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Abstract

This article focused on shape optimization of static perfect plasticity problems in the framework

of the Von Mises criterion, thanks to the level set method. We circumvent the ill-posedness of the

model, by using two regularized versions of the mechanical problem. The �rst one is the classical

Perzyna formulation which we regularize, the second one is a new regularized formulation derived for

the Von Mises criterion. Shape gradients are calculated thanks to the adjoint method. To illustrate

the validity of the method, 2D examples are performed.

1 Introduction

When the behaviour of a material is to be studied, the linearized elasticity approximation can be done
when considering small strain, displacement and stress as well as a slow loading speed or a small loading
time. However, if we are not in these particular cases, the material does not behave linearly anymore and
the nonlinearities cannot be ignored. A more realistic assumption is to consider plasticity models which
model microscopic mechanical defects. Taking plasticity into account is then of great importance in the
study of structures. Indeed plastic areas tend to irreversibly deform more than elastic ones. This could
lead to structural integrity dangers and sometimes to breaking. In this case, the designer often tries to
avoid the creation of plastic regions by controlling the internal constraints. But plasticity could also be
useful when, for instance, the breaking of a piece is meant to protect other parts which are di�cult to
repair or which should absolutely not collapse (like the use of a circuit breaker in electricity). Eventually
there are materials, called ductile, which can su�er big deformations after the elastic phase (without
collapsing) and the designer can take advantage of this property by allowing plastic areas and trying to
distribute the constraint in the structure the most uniformly as possible.

From a mechanical point of view, plasticity was �rst studied by Tresca, Saint Venant, Lévy and
Bauschinger in the nineteenth century and in the next century by Prandtl, Von Mises and Reuss. From
a mathematical point of view the study was started by Prager, Drucker and Hill and thanks to the theory
of variational inequalities and convex analysis by Moreau [43], Duvaut and J.-L. Lions [13]. Since then,
a lot of articles were published on the subject investigating the well posedness of these problems. We
particularly mention Suquet [60], Temam [62] and more recently Dal Maso [7], [8].

This article focuses on shape optimization with the level set method for static perfect plasticity, also
called the Hencky model, for the Von Mises criterion. As pointed in [60], the Hencky plasticity is not
mechanically relevant but for some very speci�c cases. It does not account for the path dependency
shown by the experiments and thus is rather a non quadratic law. However it raises a great amount
of the mathematical di�culties of the quasi-static case. Moreover, when the numerical solution of the
quasi-static evolution comes into question, a time discretization leads to a sequence of Hencky model
to be solved. Finally for the shape optimization it will be easier to �rst study this steady problem as
time-dependent problems lead to backward adjoint problems.

The problem can be put under a mixed form including a variational inequation and a variational
equation. Due to the appearing of a variational inequation there is no chance for this problem to
be Fréchet or Gateaux di�erentiable. The solution we choose, which was largely investigated in the
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framework of control theory for problems with hardening but not in the framework of shape optimization,
is the use of a regularized penalized problem to get rid of the variational inequality. On this issue we
mention, for the static case, [22], [24], [25], [10] (using a primal formulation), [26], [4] (for a second order
optimality condition), for the quasi-static case [64] and for other plastic models [9] and [34].

In shape optimization, the �rst case which was considered was the one of beam structure and frame
optimization, which is addressed for instance in [31], [15], [61], [30], [1], [48], [33]. We point out the
particular case of [68], where periodical microstructures are used. From a theoretical point of view, in
[58], chapter 4.8, the shape derivative of an elasto-plastic torsion problem is computed and, in chapter
4.9, the shape derivative of the stress tensor is calculated in the case of the visco-plastic model of Perzyna
(see section 3). There also exist numerous articles in which, for a particular optimization problem, the
existence of a solution is proved for the continuous and discrete case, assuming a uniform Lipschitz
boundary. The discrete solution is then proved to converge to the continuous one. In [27] or in [19]
and [20], the analysis is done in the framework of the Hencky model for a criterion depending only on
σ. In [29], the analysis is done for axisymmetric bodies. In [28], the same analysis is done in the case
of the Prandtl-Reuss model of elasto-plasticity (dynamic plasticity). In [50] strain-hardening is added.
Finally [12] and [18] (for numerical results) deal with a particular elasto-plasticity model (introduced by
Washizu in [66]).

From a numerical point of view some authors use conical derivatives inside a bundle algorithm to
optimize the shape, see [51] and [37]. Another way to proceed is to di�erentiate the radial return
algorithm (the generalized Newton method, see [53] chapter 8). The di�erentiation is analyzed in [63],
[38] and [42]. This procedure was applied in various articles, using the Von Mises criterion. In [41] and
[54], the authors consider linear isotropic hardening/softening. They use, �rst, the SIMP method and
�nish the shape optimization using splines to parameterize the boundary and recover smooth shapes.
In [35], rate-independent elasto-plasticity and contact friction are taken into account. For the shape
optimization, splines are used. In [36], the same is done but for �nite deformation elasto-plasticity. In
[32], the elato-plastic model is the same but the derivative is computed di�erently. It also performs
two-phase optimization, thanks to the SIMP method. For perfect plasticity we mention [14], using the
boundary perturbation method. Note that, based on the two regularised plasticity models presented
here, we are able to extend our approach to quasi-static perfectly plastic problems (this will appear
elsewhere).

Section 2 describes perfect plasticity from both a mechanical and a mathematical point of view,
introducing the formulations and spaces classically used to study this particular behaviour. Section 3
focuses on two ways to regularize the Hencky model. The �rst one is the well-known Perzyna formulation
and the second one is a new derived regularization adapted to the Von Mises criterion. For each of
them we give theorems proving existence and uniqueness of solutions as well as the convergence of the
regularized solutions to the solution of static perfect plasticity. In section 4, a general shape optimization
is introduced and shape gradients are computed thanks to the adjoint method. Section 5 recalls the basis
of the level set method and brie�y describes how the plasticity problems are numerically solved. Finally
our numerical results performed with the Scilab free software [55] are gathered in section 6.

2 Elasticity and perfect plasticity

2.1 Mechanical model

In this paper Ω denotes an open bounded subset of Rd where d = 2 or 3 and represents the shape of the
structure we want to optimize. Its boundary is divided into three disjoint parts meaning that:

∂Ω = Γ0 ∪ ΓN ∪ Γ.

On Γ0, the structure is clamped and on ΓN a force is applied. The free part of the boundary is Γ.
The structure Ω is �lled with a linear isotropic perfect plastic material with Hooke's law de�ned by a
fourth-order tensor A such that, for any symmetric matrix τ :

Aτ = 2µτ + λTr(τ)Id (1)

where µ and λ are the Lamé moduli.
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Figure 1: The open set Ω.

We consider that the material follows the Hencky law [13] of plasticity which is a �ner description of
the material behaviour than linearized elasticity from which it is derived. We recall that in linearized

elasticity the stress tensor σ is linearly related to the strain e(u) =
1

2

(
∇u+t ∇u

)
by σ = Ae(u).

Plasticity is based on a decomposition of the strain tensor into two parts ([17], chapter 3). The �rst one
is the elastic strain, denoted by ee, and the second one is the plastic strain, ep. Then we have:

e(u) = ee + ep. (2)

It has to be mentioned that if e(u) is the symmetric part of the gradient of the displacement u, it is not
the case for ee and ep which are however symmetric. The stress tensor σ is only related to the elastic
part:

σ = Aee, (3)

and replacing it in (2) yields:
e(u) = A−1σ + ep. (4)

The other fundamental ingredient is the elastic region and the yield surface. When σ is in a certain
set called the elastic region, the plastic strain is equal to zero: ep = 0. When σ is on the yield surface
which is the boundary of the elastic region, the plastic strain can vary. In this article these regions are
de�ned by a continuous function F , called the yield function. Thus we call K the subset of symmetric
order two tensors:

K =
{
τ ∈Md

s |F(τ) ≤ 0
}
. (5)

with Md
s the space of symmetric second-order tensors in dimension d. The elastic region corresponds to

F(τ) < 0 and the yield surface is de�ned by F(τ) = 0. When the system is on the yield surface, we
de�ne the plastic strain ep by assuming the maximal plastic work (or Hill) principle:

σ : ep ≥ τ : ep ∀τ ∈ K,

which implies that ep belongs to the normal cone of K. We can sum up the di�erent equations which
characterize the evolution of the perfect elastoplastic material, supposing the Hill principle satis�ed:

e(u) = ep +A−1σ in Ω

ep : (τ − σ) ≤ 0 ∀τ ∈ K
σ ∈ K
− div(σ) = f in Ω

u = 0 on Γ0

σn = g on ΓN

σn = 0 on Γ.

(6)

On Figure 2(a), we plot, for a 1D case, the Hencky law and, on Figure 2(b), the corresponding quasi-
static law which can be retrieved in the same way than for the static case. On a 1D example, the elastic
region is an interval [−σc, σc]. When the stress σ reaches the threshold value σc, the plastic strain, and
consequently the whole strain, can increase without any growth of the stress.
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(a) Hencky's law
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(b) Quasi-static law

2.2 Mathematical model

We �rst need to introduce some functional spaces:

Hs(div,Ω) =
{
τ ∈ L2(Ω;Md

s) |divτ ∈ Ld(Ω)d
}

where Md
s is the space of symmetric second-order tensors in dimension d. This space is studied in [16]

or [5]. It is a Hilbert space with the following scalar product:

(σ, τ)Hdiv
= (σ, τ)L2 + (divτ,divτ)L2 .

The trace operator is not de�ned but a normal trace operator γN can be de�ned as follows: to each
τ ∈ Hs(div,Ω) it associates its normal trace τn ∈ H− 1

2 (∂Ω;Rd). Then, for a given g ∈ H− 1
2 (∂Ω;Rd), let

Σdiv(g) = {τ ∈ Hs(div,Ω) | γN (τ) = g} .

The space of statically admissible stresses is de�ned by

S(f, g) = {τ ∈ Σdiv(g) | − divτ = f in Ω} .

Finally, introduce the space of displacements

H1
Γ0

(Ω)d =
{
u ∈ H1(Ω)d such that u = 0 on Γ0

}
.

Assume σ ∈ S(f, g) and, at �rst, u ∈ H1
Γ0

(Ω)d. In the sequel we give two di�erent formulations of
problem (6).

2.2.1 The dual problem

The �rst formulation is independent of u. It was established in [62] and produces a maximization problem
solved by σ:

σ = argminτ∈S(f,g)ψ
∗(τ) (7)

with ψ∗(σ) =
1

2
A−1σ : σ + 1K(σ) and 1K the indicator function of K. The dual problem can also be

written under the form:
max
σ∈K
−1

2

∫
Ω

A−1σ : σ dx

under the constraint∫
Ω

σ : ε(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds, ∀v ∈ H1
Γ0

(Ω)d

(8)

4



which admits a variational inequality formulation: for every τ ∈ S(f, g) ∩K �nd σ ∈ S(f, g) ∩K such
that ∫

Ω

A−1σ : (τ − σ) dx ≥ 0. (9)

Theorem 4.1 in [62] or theorem 6.1 in [13] give the existence and uniqueness of a solution.

Theorem 2.2.1. If S(f, g) ∩K 6= ∅, problem (8) has a unique solution

2.2.2 The displacement problem

At �rst glance, problem (6) can also be written under the following variational formulation coupling a
variational inequality with a variational equation:

∫
Ω

σ : e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds, ∀v ∈ H1
Γ0

(Ω)d∫
Ω

A−1σ : (τ − σ) dx ≥
∫

Ω

e(u) : (τ − σ) dx, ∀τ ∈ K.
(10)

Since the variational inequality in (10) is the characterization of the projection on K with the norm
associated with the scalar product of A−1, denoting by PA

−1

K this projection, it implies that

σ = PA
−1

K (Ae(u)) (11)

and (10) is equivalent to∫
Ω

PA
−1

K (Ae(u)) : e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds, ∀v ∈ H1
Γ0

(Ω)d. (12)

Unfortunately, it is not possible to prove the existence of a solution to (12) in the space H1
Γ0

(Ω)d. On this
subject, we refer to [53] chapter 2 3.6 or [67] for a mathematical explanation. Another way to understand
this issue is to come back to the mechanical meaning of plasticity and the fact that it models dislocations
in the material which can produce displacement discontinuities through (d−1)-dimensional surfaces (see
[60], chapter 6 in [62], chapter V section 3.4 in [44]). To circumvent this di�culty a space of possibly
discontinuous displacements was introduced in [59] and [62]: it is the space of bounded deformation
BD(Ω), which is similar to the space of bounded variation BV (Ω), and is de�ned by

BD(Ω) =
{
u ∈ L1(Ω)d | e(u) ∈M1(Ω;Md

s)
}

with M1(Ω;Md
s) being the space of bounded measures on Ω, with values in the space of d× d symmetric

tensors. The correct formulation is then: �nd (σ, u) ∈ K ×BD(Ω) such that:
∫

Ω

σ : e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds, ∀v ∈ H1
Γ0

(Ω)d∫
Ω

A−1σ : (τ − σ) dx ≥ −
L

d
d−1
〈u,div(τ − σ)〉Ld , ∀τ ∈ K ∩ Σdiv(g).

(13)

We refer to [60] and [39] for a study of this formulation, especially [60] for the de�nition of an external
trace and the meaning of Dirichlet boundary conditions. We only give the following existence theorem.

Theorem 2.2.2. Let Ω be a smooth domain of class C2, f ∈ L∞(Ω)d, g ∈ L∞(ΓN )d. If Γ0 is not empty
and the following safe-load condition is ful�lled:

∃σ̄ ∈ S(f, g), ε > 0 such that ∀ξ ∈Md
s with |ξ| ≤ ε, σ̄(x) + ξ ∈ K a.e. in Ω (14)

then the displacement problem (13) has a solution in u ∈ BD(Ω).

Remark 2.2.1. Note that there is no uniqueness of the displacement and that a counter-example can be
found in [60].
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3 Regularizations

As far as shape optimization is concerned, it is crucial to work on well-posed problems, which is not the
case in perfect plasticity for the displacement u. This is the reason why a large part of the literature on
shape optimization focuses on the formulation (8). Moreover, if we want to use gradient type algorithm,
the solutions need to be di�erentiable with respect to the shape. This is clearly not the case in our
problem, at least because of the projection formulation. So we have to cope with two di�erent problems:
the �rst one is the fact that the problem does not have a unique solution, the second one comes from
the fact that the problem is not di�erentiable with respect to the shape.

We propose two ways to address these two di�culties. These two ways involve the projection PA
−1

K

which has to be regularized. As an analytic expression is known for the particular case of the Von Mises
criterion, we restrain ourselves to this criterion. From now on the function F is:

F(σ) =
√
σD : σD − σc = |σ|D − σc (15)

where, for a symmetric tensor σ, its deviatoric part σD and hydrostatic part σH are de�ned by

σD = σ − Tr(σ)

d
I , σH =

Tr(σ)

d
I .

Then the projection is:

PA
−1

K (τ) = τ −max

(
0, 1− σc

|τ |D

)
τD. (16)

It is now easy to regularize this projection by introducing a regularization of the function x→ max(0, x)
which we note fγ , γ > 0 being a regularization parameter. Here, we choose:

fγ (x) =


1

4γ
x2 +

1

2
x+

γ

4
x ∈ [−γ, γ]

max (x, 0) otherwise
(17)

and the regularized projection is:

P γK (τ) = τ − fγ
(

1− σc
|τD|

)
τD. (18)

3.1 Perzyna penalization

3.1.1 Formulation of the problem

There are several ways to introduce the Perzyna penalization. From the point of view of optimization it
consists in taking the problem (8) and replacing the constraint that σ ∈ K by an external penalization.
The chosen penalization involves the projection PA

−1

K and we add in the optimization problem, for a
small η > 0:

1

2η

∫
Ω

A−1
(
σ − PA

−1

K (σ)
)

:
(
σ − PA

−1

K (σ)
)
dx.

This leads to the following system of variational equations:
∫

Ω

ση : e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds, ∀v ∈ H1
Γ0

(Ω)d∫
Ω

A−1ση : τ dx+
1

η

∫
Ω

A−1
(
ση − PA

−1

K (ση)
)

: τ dx =

∫
Ω

e(uη) : τ dx, ∀τ ∈ L2(Ω;Md
s).

(19)

Another way to get this formulation [53] is to apply the Moreau-Yosida approximation of the indicator
function of K. Denoting by 1ηK the Moreau-Yosida approximation, it is:

1
η
K(σ) =

1

2η

∫
Ω

A−1
(
σ − PA

−1

K (σ)
)

:
(
σ − PA

−1

K (σ)
)
dx =

1

2η

∥∥∥σ − PA−1

K (σ)
∥∥∥2

A−1
. (20)
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From (20) we can deduce an approximation for the condition ep ∈ ∂1K(σ). As σ → 1
η
K(σ) is Fréchet

di�erentiable (theorem 4.1 in [69]), its subdi�erential reduces to its gradient and we can write the
following pointwise formula for the approximation eηp:

eηp =
1

η
A−1

(
σ − PA

−1

K (σ)
)
. (21)

This directly leads to (19) by integration of the plasticity equations (6), replacing the condition on ep
by (21). This point of view also gives rise to further simpli�cation of the problem (19) which is a mixed
variational problem. Indeed, as we shall now show, the variable σ can be eliminated.

From (21) we can deduce the expression of ση:

ση = Ae(uη)− 1

η

(
ση − PA

−1

K (ση)
)
.

This expression says that Ae(uη) is on the ray de�ned by ση and its projection. So it implies that
(chapter 3 lemma 3.2 [53]):

PA
−1

K (ση) = PA
−1

K (Ae(uη)). (22)

This enables to write ση with respect to only uη and transform the implicit de�nition into an explicit
one:

ση =
η

1 + η
Ae(uη) +

1

1 + η
PA

−1

K (Ae(uη)). (23)

We can write the new nonlinear variational equation of the Perzyna visco elastoplasticity:∫
Ω

(
η

1 + η
Ae(uη) +

1

1 + η
PA

−1

K (Ae(uη))

)
: e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds ∀v ∈ H1
Γ0

(Ω)d. (24)

It remains to regularize the projection PA
−1

K , replacing it by P γK de�ned by (18): �nd uγη ∈ H1
Γ0

(Ω)d

such that,∫
Ω

(
η

1 + η
Ae(uγη) +

1

1 + η
P γK(Ae(uγη))

)
: e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds ∀v ∈ H1
Γ0

(Ω)d. (25)

or in a mixed form: �nd σηγ ∈ L2
s(Ω)d×d and uηγ ∈ H1

Γ0
(Ω)d such that:

∫
Ω

σηγ : e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds, ∀v ∈ H1
Γ0

(Ω)d∫
Ω

A−1σηγ : τ dx+
1

1 + η

∫
Ω

A−1fγ

(
1− σc
|σηγ |D

)
(σηγ)D : τ dx =

∫
Ω

e(uηγ) : τ dx, ∀τ ∈ L2(Ω;Md
s).

(26)

3.1.2 Mathematical analysis

We give two theorems stating that the solution of (25) exists, is unique and converges to a solution of
the Hencky model. For the existence and uniqueness, the proof is the same as the one for proposition
2.8 in [24] with hardening.

Theorem 3.1.1. Under the safe-load condition (14) and f ∈ L2(Ω)d and g ∈ L2(ΓN )d, there exists a
unique solution (σγη , u

γ
η) ∈ L2(Ω;Md

s)×H1
Γ0

(Ω)d to the problem (25).

Theorem 3.1.2. Under the safe-load condition (14) and with f ∈ Ld(Ω)d and g ∈ C0(ΓN )d, when
η → 0 and γ → 0,

• σηγ converges strongly in L2(Ω;Md
s) to σ, the stress tensor solution of the Hencky model (13).

• Up to a subsequence, uηγ converges weakly in L
d

d−1 (Ω;Rd) and weakly in BD(Ω) to u the displace-
ment solution of the Hencky model (13).

Proof. The proof is a variation of the one done in [39] chapter 2 and can be found in [40]
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3.2 A second regularization for the Von Mises criterion

3.2.1 Mathematical analysis

Another idea to get a compatible model with shape optimization is to focus on the formulation (12),
used in numerical applications, and address its non smoothness and ill-posedness.

De�nition 3.1. Let T be the operator de�ned by

T : u ∈ H1
Γ0

(Ω)d → T (u) ∈
(
H1

Γ0
(Ω)d

)∗
where T (u) is de�ned for every v ∈ H1

Γ0
(Ω)d as:

〈T (u), v〉 =

∫
Ω

PA
−1

K (Ae(u)) : e(v) dx.

Clearly T is monotone but is not coercive. To gain these two properties and the smoothness, we
de�ne the following regularized projection:

Pγ(τ) = (1 + γ) τ − fγ
(

1− σc
|τD|

)
τD. (27)

De�nition 3.2. Let Tγ be the operator de�ned by

Tγ : u ∈ H1
Γ0

(Ω)d → Tγ(u) ∈
(
H1

Γ0
(Ω)d

)∗
where Tγ(u) is de�ned for every v ∈ H1

Γ0
(Ω)d as:

〈Tγ(u), v〉 =

∫
Ω

Pγ(Ae(u)) : e(v) dx.

The function fγ in (27) is de�ned by (17). Then a regularization of (11) is simply

σ = Pγ (Ae (u)) .

3.2.2 Mathematical analysis

The study of the operator Tγ is done in [40], theorems 6.2.9 (strict monotonicity) and 6.2.10 (coercivity),
lemmas 6.2.11 (hemicontinuity) and 6.2.12 (boundedness). A simple application of theorem 2.14 in [52]
gives:

Theorem 3.2.1. The regularized problem: �nd uγ ∈ H1
Γ0

(Ω)d such that,∫
Ω

Pγ (Ae (uγ)) : ε(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds ∀v ∈ H1
Γ0

(Ω)d, (28)

admits a unique solution. The associated regularized stress tensor is de�ned as:

σγ = Pγ (Ae (uγ)) .

Then it is proved in [40], theorems 6.2.15 and 6.2.16, that the solution of the regularized problem
(28) converges to the solution of the Hencky problem, as the regularization parameter goes to zero.

Theorem 3.2.2. Under the safe-load condition (14) and with f ∈ Ld(Ω)d and g ∈ C0(ΓN )d,

• the solution σγ converges, as γ goes to 0, strongly in L2(Ω;Md
s) to σ, the stress tensor solution of

the Hencky model.

• the solution uγ converges weakly, up to a subsequence, in L
d

d−1 (Ω;Rd) and weakly in BD(Ω) to a
displacement u solution to the Hencky model.
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3.3 Conclusion on the two proposed regularizations

For the Von Mises criterion, the two formulations introduced in this section are quite similar. They are
tantamount to rede�ne σ by one of these formulae:

1. for the Perzyna penalization

σ = Ae(u)− 1

1 + η
fγ

(
1− σc
|Ae(u)|D

)
(Ae(u))D

2. for the second regularization

σ = (1 + γ)Ae(u)− fγ
(

1− σc
|Ae(u)|D

)
(Ae(u))D .

In each case, the problem reduces to a non-linear variational equation: �nd u ∈ H1
Γ0

(Ω)d such that∫
Ω

σ : e(v) dx =

∫
Ω

f · v dx+

∫
ΓN

g · v ds ∀v ∈ H1
Γ0

(Ω)d. (29)

4 Derivation and optimization

Our goal is to minimize an objective function J(Ω) depending on u, the displacement which solves one
of the formulations given in Section 3 under constraints also depending on u noted C(Ω):

min J(Ω)

Ω ∈ Uad
u solution of (29)

C(Ω) ≤ 0

(30)

where Uad is the set of admissible shapes. These shapes should be included into a �xed domain D,
Ω ⊂ D, and the Dirichlet boundary Γ0 ⊂ ∂D is not allowed to change:

Uad = {Ω ⊂ D bounded and open such that Γ0 ⊂ ∂D is �xed}

In the following we denote Γm the part of the boundary of Ω which is allowed to change.

4.1 Shape derivative

To minimize (30) we apply a gradient method, which relies on the notion of Hadamard shape derivative
for functionals depending on the domain Ω, see for instance [21], [45], [49], [57] or [58]. Starting from a
smooth domain Ω0, the variation of the domain takes the form:

Ωθ = (Id+ θ)(Ω0)

with θ ∈W 1,∞(Rd,Rd) and Id the identity map. When θ is su�ciently small, Id+θ is a di�eomorphism
in Rd, see [2]. Once the variation of the shape is de�ned, it is possible to de�ne the notion of Gâteaux
derivative for a function J depending on the shape.

De�nition 4.1. The shape derivative J ′(Ω)(θ) of J(Ω) at Ω in the direction θ is de�ned as the derivative
at 0 of the application t→ J((Id+ tθ)(Ω)) which means:

J((Id+ tθ)(Ω)) = J(Ω) + tJ ′(Ω)(θ) + o(t)

where J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).

We recall the following classical theorem [2] which will be used in the next section.
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Theorem 4.1.1. Let Ω be a smooth open set, φ a smooth function de�ned in Rd,

Jv(Ω) =

∫
Ω

φ(x) dx and Js(Ω) =

∫
∂Ω

φ(x) ds.

These two functions are shape di�erentiable at Ω in the direction θ ∈W 1,∞(Rd,Rd) and

J ′v(Ω)(θ) =

∫
∂Ω

θ · nφds and J ′s(Ω)(θ) =

∫
∂Ω

θ · n
(
∂φ

∂n
+Hφ

)
ds

where H = div(n) is the mean curvature of ∂Ω.

4.2 Di�erentiability of the regularized formulation

As far as optimization is concerned, we need to investigate the di�erentiability of the operator τ →

fγ

(
1− σc
|τ |D

)
. As fγ is a smooth Lipschitz function from R to R, it is Gateaux di�erentiable pointwise.

It has no chance to be Fréchet di�erentiable from L2(Ω) to L2(Ω).

Lemma 4.2.1. There exists δ > 0 such that the solution u of the problem (29) belongs to W 1,p(Ω)d with

p ∈ [2, p] and p = 2 + δ > 2. Moreover τ → fγ

(
1− σc
|τ |D

)
is Fréchet di�erentiable from L2+δ(Ω) to

L2(Ω).

Proof. The regularity of u is given by theorem 1.1 of [23]. The Fréchet di�erentiability of fγ is done in
[24].

This lemma implies that both regularizations are Fréchet di�erentiable with respect to u from
W 1,p(Ω)d to H1(Ω)d.

4.3 Computation of the gradients

We proceed now to the computation of the gradient of a general criterion:

J(Ω) =

∫
Ω

m(u) dx+

∫
∂Ω

l(u) ds (31)

where u is solution of (29), Γm is the part of ∂Ω which is allowed to move during the optimization
process, m and l are smooth functions from Rd to R, satisfying the following growth conditions:

|m(u)| ≤ C
(

1 + |u|2
)
, |m′(u) · h| ≤ C |u| |h|

and
|l(u)| ≤ C

(
1 + |u|2

)
, |l′(u) · h| ≤ C |u| |h|

for every h ∈ L2(Ω)d and u ∈ L2(Ω)d.

Theorem 4.3.1. Assume that Γm ∩ Γ0 = ∅, that f ∈ H1(Rd)d and g ∈ H2(Rd)d and that u is solution
of (29). The function J(Ω), de�ned by (31), is shape di�erentiable and its shape derivative is given by

J ′(Ω)(θ) =

∫
Γm

θ · n
(
m(u)− f · p

)
ds

+

∫
Γm

θ · n
(
Hl(u) + ∂nl(u)

)
−
∫

ΓN∩Γm

θ · n
(
Hp · g + ∂n(p · g)

)
ds

+

∫
Γm

θ · n
(
σ : e(p)

)
(32)
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where p ∈ H1
Γ0

(Ω)d is de�ned as the solution of the following adjoint problem:

α

∫
Ω

Ae(p) : e(ψ) dx− β
∫

Ω

fγ

(
1− σc
|Ae(u)|D

)
(Ae(p))D : e(ψ)D dx

− β
∫

Ω

f ′γ

(
1− σc
|Ae(u)|D

)
σc

|Ae(u)|3D
Ae(u)D : Ae(ψ)D Ae(u)D : e(p)D dx

= −
∫

Ω

m′(u) · ψ dx−
∫
∂Ω

l′(u) · ψ ds ∀ψ ∈ H1
Γ0

(Ω)d

(33)

with:

• α = 1 and β = 1/(1 + η) for the Perzyna regularization,

• α = 1 + η and β = 1 for the second regularization.

Remark 4.3.1. The adjoint problem (33) is well posed for both regularizations using the function (17).
This is ensured by the coercivity of the associated bilinear form. To prove it, it su�ces to analyze the three

possible cases which can occur: 1 − σc
|Ae(u)|D

∈ [−∞,−γ], 1 − σc
|Ae(u)|D

∈ [−γ, γ] and 1 − σc
|Ae(u)|D

∈

[γ,+∞[.

Proof. The proof is classical and relies on Céa's Lagrangian method [6] or [2]. To make it fully rigorous
would require �rst to prove that the solution u of (29) is Gâteaux di�erentiable with respect to the
shape. This is a well-known result and we simply recall brie�y the main arguments. First, the variational
formulation (29) is rewritten in the reference con�guration Ω0 thanks to a change of variables such that
Ω = (Id+tθ)(Ω0). This leads to a functional equation of the type, F (u, t) = 0, with F di�erentiable with
respect to t. Second, applying the implicit function theorem at t = 0 yields the desired result (see [21]
if necessary). Denoting by u′(θ) the shape derivative of u, we now prove the theorem by the Lagrangian
method. Let us introduce the Lagrangian L, de�ned for any v and q in H1

Γ0
(Rd)d (the space of functions

de�ned in Rd which vanishes on Γ0 ; recall that Γ0 is not allowed to move):

L(v, q,Ω) =

∫
Ω

m(v) dx+

∫
Γ

l(v) ds+ α

∫
Ω

Ae(v) : e(q) dx

−β
∫

Ω

fγ

(
1− σc
|Ae(v)|D

)
(Ae(v))D : e(q)D dx

−
∫

Ω

f · q dx−
∫

ΓN

g · q ds

(34)

with α and β depending on the model chosen as stated in Theorem 4.3.1. Since Γ0 is �xed, there is no
need of a Lagrangian multiplier for the Dirichlet condition in the Lagrangian: Γ0 ⊂ ∂Ω for every Ω ∈ Uad.
Moreover the functions q and v are in spaces independent of Ω ∈ Uad. Let (u, p) be a stationarity point
of L. The state equation (29) can be retrieved by di�erentiating L with respect to q in the direction
ψ ∈ H1

Γ0
(Rd)d:

〈∂qL(u, q,Ω), ψ〉 = 0 ∀ψ ∈ H1
Γ0

(Rd)d

In the same way the adjoint equation solved by p can be found by derivating L with respect to v in the
direction ψ ∈ H1

Γ0
(Rd)d:

〈∂uL,ψ〉 =α

∫
Ω

Ae(p) : e(ψ) dx− β
∫

Ω

fγ

(
1− σc
|Ae(u)|D

)
(Ae(p))D : Ae(ψ)D dx+

∫
Ω

m′(u) · ψ dx

+

∫
Γm

l′(u) · ψ ds− β
∫

Ω

f ′γ

(
1− σc
|Ae(u)|D

)
σc

|Ae(u)|3D
Ae(u)D : Ae(ψ)D Ae(u)D : e(p)D dx

and the adjoint problem can be deduced:

〈∂uL(u, p,Ω), ψ〉 = 0 ∀ψ ∈ H1
Γ0

(Rd)

which gives (33). To �nd the shape derivative of J(Ω), we remark that, for any q ∈ H1
Γ0

(Rd)d,

J(Ω) = L(u(Ω), q,Ω)
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and di�erentiate it with respect to the shape in the direction θ which gives:

J ′(Ω)(θ) = L′(Ω, uΩ, q)(θ) = ∂ΩL(Ω, uΩ, q)(θ) + 〈∂uL(Ω, uΩ, q), u
′(θ)〉.

But as u′(θ) belongs to H1
Γ0

(Ω)d, taking q = p(Ω) leads to:

〈∂uL(Ω, uΩ, p(Ω)), u′(θ)〉 = 0.

Consequently:
J ′(Ω, θ) = ∂ΩL(Ω, uΩ, pΩ)(θ)

and using the formulae of Theorem 4.1.1, we deduce the desired result (32).

Remark 4.3.2. For the numerical examples, two objective functions of the type of (31) are going to be
used. First, we shall consider the volume for which

mvol(u) = 1

lvol(u) = 0.

Second, a criterion on the displacement on the part of the boundary where the force is applied:

mDisp(u) = 0

lDisp(u) = |u|2 1ΓN
.

5 Numerical implementation

5.1 The level set method

For numerical purposes our shapes are de�ned by level set functions, following the framework introduced
by Osher and Sethian [47], [46] and [56]. Let D ⊂ Rd be a bounded domain in which all admissible
shapes Ω are included. The boundary of Ω is located thanks to the level set function ψ, de�ned in D by

ψ(x) = 0 if x ∈ ∂Ω ∩D
ψ(x) < 0 if x ∈ Ω

ψ(x) > 0 otherwise

The normal n and the mean curvature H of the shape Ω are respectively given by
∇ψ
|∇ψ|

and div

(
∇ψ
|∇ψ|

)
.

These quantities are computed throughout the whole domain D which naturally de�nes extensions of
their de�nition on ∂Ω.

5.2 Optimization algorithm

The optimization process produces a sequence (Ωi)i∈N of shapes. We start with an initial shape Ω0 and
compute iteratively the sequence. To make the level set evolve from Ωi to Ωi+1, the following Hamilton
Jacobi transport equation [47] is solved for t ∈ [0, tf ]:

∂ψ

∂t
+ V |∇ψ| = 0 in D (35)

where V (x) is the normal velocity of the shape's boundary. Thanks to ψ(x, t) we can de�ne Ωi(t) for
every t ∈ [0, tf ] and choose Ωi+1 = Ωi(tf ) for an appropriate tf which corresponds to the descent step.
The speed V , de�ned everywhere in D to be able to solve (35), is chosen, through a Sequential Linear
Programming (SLP) type algorithm, thanks to the criteria's gradients calculated on Ωi using Theorem
4.3.1 and plays the role of a descent direction.

The Hamilton-Jacobi equation (35) is solved by an explicit second order upwind scheme on a cartesian
grid of D with Neumann boundary conditions. Since the scheme is explicit in time, the time stepping
has to satisfy a CFL condition and, in order to regularize the level set which can become too �at or
too steep during the successive optimization iterations, periodic reinitializations, thanks to an Hamilton
Jacobi equation admitting the signed distance to the shape as stationnary solution, are performed. We
refer to [3] for numerical implementation details.
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Case Volume Displacement Constraint Iter. Eval.
Elastic 1.35746 7.99968e-07 8e-07 32 56
Perzyna 2.42645 7.99909e-07 8e-07 28 51
Sec. Reg. 2.42656 7.99909e-07 8e-07 28 51

Table 1: Results for the cantilever

5.3 Finite element method

Using the same cartesian grid, we solve the mechanical equations (29) and (33) by bilinear quadrangular
�nite elements. To avoid meshing the shapes Ω, we rely on the �ersatz material� approach which �lls
D \Ω with a weak material mimicking void but preventing the sti�ness matrix from being singular. This
technique is commonly used in topology optimization with level sets [3], [65].

Concerning the nonlinear penalized equations, they are usually solved by a damped Newton method,
see [11] chapter 6, or a �xed point method. The Newton method has the advantage to be faster but it
needs a good choice for the damping. On the other hand, the �xed point method despite its relative
slowness is easier to implement. The robustness of the algorithm which solves the direct problem is
crucial in the optimization process because the optimization can produce structures for which the �nite
element matrices are nearly singular. Here we choose to use a �xed point method for the computation
of the nonlinear problems, which converges in, at most, 300 iterations with an average of 100.

6 Numerical examples

We consider �ve two-dimensional examples. In all examples the regularization parameters are η = γ =
10−10. There are no volume forces but just surface loadings. In every example, a small amount of material
is forced to remain near the loading and clamped boundaries (these zones cannot be optimized).

6.1 Cantilever

For this example we use a grid mesh of 6400 Q1-elements. The design domain D has a length and a
height of 2. A constant vertical force equal to 1.1 is applied in the middle of the right side (from (2, 0.9)
to (2, 1.1)) and the left side is clamped (see Figure 2). The volume is optimized under a displacement
constraint. The material parameters are E = 1960, ν = 0.3 and σc = 0.95. Results are given in Table 1
and Figures 3 and 4.

(c) Load case (d) Initialization

Figure 2: Cantilever: problem de�nition

As can be expected, taking plasticity into account produces heavier structures. Indeed the algorithm
tries to avoid the appearance of plastic zones which are less rigid and induce larger displacements. Note
that the two di�erent plasticity models give a similar �nal design and that plasticity zones appear near
the boundary conditions.
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(a) Without plasticity (b) Perzyna penalization (c) Second regularization

Figure 3: Cantilever: �nal designs

(a) Von Mises for the elasticity case (b) Von Mises for Perzyna penalization

(c) Von Mises for the second regulariza-
tion

Figure 4: Cantilever: Von Mises plot for the �nal designs (the color scale di�ers between elasticity and
plasticity).

6.2 Bridge

The design domain has a length equal to 4 and a height of 1. We use a grid of 160 × 40 (6400) Q1
elements. The right and left sides are clamped. A constant vertical force equal to 30 is applied on the
middle of the upper side from (1.75, 1) to (2.25, 1) (see Figure 5). The volume is optimized under a
displacement constraint. The material parameters are E = 1.8 × 105, ν = 0 and σc = 70, like in [54].
Results are gathered in Table 2 and Figures 6 and 7.

(a) Load case (b) Initialization

Figure 5: Bridge: problem de�nition
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(a) Without plasticity (b) Perzyna penalization

(c) Second regularization

Figure 6: Bridge: �nal designs

(a) Von Mises for the elasticity case (b) Von Mises for Perzyna penalization

(c) Von Mises for the second regularization

Figure 7: Bridge: Von Mises plot for the �nal designs (the color scale di�ers between elasticity and
plasticity).

On this example, we note that the algorithm did not take the same path when plasticity is considered.
We also remark that plasticity zones appear not only near the loading zone but also at the meeting point
of di�erent bars. The fact that, in plastic cases, the volume is lower than in the elastic case could be
explained by the di�erent paths taken by the algorithm.

6.3 Pylon 1

For this example we use a grid mesh of 6400 Q1-elements. The design domain has a length and a height
of 2. The structure is �xed on the bottom right and on the bottom of the left side. A constant vertical
force equal to 2 is applied on the left of the upper side from (0.1, 2) to (0.35, 2) (see Figure 8). The

15



Case Volume Displacement Constraint Iter. Eval.
Elastic 1.39414 8.99939e-07 9e-07 47 74
Perzyna 1.38493 8.99537e-07 9e-07 42 70
Sec. Reg. 1.364 8.99995e-07 9e-07 51 81

Table 2: Results for the bridge

volume is optimized under a displacement constraint. The material parameters are E = 1960, ν = 0.3
and σc = 2. Results are shown in Table 3 and Figures 9 and 10.

(a) Load case (b) Initialization

Figure 8: Pylon 1: problem de�nition

(a) Without plasticity (b) Perzyna penalization (c) Second regularization

Figure 9: Pylon 1: �nal designs

On this example, there is a clear di�erence between the elastic case and the plastic cases. In the
elastic case, the connection with the Dirichlet conditions on the bottom right is not needed whereas in
the plastic case, it is required by the algorithm. We note also that the �nal values of the volume are
quite the same in every case.

6.4 The Y

The design domain has a length equal to 2 and a height of 1. We use a grid of 160 × 80 (12800) Q1
elements. The left side is �xed. A constant force equal to 1.3 is applied on the top right side from
(2, 0.025) to (2, 0.25) and on the bottom right side (2, 0.75) to (2, 0.975) (see Figure 11). The volume is
optimized under a displacement constraint. The material parameters are E = 1960, ν = 0.3 and σc = 1.
Results are collated in Table 4 and Figures 12 and 13.

The elastic structure is slightly lighter than the plastic ones. We can also remark that the crossed bars
in the left middle part of the structure are thinner in the elastic case as they would probably give away
if plasticity is taken into account.
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(a) Von Mises for the elasticity case (b) Von Mises for Perzyna penalization

(c) Von Mises for the second regulariza-
tion

Figure 10: Pylon 1: Von Mises plot for the �nal designs (the color scale di�ers between elasticity and
plasticity).

Case Volume Displacement Constraint Iter. Eval.
Elastic 0.682463 7.99926e-07 8e-07 602 683
Perzyna 0.682525 7.9992e-07 8e-07 501 547
Sec. Reg. 0.676969 7.99838e-07 8e-07 297 349

Table 3: Results for the Pylon 1

(a) Load case (b) Initialization

Figure 11: The Y

6.5 Pylon 2

The structure is �xed on the bottom left, right and middle. The design domain has a length equal to
2 and a height of 1. We use a grid of 160 × 80 (12800) Q1 elements. A constant force equal to 40 is
applied on the middle of the top from (0.8, 1) to (1.2, 1). The volume is optimized under a displacement
constraint. For the material characteristic we take: E = 3000, ν = 0 and σc = 70. Results are presented
in table 5 and Figures 15 and 16.
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(a) Without plasticity (b) Perzyna penalization

(c) Second regularization

Figure 12: The Y, �nal designs

(a) Von Mises for the elasticity case (b) Von Mises for Perzyna penalization

(c) Von Mises for the second regulariza-
tion

Figure 13: The Y, Von Mises for the �nal designs.

(a) Load case (b) Initialization

Figure 14: Pylon 2

The volume in the elastic case is smaller than in the plastic cases. We point out that the links between
the force zone and the two embedded areas on the left and right sides are nearly unnecessary contrary to
the plastic cases. Indeed, to hold the elastic structure mostly needs the Dirichlet zone which is just facing
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Case Volume Displacement Constraint Iter. Eval.
Elastic 1.19588 2.99967e-07 3e-07 77 101
Perzyna 1.21094 2.99938e-07 3e-07 129 154
Sec. Reg. 1.20746 2.9913e-07 3e-07 139 163

Table 4: Results for the Y

(a) Without plasticity (b) Perzyna penalization

(c) Second regularization

Figure 15: Pylon 2, �nal designs

(a) Von Mises for the elasticity case (b) Von Mises for Perzyna penalization

(c) Von Mises for the second regulariza-
tion

Figure 16: Pylon 2, Von Mises for the �nal designs. We point out that the color scale di�ers between
elasticity and plasticity.

the force no matter smaller it is with respect to the dimension of the zone where the force is applied. In
the plastic case, as this Dirichlet zone is four times smaller than the force zone, it leads to the appearing
of a plastic area. Consequently, the plastic cases favour to equally hold on each of the three embedded
parts.
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Case Volume Displacement Constraint Iter. Eval.
Elastic 0.559843 4.99999e-07 5e-07 39 64
Perzyna 0.690667 4.99997e-07 5e-07 101 139
Sec. Reg. 0.690791 4.99999e-07 5e-07 103 143

Table 5: Results for the Pylon 2
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