])dz
Ak
< . SR o
O

Lemma B.6. Let X be a DPP on R? with bounded kernel K satisfying H such that w(r) = O(r‘¥) for
a certain € > 0. Then, for all bounded Borel sets W < R% and all bounded functions g - Up>O(Rd)p —- R
such that g(S) vanishes when diam(S) > T for a given constant T > 0,

Var( > g(S)>=0(|W|). (B.2)

ScXnw
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Proof. Since W is bounded then N (W) is almost surely finite and we can write

DoaS) = > 9.

ScXnW p=0ScXnW
|S|=p

2
Looking at the variance of each term individually, we start by developing E ( Z g(9)1, S=p> as
ScXnW

D=
&=

> 9(8)g(T) (B3)

S, TcX AW
LIS|=IT|=p,|S~T|=k

B
Il
=}

I
=
&=

> Y 9(8)e(s v (U\S))

k=0 UcXnW S'cScU
| 1U1=2p—F |5’ |=k,|S|=p

P 1
-2 m[ - > 9(8)g(S" v (U\S)pap—k (w1, -+ wop—p)dwy - dwgp

k=0 \“P FIWERTE g S an, o wap_i)}

|S"|=k,|S|=p
P
Einie]|

= T v g(I1,~~,I )g(I1,~~~ y Ly Tp41y " 5, X2 —k)pQ _k(l’)dl'. (B4)

,;0 (2p — k)! (k P ) Jwerr ? p+ e

Since the determinant of a positive semi-definite matrix is smaller than the product of its diagonal terms,
we have |pop—i(z)] < |K |I27% . Moreover, as a consequence of our assumptions on g, each term for k > 1
in (B.4) is bounded by

1 p 2 2p—k Wl (p 2 2p—k 2p—k—1
_ K|?P~"*1 _ adr < —— K|22=%|B(0, p
p!(p — k)' (k}) 2f k HgHoo” Hoo {0<|z;—axq | <7, Vi} AT o \k HgHooH Hoo | ( T)|

W2p—k

Wi(p
< D)ol 112+ 180,71
Hence,
. , O
ME| Y e | <wilel S (B:5)
k=1 S, TCX AW :

|S|=IT|=p,|SAT|=k

where C7 = 2(1+ | K| »)?(1 + B(0,7))? is a constant independent from p and W. However, even if all terms
for k > 1 in (B.4) are a O(|]W|), this is not the case of the term for k = 0 which is a O(|W|?). Instead of
controlling this term alone, we consider its difference with the remaining term in the variance we are looking
at, that is

(p!)? J;/Vzp 9(2)9(y)p2p (@, y)drdy —E [ (SC;WQ(S)Ms—p) 1
1

= i | 9@ i) — )yl s

Using Proposition B.4, we get

|p2p(2,9) — pp(@)pp(W)| < PPIKIE2 D) K(ai, ;)™

1<i,j<p

18



Now, notice that for all y e R? and 1 <i < p,
| tomtan st vas K )P < (B0 [ | (e ) Pdas < 1BO)P s [ rt s
we w R4
which is finite because of our assumption on w(r). Thus, we obtain the inequality

f g(x)g(y)lK(xi,yj)lzdxdyéHgHooIB(O,T)Ip’IJ 9(@)| K (23, y1)|*dady,
w2p

Wp+1

< IW\HgHioIB(O,T)Izp’QSdJ rtw(r) dr, (B.6)

Rd

By combining (B.5) and (B.6), we get the bound

Cp C

var| 3 as)| < wiialz (SE+ )
ScXnnW p p:
[S|=p

where

4 K 2p—2 2p—2
C, <supp” UGS f 1yl
Rd

p=0 !

is a constant independent from p and W. Finally,

Svar| Y g9) | = oqw))

p=0 ScXnW
[S|=p
and
c? 02 C Cs
N oo ¥ oas. ¥ oae|<wilsl X /(5 %) (S S - oy
p>q=0 ScXAW ScXAwW p.q>0 ¢ q
|S|=p [S|=q
concluding the proof. O

Proposition B.7. LetpeN, f:RP - R, be a symmetrical measurable function and define
= > 1)
|S|=p

Let X be a DPP with kernel K satisfying Condition H such that ||IC| < 1 where | K| is the operator norm of
the integral operator associated with K. If, for a given increasing sequence of compact sets W, < R%,

hmmf |W [ o f(z)det(K[x])dz > 0, (B.7)

then
hm inf

|W | Var(F(X nW,)) >0

Proof. Let W be a compact subset of R%. The Cauchy-Schwartz inequality gives us

Cov(F(X n W), N(W))? < Var(F(X n W))Var(N(W)).
19



We showed in Lemma B.6 that |W|~!Var(N(W)) is bounded by a constant C' > 0 so we are only interested
in the behaviour of Cov(F(X n W), N(W)). We start by developing E[F(X n W)N(W)]:

E[F(X nW)NW)=E| > (5 > 1

ScXnW zeX "W
- [S|=p
—El Y YA\ +p Y £9)
ScXnW zeS ScXnW
L |S|=p+1 |S|=p
p+1 1
p+1ﬁwﬂ;fA@ @ﬂ[D®+7JPMuNMKMMx
= % ( . f(x) <pdet( j det(K|[z, a])da> dx)
We also have )
BLF(X 0 WIEINOV)] = [ fa)det(Klads | K(a,a)da
b: w
hence
Cov(F(X nW),N(W)) = ]% f(z) det(K[x] (p - J K(a,a) — det(K[:v,a])det(K[x])lda> dz.
' v (B.8)
Using Schur’s complement, we get
K(a,a) — det(K[z,a]) det(K[z]) ™" = K, K[z] 'K, (B.9)
where we define K, as the vector (K(a, 1), ,K(a,z,)). Moreover, since we look at our point process in

a compact window W, a well-known property of DPPs (see [20]) is that there exists a sequence of eigenvalues
A; in [0,]|K|]] and an orthonormal basis of L?(W) of eigenfunctions ¢; such that

y) = Z)‘ifbi(x)ﬁgi(y) Va,ye W.

As a consequence, Vx,y € W,

| K@ oK@ = Y3 e@w)

w i

which we define as L(z,y). Therefore, for all x € WP, L{x] < |K|K[x] where < is the Loewner order for
positive definite symmetric matrices and we get

f K. K[z]'KL da=Tr (K[x]_lf Kngwda) = Tr(K[z] 'L[z]) < p|K|. (B.10)
w w

Finally, since f is non negative, by combining (B.8), (B.9) and (B.10) we get the lower bound

Cov(F(X n W), N(W))? (1—|K|)? 2
Var(N(W)) > Clp—1)2|W| < W f(z) det(K[x])dx)

which proves the proposition. O

Var(F(X A W)) >

20
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