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Abstract

In this work, we extend the single-phase Darcy flow model proposed in [25], [12] to two-phase
flow. We propose two models for two-phase Darcy flow through fracture networks in porous media,
in which the (d − 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in
the matrix, leading to the so called hybrid-dimensional Darcy flow models. They both account
for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-
fracture interfaces. The models also permits to treat gravity dominated flow as well as discontinuous
capillary pressure at the material interfaces. We adapt the Vertex Approximate Gradient (VAG)
scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for
applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional
models to the hybrid-dimensional, continuous pressure model (proposed in [9]) and to the generic
equi-dimensional model, in which fractures have the same dimension as the matrix. This does not
only provide quantitative evidence about computational gain, but also leads to deep insight about
the quality of the proposed reduced models.

1 Introduction

This work has two aims: providing reduced models for two-phase flows in porous media with complex
Discrete Fracture Networks (DFN) and validating the reduced models by comparing them to the full
(non reduced) model. More precisely, we are concerned with the modelling and the discretization of
two-phase Darcy flows in fractured porous media, for which the fractures are represented as interfaces
of codimension one. In this framework, the (d − 1)-dimensional flow in the fractures is coupled with
the d-dimensional flow in the matrix leading to the so called, hybrid-dimensional Darcy flow models.
These models are derived from the so called equi-dimensional model, where fractures are represented
as geological structures of equal dimension as the matrix, by averaging fracture quantities over the
fracture width. We consider the case for which the pressure can be discontinuous at the matrix-fracture
(mf) interfaces in order to account for fractures acting either as drains or as barriers as described in
[18, 25, 6, 12], contrary to the continuous pressure model described in [3, 11] developed for conductive
fractures. A hybrid-dimensional discontinuous pressure model for two-phase flow in global pressure
formulation has been derived in [26, 2]. In order to account more efficiently for discontinuous capillary
pressures, our models use the phase pressures as primary unknowns. This formulation is based on the
inverse of the monotone graph extension of the capillary pressure curves and can be easily extended
to general capillary pressure curves including vanishing capillary pressures in the fracture using a
switch of variable formulation as described in [10]. Our coupling conditions at the mf interfaces also
differ from the ones presented in [26, 2] in the sense that they incorporate an upwinding between
the matrix and fracture mobilities and do not neglect the gravitational force. This upwinding is
crucial in order to transport fluid from the matrix to the fractures and the gravitational force in the
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width of the fracture cannot be neglected for gravity dominant flows independently on the fracture
width. The discontinuous hybrid-dimensional model, presented in section 2.2 is based on the two-
phase Darcy flux continuity at the mf interfaces. At the discrete level, we propose a modification of
this model in section 3.3, which still accounts for pressure discontinuities at the mf interfaces, but
provides linear matrix-fracture transmission conditions. Subsequently, in a series of test cases, we
compare the discontinuous hybrid-dimensional models with the equi-dimensional model and with the
hybrid-dimensional model presented in [9] and which assumes pressure continuity accross the fractures
accounting only for conductive fractures.

The discretization of hybrid-dimensional Darcy flow models has been the object of several works.
For an exhaustive review of existing methods, we refer to [30, 32]. For single-phase Darcy flow, a
cell-centered Finite Volume scheme using a Two Point Flux Approximation (TPFA) is proposed in
[18, 6] assuming the orthogonality of the mesh and isotropic permeability fields. Cell-centered Finite
Volume schemes using MultiPoint Flux Approximations (MPFA) have been studied in [33, 31, 1]. In
[25], a Mixed Finite Element (MFE) method is proposed. Let us also mention two classes of so-called
geometrically non-conforming discretizations, that handle non-matching fracture and matrix meshes:
the Extended Finite Element Method [5, 19, 20] and the Embedded Discrete Fracture Method [27, 22].
More recently the Hybrid Finite Volume (HFV) scheme, introduced in [15], has been extended in [17]
for the geometrically non-conforming discretization of two reduced fault models. Also a Mimetic Finite
Difference (MFD) scheme is used in [7] in the matrix domain coupled with a TPFA scheme in the
fracture network. Discretizations of the related reduced model [3] assuming a continuous pressure
at the matrix fracture interfaces have been proposed in [3] using a MFE method and in [11] using
the HFV scheme and an extension of the Vertex Approximate Gradient (VAG) scheme introduced in
[14]. Finally, the VAG and HFV schemes have been extended to the single-phase hybrid-dimensional
discontinuous pressure model in [12]. For two-phase Darcy flow, a cell-centred Finite Volume scheme
using a Two Point Flux Approximation (TPFA) is proposed in [24], assuming the orthogonality of the
mesh and isotropic permeability fields. Cell-centred Finite Volume schemes can be extended to general
meshes and anisotropic permeability fields using MultiPoint Flux Approximations (MPFA) following
the ideas introduced in [33] for discontinuous pressure models. Nevertheless, MPFA schemes can lack
robustness on distorted meshes and large anisotropies due to the non symmetry of the discretization.
They are also very expensive compared to nodal discretizations on tetrahedral meshes. In [23], the
two-phase flow equations are solved in an IMPES framework, using a Mixed Hybrid Finite Element
(MHFE) discretization for the pressure equation and a Discontinuous Galerkin discretization of the
saturation equation. The paper also contains a review on the most common numerical approaches,
when dealing with discrete fractures. The Hybrid Finite Volume discretization (HFV, see [15]) is
extended to two phase Darcy flow in fractured media in [21]. These approaches are adapted to general
meshes and anisotropy but require as many degrees of freedom as faces. An early paper to use a Control
Volume Finite Element method (CVFE) for the discretization of hybrid-dimensional two-phase flow
is [8]. In [29], a CVFE scheme is proposed that use reconstruction operators for the saturations that
depend on the rock characteristic capillary pressure curves. In this way, the saturation jumps (due
to discontinuous capillary pressure) at the material interfaces are respected. A similar approach can
be found in [28] in phase pressure formulation. However, the rigid choice of the control volumes (that
are the dual cells) leads to the need of small matrix cells at the DFN neighbourhood, in order not to
enlarge the drain artificially. In [9], the VAG scheme is used, which is very flexible in the distribution
of control volumes and hence circumvents this problem. To the author’s knowledge, there has not
yet appeared a comparison of different hybrid-dimensional models with the generic equi-dimensional
model for two-phase flow. This is one of the achievements of the present paper.

In this work, we present an adaptation of the VAG scheme to the hybrid-dimensional discontinuous
pressure model using supplementary unknowns at the mf interfaces to capture the pressure jumps
as initially proposed in [12]. We choose a vertex based scheme, because it leads, compared to the
cell-centered and face-centered approaches, to a smaller number of degrees of freedom when dealing
with symplectic meshes, which in turn often arise when complex geometries have to be taken into
account. Furthermore, the control volume version of the VAG scheme, presented here, allows to take
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into account saturation jumps (due to capillary pressure) at rock type interfaces including the mf
interfaces. An important novelty of the proposed scheme is that the saturations at the interfacial
unknowns are explicitly calculated, in addition to the saturations inside the fractures. All of the
aforementioned schemes lack in this supplementary information. They either have just one unknown
at the fractures, which is the case for the hybrid dimensional continuous pressure models, or they
eliminate the interfacial unknowns at the linear level. The importance of preserving the information
on interfacial and interior saturations at the fractures becomes obvious in the test case section of this
work: the influence on the solution of capillary or gravitational forces in normal direction within the
fractures is far from being negligible, in general. The supplementary unknowns at the mf interfaces
enable the method presented in this paper to capture these effects.

mf interfaces

fr
ac
tu
re

(f
)

matrix (m)

Figure 1: Nomenclature.

The outline of this work is as follows. The hybrid-
dimensional two-phase flow models are provided in section 2.
Section 3 is devoted to the VAG discretization and provides a
finite volume formulation of the models. In section 4, the hybrid
and equi-dimensional models are compared on a tracer problem
with analytical solutions. The effect of a normal diffusion term in
the fracture for the equi-dimensional model is also investigated.
The last section 5 compares the three hybrid-dimensional models
with the equi-dimensional model on a two-phase flow problem
with different matrix and fracture permeabilities and capillary
pressures.

2 Hybrid-dimensional Modelling of Flow
in Fractured Porous Media

Fractures and faults are geological structures with highly contrasted petro- and hydrological properties
and a small thickness compared to the surrounding matrix. To derive the hybrid-dimensional model,
we average the continuity and Darcy equations over the fracture width. The main objectives are to
facilitate mesh generation and to decrease the number of degrees of freedom involved in the numerical
resolution of the corresponding discrete problem.

2.1 Discrete Fracture Network

Let Ω denote a bounded domain of Rd, d = 2, 3 assumed to be polyhedral for d = 3 and polygonal for
d = 2. To fix ideas the dimension will be set to d = 3 when it needs to be specified, for instance in the
naming of the geometrical objects or for the space discretization in the next section. The adaptations
to the case d = 2 are straightforward.

Let Γ =
⋃
i∈I Γi and its interior Γ = Γ \ ∂Γ denote the network of fractures Γi ⊂ Ω, i ∈ I, which

is a collection of planar polygonal simply connected open domains, such that each Γi is included in
a plane Pi of Rd. Without loss of generality, we will assume that the angles of Γi are strictly smaller
than 2π, and that Γi ∩ Γj = ∅ for all i 6= j. For all i ∈ I, let us set Σi = ∂Γi, with nΣi as unit
vector in Pi, normal to Σi and outward to Γi. Further Σi,j = Σi ∩ Σj , j ∈ I \ {i}, Σi,0 = Σi ∩ ∂Ω,
Σi,N = Σi \ (

⋃
j∈I\{i}Σi,j ∪ Σi,0), Σ =

⋃
(i,j)∈I×I,i 6=j(Σi,j \ Σi,0) and Σ0 =

⋃
i∈I Σi,0.

We define the two unit normal vectors na±(i) at each planar fracture Γi, such that na+(i)+na−(i) = 0
(cf. figure 2). We define the set of indices χ = {a+(i), a−(i) | i ∈ I}, such that #χ = 2#I. For ease
of notation, we use the convention Γa+(i) = Γa+(i) = Γi. Then, for a = a±(i) ∈ χ, we can define the
trace operator on Γa:

γa : H1(Ω \ Γ)→ L2(Γa),

and the normal trace operator on Γa outward to the side a:

γna : Hdiv(Ω \ Γ)→ D′(Γa),
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Figure 2: Example of a 2D domain Ω and 3 intersecting fractures Γi, i = 1, 2, 3. We define the fracture
plane orientations by a±(i) ∈ χ for Γi, i ∈ I.

that satisfy γa(h) = γΓi(h�ωa
) and γna(p) = γn,Γi(p�ωa

), where ωa = {x ∈ Ω | (x−y)·na < 0, ∀y ∈ Γi},
and where γΓi and γn,Γi are the usual trace and normal trace operators defined of H1(ωa) and Hdiv(ωa)
respectively.

2.2 Two-phase Darcy flow models

Equi-dimensional model. We consider the flow equations for incompressible, immiscible two-
phase flow on a d-dimensional porous domain Ω containing a fracture Ωf as illustrated in figure 3. To
simplify, we consider no sources or sinks.

φ∂tS
α(x, p) + div(qα) = 0, (1a)

qα = −kα(x, Sα(x, p)) Λ(∇uα − ραg), (1b)

with phase parameter α ∈ {1, 2} (1 for a non wetting phase and 2 for a wetting phase), phase
pressures uα, phase Darcy velocities qα, capillary pressure p, phase saturations Sα, permeability
tensor Λ (positive definite), porosity φ, phase mobility kα phase mass densities ρα gravitational vector
field g and space coordinate x ∈ Ω. The system is closed by the equations

p = u1 − u2, S1(x, p) + S2(x, p) = 1. (1c)

Model (1) will be referred to as the equi-dimensional model, in the following.

Derivation of the hybrid-dimensional models. We suppose that the matrix and the fracture
network consist of a finite number of geological formations, that define finite partitions of Ω \Ωf and
Ωf . To identify those geological formations mathematically, we attribute a proper rock type rt to
each open set ωrt of these partitions. Then, we assume that on each ωrt, k

α and Sα are not explicitly
space dependent. Moreover, on ωrt, S

1(q) ∈ [0, 1] for all q ∈ R and S1 is a non decreasing continuous
function on R, and kα is a continuous, non-negative valued function on [0, 1], for α = 1, 2.

The fracture has the representation Ωf = {x ∈ Ω | x = y + rn(y),y ∈ Γ, r ∈ (−df (y)

2
,
df (y)

2
)},

where n is a unit normal vector and df is the fracture width. Let us further introduce the orthonormal
system of tangential vectors (τ1, . . . , τd−1) on Γ and the corresponding tangential divergence divτ and
gradient ∇τ . We assume that inside the fractures, the normal direction is a permeability principal
direction, such that the permeability tensor decomposes in a tangential part and a normal part as

Λ = Λf + λf,n n⊗ n, (2)

with Λfn = 0. On Ωf , we also assume that the permeability and porosity, as well as the constitutive
relations for the phase saturations and mobilities do not explicitly depend on the normal component
of the spacial coordinate (we will use the index f to denote their projections on Γ).
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ΩfΩ \ Ωf Ω \ Ωf
Ω \ ΓΩ \ Γ Γ

Figure 3: Geometries of the equi-dimensional model (left) and the hybrid-dimensional model (right)
in the case of a single fracture dividing the matrix domain.

To start, we write

qα =
d−1∑
i=1

(qα · τi)τi + (qα · n)n. (3)

Let gτ = g − (g · n)n. With (2) and (3), (1b) is equivalent to

d−1∑
i=1

(qα · τi)τi = −kαf (x, Sαf (x, p)) Λf (∇τuα − ραgτ ) (4a)

qα · n = −kαf (x, Sαf (x, p)) λf,n(∂nu
α − ραg · n). (4b)

Respectively, the averaged pressure and the integrated tangential Darcy velocity accross the frac-
ture are defined by

uαf =
1

df

∫ df
2

− df
2

uα dn and qαf =
d−1∑
i=1

∫ df
2

− df
2

(qα · τi)τi dn.

Furthermore, let us use the approximations

kαf (x, Sαf (x, p)) ≈ kαf (x, Sαf (x, pf )) and Sαf (x, pf ) ≈ 1

df

∫ df
2

− df
2

Sαf (x, p) dn.

Integration of the conservation equation (1a) and the tangential Darcy law (4a) over the fracture width
yields the fracture equations for the hybrid-dimensional model, φfdf∂tS

α
f (x, pf ) + divτ (qαf )−

∑
a∈χ

γnaq
α
m = 0 on Γ

qαf = −dfkαf (x, Sαf (x, pf )) Λf (∇τuf − ραgτ ) on Γ
(5a)

The matrix equations for the hybrid-dimensional model are{
φm∂tS

α
m(x, pm) + div(qαm) = 0 on Ω \ Γ

qαm = −kαm(x, Sαm(x, pm)) Λm(∇uαm − ραg) on Ω \ Γ
(5b)

Moreover, both phases are coupled by the equations

(pm, pf ) = (u1
m − u2

m, u
1
f − u2

f ), (S2
m, S

2
f ) = 1− (S1

m, S
1
f ). (5c)
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Discontinuous hybrid-dimensional model. The matrix and the fracture equations are coupled
by Robin boundary conditions imposed at each Γa, a ∈ χ. For this, we use a two point approximation
of the normal derivative of the pressure in the linear part of (4b), which leads to the definition of the
velocity

V α,a
f,n = λf,n(

γau
α
m − uαf
df/2

− ραγnag). (6)

In order to transport the saturations between the matrix and the fractures, the mobility has to be
upwinded in the definition of the normal flux γnaq

α
m. For any a ∈ R, let us set a+ = max{0, a} and

a− = −(−a)+. The resulting equation on Γa, a ∈ χ is

γnaq
α
m = qαf,na

qαf,na
= kαf (x, Sαf (x, γapm))(V α,a

f,n )+ + kαf (x, Sαf (x, pf ))(V α,a
f,n )−.

(7)

As illustrated in figure 4, the upwinding of the mobilities in the definition of the flux qαf,na
takes into

account the saturation jump due to discontinuous capillary pressure curves at the matrix-fracture
interface.

γna
qα
m

qα
m

qα
f,na

df

qα
f

Sα
f (pf)

Sα
f (γapm)

Sα
m(γapm)

Figure 4: Illustration of the coupling
condition qαf,na

= γnaq
α
m for the discon-

tinuous hybrid-dimensional model.

Model (5),(7) will be referred to as the type hybrid-dimensional model accounting for pressure dis-
continuities at the matrix-fracture interfaces, or shortly, the discontinuous hybrid-dimensional model.

Continuous hybrid-dimensional model. When
λf,n
df
� |Λm|

diam(Ω) , condition (6) can be further

approximated by the pressure continuity condition at the matrix fracture interface Γ

γa+(i)u
α
m = γa−(i)u

α
m = uf , (8)

recovering the condition introduced in [3] for single-phase Darcy flows and in [8, 29, 9] for two-phase
flows. The model defined by (5),(8) will be referred to as the continuous hybrid-dimensional model,
in the rest of this paper.

DFN closure conditions. Finally, closure conditions are set at the immersed boundary of the
fracture network (fracture tips) as well as at the intersection between fractures. For i ∈ I, let γΣi

(resp. γnΣi
) denote the trace (resp. normal trace) operator at the fracture Γi boundary oriented

outward to Γi, and let γn∂Γ
denote the normal trace operator at the fracture network boundary

oriented outward to Γ. At fracture tips ∂Γ \ ∂Ω, it is classical to assume homogeneous Neumann
boundary conditions in the sense that

γn∂Γ
qαf = 0 on ∂Γ \ ∂Ω, α = 1, 2,

meaning that the flow at the tip of a fracture can be neglected compared with the flow along the
sides of the fracture. At the fracture intersection Σi,j \Σi,0, i, j ∈ I, i 6= j, we impose the normal flux
conservation equations ∑

k∈I
γnΣk

qαf = 0 on Σi,j \ Σi,0, α = 1, 2,
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meaning that the volume at the intersection between fractures is neglected. In addition, we impose
continuity of the phase pressures at Σi,j

γΣiu
α
f = γΣju

α
f on Σi,j , α = 1, 2.

This amounts to assume a high ratio between the permeability at the intersection and the fracture
width compared with the ratio between the tangential permeability of each fracture and its lengh.

Up to now, the only existing, comparable hybrid-dimensional two-phase flow model to the discon-
tinuous hybrid-dimensional model presented above is the model described in [2, 26], which is presented
in global pressure formulation. We adapted here a formulation using the phase pressures as primary
unknowns, accounting for complex fracture networks and general invertible capillary pressure func-
tions. As illustrated in the numerical section it can be easily extended to general capillary pressure
curves including vanishing capillary pressure in the fractures using a switch of variable formulation as
described in [10].

Another difference is, that the discontinuous hybrid-dimensional model uses an upwind coupling
condition for the matrix-fracture normal fluxes (see (7)). This upwinding is necessary to transport
the saturations from the matrix to the fractures. The coupling condition (7) also takes into account
gravitational force inside the fractures for the matrix-fracture mass exchange. In the test cases below,
we see that this is an important feature for the simulation of gravity dominant flow.

3 Vertex Approximate Gradient Scheme

In this section, the VAG scheme, introduced in [14] for diffusive problems on heterogeneous anisotropic
media and extended to discrete fractures in [11] for the continuous and in [12] for the discontinuous
hybrid dimensional models, is adapted to the hybrid-dimensional two-phase flow models. We consider
a finite volume version using lumping both for the accumulation terms and the matrix fracture fluxes.

3.1 VAG Discretization

3.1.1 Polyhedral meshes

Following [14], we consider generalized polyhedral meshes of Ω. Let M be the set of cells that are
disjoint open polyhedral subsets of Ω such that

⋃
K∈MK = Ω. For all K ∈ M, xK denotes the

so-called “center” of the cell K under the assumption that K is star-shaped with respect to xK . Let
F denote the set of (not necessarily planar) faces of the mesh. We denote by V the set of vertices of the
mesh. Let VK , FK , Vσ respectively denote the set of the vertices of K ∈ M, faces of K, and vertices
of σ ∈ F . For any face σ ∈ FK , we have Vσ ⊂ VK . Let Ms (resp. Fs) denote the set of the cells
(resp. faces) sharing the vertex s ∈ V. The set of edges of the mesh is denoted by E and Eσ denotes
the set of edges of the face σ ∈ F . Let Mσ denote the set of cells sharing the face σ ∈ F . We denote
by Fext the subset of faces σ ∈ F such that Mσ has only one element, and we set Vext =

⋃
σ∈Fext Vσ.

The mesh is assumed to be conforming in the sense that for all σ ∈ F \ Fext, the set Mσ contains
exactly two cells. It is assumed that for each face σ ∈ F , there exists a so-called “center” of the face
xσ such that

xσ =
∑
s∈Vσ

βσ,s xs, with
∑
s∈Vσ

βσ,s = 1,

where βσ,s ≥ 0 for all s ∈ Vσ. The face σ is assumed to match with the union of the triangles Tσ,e
defined by the face center xσ and each of its edges e ∈ Eσ. The mesh is assumed to be conforming
w.r.t. the fracture network Γ in the sense that there exist subsets FΓi , i ∈ I of F such that

Γi =
⋃

σ∈FΓi

σ̄.

We will denote by FΓ the set of fracture faces
⋃
i∈I FΓi . Similarly, we will denote by VΓ the set of

fracture vertices
⋃
σ∈FΓ

Vσ. We also define a submesh T of tetrahedra, where each tetrahedron DK,σ,e
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is the convex hull of the cell center xK of K, the face center xσ of σ ∈ FK and the edge e ∈ Eσ.
Similarly we define a triangulation ∆ of Γ, such that we have:

T =
⋃

K∈F ,σ∈FK ,e∈Eσ
{DK,σ,e} and ∆ =

⋃
σ∈FΓ,e∈Eσ

{Tσ,e}.

The mesh is also assumed to be conforming w.r.t. the rock types, in the sense that we have a well
defined rock type for each cell and fracture face, denoted by rtK and rtσ, for K ∈M and σ ∈ FΓ.

3.1.2 Degrees of freedom

The set of matrix and fracture degrees of freedom is denoted by dof D = dof Dm ∪dof Df , with dof Dm ∩
dof Df = ∅. The real vector space of discrete unknowns is denoted by XD = R#dofD . For uD ∈ XD
and ν ∈ dof D, we denote by uν the νth component of uD. To account for Dirichlet boundary
conditions on ∂Ω and Σ0 we introduce the subsets dof Dirm ⊂ dof Dm , and dof Dirf ⊂ dof Df , and we

set dof Dir = dof Dirm ∪ dof Dirf , and X0
D = {uD ∈ XD |uν = 0 for all ν ∈ dof Dir}. Concretely, we

consider the set of d.o.f. as illustrated in figure 5.

K L σK σK

Figure 5: Illustration of d.o.f. in 2D for a matrix domain (in black) intersected by a fracture (in red)
for the equi-dimensional and discontinuous and continuous hybrid-dimensional models (from left to
right).

Equi-dimensional model. Since the equi-dimensional approach does not reduce the fracture di-
mension, we have to deal with small fracture cells. The standard VAG scheme, as introduced in [14]
for single-phase flow and in [16] for multiphase flows, which is based on cell and node unknowns, is
used for this model.

Discontinuous hybrid-dimensional model. The set dof Df of fracture d.o.f. relate to face un-
knowns and node unknowns. This corresponds to the d.o.f. of the standard VAG scheme in dimension
d − 1 on the fracture network. Let us split dof Dm in the interfacial d.o.f. dof Γ

Dm , located at the

fracture network, and the bulk d.o.f. dof Dm \ dof Γ
Dm . The unknowns at the interfaces are necessary

in order to capture the pressure discontinuities between the matrix and fractures. Since we have to
take into account these pressure jumps for all fracture unknowns and all mf interfaces, dof Γ

Dm refers
to node unknowns plus face unknowns, which are related to the fracture d.o.f. one-to-one for each
side of the DFN. Most often, the fractures cut the matrix domain in two. For immersed fracture tips
or multiple fracture intersections, however, we have up to as many unknowns as fractures connected
to the spot (cf. figure 6). The set dof Dm \ dof Γ

Dm corresponds to cell unknowns and node unknowns,
which are the classical unknowns for the VAG scheme in d dimensions. We refer to [12], for a more
detailed presentation.

Continuous hybrid-dimensional model. The set dofD consisting of the model degrees of freedom,
corresponds to cell, node and fracture face unknowns as illustrated in figure 5. These are the unknowns
of the hybrid-dimensional models above, with the exception that dof Γ

Dm = ∅. For more details, we
refer to [11].
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Figure 6: Zoom on the fracture intersection for three fractures (left) and on the fracture tip for one
immersed fracture (right). Illustrated are four cells (indicated as boxes) and the d.o.f. at the singular
point for the discontinuous hybrid-dimensional models (interfacial d.o.f. in black and fracture d.o.f.
in red).

3.1.3 P1 Finite Element basis functions

The basis functions we use to discretize the diffusion terms, denoted by ην , ν ∈ dof D, in the following,
are the P1 Finite Element basis functions on the tetrahedral submesh T , for ν ∈ dof Dm and on the
triangulation ∆ of the DFN, for ν ∈ dof Df . The discrete gradients are then defined as the P1 Finite
Element gradients on each of the connected matrix subdomains and on the DFN, respectively. For the
treatment of the jump terms at the matrix-fracture interfaces, the basis functions are lumped onto a
dual mesh of the triangulation ∆. For a more detailed presentation of the construction of the basis
functions and discrete gradients, we refer to [12], for the discontinuous and to [9] for the continuous
hybrid-dimensional models. To respect the heterogeneities of the media, the VAG reconstructions of
the accumulation terms are piecewise constant, as described below.

σK
σ

K

Figure 7: 2D (left) resp. 3D (right)
cell K touching a fracture face σ. Il-
lustration of the simplices on which
the matrix (grey) and fracture (red)
discrete gradients are constant. The
facial unknown located at the coor-
dinate in light grey is eliminated by
barycentric interpolation.

3.1.4 Control volumes

As mentioned above, the mesh is conforming with the partition in rock types. So, we introduce, for
any given K ∈ M, a partition of K, which takes the general form {ωνK}ν∈{K}∪(dofK∩dofDm )\dofDir
and for any given σ ∈ FΓ a partition {ωνσ}ν∈{σ}∪(dofσ∩dofDf )\dofDir of σ. Here, dofK and dofσ stand

for the d.o.f. connected to K and σ, respectively, as explained below. The VAG reconstructions
of the accumulation terms are piecewise constant on these distributions, and therefore respect the
heterogeneities of the media (see [13]). Integrating the reconstructed accumulations shows that, in the
numerical scheme, we do not need to provide these partitions explicitly, but only have to define their
corresponding volumes.

3.2 Finite Volume Formulation of the discontinuous hybrid-dimensional model

For ν ∈ dof D, let us denote by dofν ⊂ dof D the set consisting of all ν ′, such that there is a discrete
flux connection between ν and ν ′ as illustrated in figure 8. More concretely, for the the discontinuous
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hybrid-dimensional model, these sets are defined as follows. The denomination of the different types
of d.o.f. (i.e. K,σ, νm, ν

′
m, νf ) here is consistent with the notations in figure 8.

• For K ∈ M: dofK = {νm ∈ dof Dm \ dof Γ
Dm | xνm ∈ ∂K} ∪ {νm ∈ dof Γ

Dm | xνm ∈ ∂K and νm
refers to an interfacial unknown located on the same side of Γ as K}

• For σ ∈ FΓ: dofσ = {νf ∈ dof Df | xνf ∈ ∂σ} ∪ {νm ∈ dof Γ
Dm | xνm ∈ ∂σ}

• For νm ∈ dof Γ
Dm : dofνm =Mνm ∪ {νf ∈ dof Df | xνf = xνm}

Since the fluxes connect exactly two unknowns, the definition of the sets dofν is complemented by

ν ′ ∈ dofν ⇐⇒ ν ∈ dofν′ . (9)

The well defined constitutive relations for the mobilities and saturations for each of these rock
types are then denoted by kα(rtν , ·) and Sα(rtν , ·), ν ∈ M ∪ FΓ, respectively. In order to calculate
the fracture mobility for the non linear matrix-fracture two point fluxes of the discontinuous hybrid-
dimensional model, for nodal unknowns, we have to define fracture node rock types, in addition to
cell and fracture face rock types. The fracture node rock types serve exclusively for this purpose and
its introduction is consistent with our pressure continuity assumption at fracture intersections which
assumes that the properties of intersecting fractures are not too contrasted.

For any ν ∈ dofK the discrete matrix-matrix -fluxes are defined as

−FανK(u1
D, u

2
D) = FαKν(u1

D, u
2
D) = kα(rtK , S

α(rtK , pK)) · fαKν(uαD)+ + kα(rtK , S
α(rtK , pν)) · fαKν(uαD)−,

(10)
where

−fανK(uαD) = fαKν(uαD) =
∑

ν′∈dofK
T νν

′
K (uαK − uαν′ − ρα(xK − xν′) · g),

with transmissivities

T νν
′

K =

∫
K

Λm∇ην∇ην′ dx.

For all ν ∈ dofσ the discrete fracture-fracture-fluxes are defined as

−Fανσ(u1
D, u

2
D) = Fασν(u1

D, u
2
D) = kα(rtσ, S

α(rtσ, pσ)) · fασν(uαD)+ + kα(rtσ, S
α(rtσ, pν)) · fασν(uαD)−,

where
−fανσ(uαD) = fασν(uαD) =

∑
ν′∈dofσ

T νν
′

σ (uασ − uαν′ − ρα(xσ − xν′) · g),

with transmissivities

T νν
′

σ =

∫
σ
dfΛf∇την∇την′ dτ(x).

Let us further introduce the set of matrix-fracture (mf ) connectivities

C = {(νm, νf ) | νm ∈ dof Γ
Dm , νf ∈ dof Df s.t. xνm = xνf }.

The mf -fluxes are defined as

−Fανfνm(u1
D, u

2
D) = Fανmνf (u1

D, u
2
D) = kα(rtνf , S

α(rtνf , pνm)) · fανmνf (uαD)+

+ kα(rtνf , S
α(rtνf , pνf )) · fανmνf (uαD)−,

(11)

where

−fανfνm(uαD) = fανmνf (uαD) = Tνmνf (uανm − uανf −
ραdf

2
γnag),
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νf

FKνm

Fσνf

Fνmνf

νm

K
σ

fKνm

ν ′m

K

νm

FKν ′m

fνmνf
νf

σ

Fσνf
FKνf

FKν ′m

Fσνf

σ

νf

K

ν ′m

FKνf

Figure 8: VAG mm-fluxes (black), mf -fluxes (blue) and ff -fluxes (red) on a 2D cell touching a fracture.
Discontinuous hybrid-dimensional models 1 and 2 and continuous hybrid-dimensional model (from left
to right). The fluxes indicated by solid lines and capital F correspond to non linear fluxes incorporating
the mobility and appear in the flux conservation equations of each of the two control volumes they
connect. The dashed fluxes f for the model 2, are linearly depending on the pressure. Consequently,
the equations for interfacial νm ∈ dof Γ

Dm are the linear flux conservation equations (14), for this model.

Fνmνf

Sm(pνm)

pνm

Fmm

Sf(pνf)

Sf (pνm)

Fff

Figure 9: Model 1. Sketch of how VAG accounts for saturation
jumps at the mf interfaces. The interfacial unknown is indicated
by the black box and the fracture unknown by the red box. The
capillary pressure pνm for the interfacial unknown is well defined,
which allows to calculate the matrix and fracture saturations at
the interface, Sm(pνm) and Sf (pνm), respectively, as the inverse
of the matrix and fracture capillary pressure curves. Fmm is cal-
culated with Sm(pνm) and Fνmνf is calculated with Sf (pνm).

with transmissivities

Tνmνf =
∑
T∈∆

s.t. xνf∈T

1

3

∫
T

2λf,n
df

dτ(x).

We observe that for the VAG scheme, the fluxes Fανmνf are two point flux approximations.

Let 0 = t0 < t1 < · · · < tN = T , with ∆tn = tn − tn−1 be a time discretization. Given p0
D ∈ XD,

and using an implicit Euler time integration, the Finite Volume formulation of (5),(7) reads as follows:
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Find {uαD}α=1,2 ∈ (X0
D)2N such that for all n ∈ {1, . . . , N}

for all K ∈M :

|ωKK |φK
Sα(rtK ,p

n
K)−Sα(rtK ,p

n−1
K )

∆tn +
∑

ν∈dofK
FαKν(u1,n

D , u2,n
D ) = 0

for all νm ∈ dofDm \ (M∪ dof Dirm) :

∑
K∈Mνm

|ωνmK |φK
Sα(rtK ,p

n
νm

)−Sα(rtK ,p
n−1
νm )

∆tn +
∑

ν∈dofνm
Fανmν(u1,n

D , u2,n
D ) = 0

for all σ ∈ FΓ :

|ωσσ |φσ S
α(rtσ ,pnσ)−Sα(rtσ ,p

n−1
σ )

∆tn +
∑

ν∈dofσ
Fασν(u1,n

D , u2,n
D ) = 0

for all νf ∈ dofDf \ (FΓ ∪ dof Dirf ) :

∑
σ∈FΓ,νf

|ωνfσ |φσ
Sα(rtσ ,pnνf

)−Sα(rtσ ,p
n−1
νf

)

∆tn +
∑

ν∈dofνf
Fανfν(u1,n

D , u2,n
D ) = 0.

(12)

In (12), the set Mνm stands for the set of indices {K ∈ M | νm ∈ dofK}, and FΓ,νf stands for the
set {σ ∈ FΓ | νf ∈ dofσ}. The model of this subsection will be referred to as the discontinuous
hybrid-dimensional model 1, in the following.

3.3 mf-Linearization of the discontinuous hybrid-dimensional model

For practical considerations, the equations for the interfacial unknowns νm ∈ dof Γ
Dm are quite costly

to solve, since the interfacial accumulation volumes
⋃
K∈Mνm

ωK,νm generally have to be chosen sig-
nificantly smaller than the accumulation volumes at unknowns located inside the fractures. In this
section, we propose a model that uses linear equations for νm ∈ dof Γ

Dm to calculate the phase pressures
at the matrix-fracture interfaces. On the other hand, interfacial saturations are not calculated, but
matrix-fracture mass transfer uses the saturations inside the fractures, instead.

As illustrated in figure 8 for the mf -linearized discontinuous hybrid-dimensional model, the non
linear flux connections defined by the sets dofν are modified for ν ∈ dof D \ dof Γ

Dm as follows:

• For K ∈M: dofK = {ν ∈ dof D \ dof Γ
Dm | xν ∈ ∂K}

• For σ ∈ FΓ: dofσ = {νf ∈ dof Df | xνf ∈ ∂σ} ∪Mσ

together with the relation (9) for ν ∈ dof D \ dof Γ
Dm .

Let us denote by νf (νm) ∈ dof Df for each νm ∈ dof Γ
Dm , the unique d.o.f. νf ∈ dof Df such that

xνm = xνf . Unlike for the discontinuous hybrid-dimensional model 1, the d.o.f. νm ∈ dof Γ
Dm are not

linked to their neighbours via non linear fluxes. Also, in the above definition (see also figure 8), for
K ∈ Mνm , νm is replaced by νf (νm) in dofK (and K is added to dofνf (νm)). The mass exchange
between matrix and DFN is accounted for by the non linear fluxes

FαKνf (u1
D, u

2
D) = kα(rtK , S

α(rtK , pK)) · fαKνm(uαD)+ + kα(rtK , S
α(rtK , pνf )) · fαKνm(uαD)−, (13)

with νf = νf (νm) and K ∈ Mνm . Note that the definition (13) uses the linear fluxes fαKνm to
construct the non linear flux FαKνf . This is the key difference between this model and the continuous
pressure model, which means that pressure discontinuities are accounted for in the matrix-fracture
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mass exchange fluxes. For the mf -linearized model, the interfacial control volumes are set to zero, i.e.
ωνm = ∅ for νm ∈ dof Γ

Dm . Equation (12) becomes (for all n ∈ {1, . . . , N})∑
K∈Mνm

fαKνm(uα,nD ) = fανmνf (uα,nD ) for all νm ∈ dof Γ
Dm , (14)

again with νf = νf (νm). We see that the non linear equations have been replaced by linear equations
for the interfacial unknowns, which constitutes the main advantage of this model compared with
the non-linearized discontinuous hybrid-dimensional model. This is equivalent to the procedure of
eliminating interfacial unknowns by harmonic averaging of the half transmissibilities for cell centered
schemes, as described in [24], for example. This model will be referred to as the discontinuous hybrid-
dimensional model 2, in the following.

3.4 Finite Volume Formulation of the continuous hybrid-dimensional model

Recall that for this model, dof Γ
Dm = ∅. For K ∈M and ν ∈ dofK ∩ dof Df , we define FKν similarly to

(13), but without taking into account the interfacial pressures:

FαKν(u1
D, u

2
D) = kα(rtK , S

α(rtK , pK)) · fαKν(uαD)+ + kα(rtK , S
α(rtK , pν)) · fαKν(uαD)−. (15)

Note that this model can also be obtained from the mf -linearized discontinuous hybrid-dimensional
model by replacing the interfacial equations (14) by the continuity of the phase pressures

uανm = uανf (νm) for all νm ∈ dof Γ
Dm .

This choice of the mf fluxes captures the jump of the saturation at the mf interfaces and hence
accounts for a matrix acting as a barrier for the non wetting phase. On the other hand, it does not
provide a good approximation of the capillary pressure inside the fracture when the fracture is filled
with the non wetting phase. This is the reason why the following second choice of the mf fluxes using
the fracture rocktype will also be tested

FαKν(u1
D, u

2
D) = kα(rtK , S

α(rtK , pK)) · fαKν(uαD)+ + kα(rtν , S
α(rtν , pν)) · fαKν(uαD)−. (16)

This second choice does not capture exactly the jump of the saturation at the mf interfaces but
provides a better approximation of the capillary pressure inside the fracture when the fracture is filled
with the non wetting phase. The same remark and choices apply to discontinous hybrid-dimensional
model 2.

Let us take (15) as the default choice. When it is needed to distiguish between the two models
(15) and (16), let us call the first one continuous hybrid dimensional model 1 and the second one
continuous hybrid dimensional model 2.

4 Tracer test case

The models in this section describe the transport of a tracer in a solvant through fractured porous
media. It can be seen as a special case of the two-phase flow models presented above assuming that
the phase mobilities satisfy kα(Sα) = Sα, that the capillarity vanishes and that the gravity field is set
to zero. In the following, the primary unknowns are denoted by u for the pressure and c for the tracer
concentration.

4.1 Analytical solution for the hybrid-dimensional model

Let us denote by (x, y) the Cartesian coordinates of x and let us set Ω = (0, 1)2, x1 = (0, 1
4), θ ∈

(0, arctan(3
4)), x2 = (1, 1

4 + tan(θ)). Let Ω1 = {(x, y) ∈ Ω | y > 1
4 + x tan(θ)}, and Ω2 = Ω \ Ω1. We

consider a single fracture defined by Γ = (x1,x2) = ∂Ω1 ∩ ∂Ω2 with tangential permeability λf > 0,
normal permeability λf,n and width df > 0. The matrix permeability is isotropic and set to λm = 1.
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The matrix and fracture porosities are set to φm = 1 and φf = 1. Let us denote the tangential and
normal vectors to Γ by

t =

(
cos(θ)
sin(θ)

)
, n =

(
− sin(θ)
cos(θ).

)
Looking for a pressure solution equal to um,k(x, y) = −x+ γk in the matrix domains Ωk, k = 1, 2, and
to uf = 1− x in the fracture leads to

γ1 = 1 +
sin(θ)

2
df

λm
λf,n

, γ2 = 1− sin(θ)

2
df

λm
λf,n

.

for the discontinuous hybrid-dimensional models and to

γ1 = γ2 = 1

for the continuous hybrid-dimensional model (um,1, um,2, uf ) are solutions of the corresponding sta-
tionary pressure models, see [12], [10]). We deduce that the matrix velocity is equal to

qm = λm

(
1
0

)
,

and the tangential velocity in the fracture to

qf = dfλf cos(θ)t.

Note that the velocity fields are the same for the discontinuous and continuous hybrid-dimensional
models. The transport model reduces, for the three hybrid-dimensional models presented in section
2, to the same following system of equations which specifies our choice of the boundary and initial
conditions:

∂tcm,k(x, y, t) + ∂xcm,k(x, y, t) = 0 on Ωk × (0, T ), k = 1, 2,
cm,k(x, y, 0) = 0 on Ωk, k = 1, 2,
cm,1(0, y, t) = 1 on (1

4 , 1)× (0, T ),
cm,2(0, y, t) = 1 on (0, 1

4)× (0, T ),
cm,2(x, 1

4 + x tan(θ), t) = cf (x, t) on (0, 1)× (0, T ),
∂tcf (x, t) + k∂xcf (x, t) + βcf (x, t) = βcm,1(x, 1

4 + x tan(θ), t) on (0, 1)× (0, T ),
cf (0, t) = 1 on (0, T ),
cf (x, 0) = 0 on (0, 1),

(17)

where we have set λm = 1 and with β = sin(θ)
df

and k = λf cos2(θ). It is assumed that k > 1. This

system can be integrated along the characteristics of the matrix and fracture velocity fields leading to
the following analytical solution:

cm,1(x, y, t) =

{
0 if t < x,
1 if t > x,

cf (x, t) =


0 if t < x

k ,

e−
β
k−1

(x−t) if x
k < t < x,

1 if t > x,

cm,2(x, y, t) =


if y ∈ (0, 1

4)

{
0 if t < x,
1 if t > x,

if y ∈ (1
4 ,

1
4 + tan(θ))

{
0 if t < x− 4y−1

4 tan(θ) ,

cf ( 4y−1
4 tan(θ) , t+ 4y−1

4 tan(θ) − x) if t > x− 4y−1
4 tan(θ) .
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4.2 Analytical solution for the equi-dimensional model

Let us set d =
df

cos(θ) and denote by

Ω̃f = {(x, y) ∈ Ω | y − x tan(θ)− 1

4
∈ (−d

2
,
d

2
)},

the fracture domain, and by Ω̃1 = {(x, y) ∈ Ω | y > d
2 + 1

4 + x tan(θ)}, and Ω̃2 = {(x, y) ∈ Ω | y <
−d

2 + 1
4 +x tan(θ)} the matrix domains. We look for a pressure solution um,k = −x+ γ̄k in the matrix

domains Ω̃k, k = 1, 2 and

uf = 1− αf (x · t− sin(θ)

4
)t + βf (x · n− cos(θ)

4
)n,

in the fracture domain. It results that αf = cos(θ) and

βf = sin(θ)
λm
λf,n

,

and

γ̄1 = 1− (1− λm
λf,n

)
df sin(θ)

2
= γ1 −

df sin(θ)

2
,

γ̄2 = 1 + (1− λm
λf,n

)
df sin(θ)

2
= γ2 +

df sin(θ)

2
.

We deduce that the pressure in the fracture domain is

uf (x) = 1− x− sin(θ)(1− λm
λf,n

)dΓ(x)

where dΓ(x) = x ·n− cos(θ)
4 is the distance between x and Γ, and that the velocity field in the matrix

is

qm = λm

(
1
0

)
,

and in the fracture
vf = −Λf∇uf = λf cos(θ)t− λm sin(θ)n.

Note that vf is exactly equal to the tangential velocity
qf
df

of the hybrid model plus the normal velocity

qm · n = −λm sin(θ)n of the hybrid model. In that sense, the velocity fields are the same both in the
matrix and in the fracture for the equi and hybrid-dimensional models for this test case. Also remark
that the mean pressure in the width of the fracture is exactly equal to 1− x (except at both ends of
the fracture).

Let v(x) denote the velocity field equal to qm in the matrix domains and to vf in the fracture
domain. The equi-dimensional tracer c is solution of the advection equation

∂tc+ div(cv) = 0,

with initial condition c = 0 on Ω and input condition c = 1 on the left boundary x = 0. It can be
easily computed analytically using the method of characteristics.
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Figure 10: Comparisons of the equi-dimensional (above) and hybrid-dimensional (below) tracer ana-
lytical solutions at time t = 0.5 for df = 0.001, λm = 1, and λf taking the values from left to right
100, 1000 and 10000.

Figure 11: Tracer analytical solution in the fracture for the equi-dimensional model at time t = 0.5
for df = 0.001, λm = 1, and λf taking the values from left to right 100, 1000 and 10000.

4.3 Comparisons between the equi and hybrid tracer solutions

It is clear from Figures (10) and (12) that the hybrid-dimensional tracer model is accurate as long

as the ratio of the fracture and matrix conductivities defined by
df
L
λf
λm

is large enough where L = 1
denotes the characteristic lengh of the matrix domain. In this test case, the hybrid-dimensional tracer

model provides a very accurate solution for
df
L
λf
λm

= 10, a rather good one for
df
L
λf
λm

= 1 and shows

rather large differences for
df
L
λf
λm

= 0.1.

Geometrically, the condition of a large fracture matrix conductivity ratio
df
L
λf
λm

means that the
velocity in the fracture vf is almost parallel to the fracture Γ. More precisely, it prescribes that the
angle between vf and t is small compared with the angle between t and the ligne joining the bottom
left point of the fracture (0, 1

4 − d
2) to the upper right point of the fracture (1, 1

4 + tan(θ) + d
2).
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Figure 12: Comparisons of the equi and hybrid-dimensional tracer analytical solutions in the fracture
at different times as a function of x. The value is averaged in the width of the fracture for the equi-
dimensional model. The parameters are set to df = 0.001, λm = 1, and λf = 100, 1000, 10000 from
left to right.

4.4 Comparisons between the hybrid tracer solution and the equi-dimensional
tracer solution with normal diffusion in the fracture

In this test case, a normal diffusion term is added for the equi-dimensional tracer model in the fracture
only. The objective is to investigate the amount of normal diffusion needed in the equi-dimensional
tracer model to obtain a solution close to the hybrid-dimensional tracer model without diffusion.
Since in that case the analytical solution is not known, the solution of the equi-dimensional model
is computed numerically using the VAG discretization and an implicit Euler time integration. We
consider the above test case with df = 1 and λf = 100 which exhibits rather large differences between
the hybrid and the equi-dimensional tracer models without the additional diffusion term. Let nΓ

denote the unit vector normal to the fracture. A diffusion term −div(Df,nnΓ⊗nΓ∇c) is added in the
equi-dimensional tracer model.

It is clear from Figures 13 and 14 and the comparison with the figures of the previous subsection
that the normal diffusion in the fracture provides an equi-dimensional solution much closer to the
hybrid-dimensional tracer model for the parameters λf = 100, df = 0.001. This is expected since
the hybrid-dimensional tracer model is derived assuming that the tracer concentration is constant
in the width of the fractures corresponding to a high normal diffusion Df,n scaled by the fracture
width df times the normal velocity |qm · nΓ|. In our test case, this adimensionalized normal diffusion
Df,n

df |qm·nΓ| takes the value
√

5 which suffices to recover a very good match between the equi and hybrid-

dimensional models even for a rather small fracture matrix conductivity ratio
df
L
λf
λm

= 0.1.
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Figure 13: Tracer numerical solution at time t = 0.5 in the matrix (left) and in the fracture (right)
for the equi-dimensional model with normal diffusion in the fracture Df,n = 0.001 and for df = 0.001,
λm = 1, and λf = 100.

Figure 14: For df = 0.001, λm = 1, and λf = 100, comparison of the mean tracer solution in the
fracture for the equi-dimensional model (numerical) with normal diffusion in the fracture Df,n = 0.001
and the hybrid-dimensional mode (analytical).

5 Two-Phase Flow Test Cases

We present in this section a series of test cases for two-phase flow through a fractured 2 dimensional
reservoir of geometry as shown in figure 15. The domain Ω is of extension (0, 400)m× (0, 800)m and
the fracture width is assumed to be constantly df = 4m. This corresponds to the width of a fault,
although we will keep the terminology fracture in the following. We consider isotropic permeability in
the matrix and in the fractures. All tests have in common that initially, the reservoir is saturated with
water (density 1000 kg

m3 , viscosity 0.001Pa.s) and oil (density 700 kg
m3 , viscosity 0.005Pa.s) is injected

in the bottom fracture, which is managed by imposing non-homogeneous Neumann conditions at the
injection location. The oil then rises by gravity, thanks to it’s lower density compared to water and
by the overpressure induced by the imposed injection rate. Also, Dirichlet boundary conditions are
imposed at the upper boundary of the domain. Elsewhere, we have homogeneous Neumann conditions.
The following test cases present a variety of geological and physical configurations in regard to matrix
and fracture permeabilities and capillary pressure curves.

We use the VAG discretization to obtain solutions for four different models for this two-phase flow
test case. In the first model, fractures are represented as geological structures of equal dimension as
the matrix and therefore, we refer to this model as the equi-dimensional model. The second and third

18



models are the models that we presented in the first part of this paper, referred to as discontinuous
hybrid-dimensional models 1 and 2, since pressure jumps at the matrix-fracture interfaces are allowed.
The fourth model is the continuous hybrid-dimensional model, presented in [9] and recalled in this
paper, which assumes pressure continuity accross the fractures.

Figure 15: Geometry of the reser-
voir under consideration. DFN in
red and matrix domain in blue. Ω =
(0, 400)m×(0, 800)m and df = 4m.

The tests are driven on triangular meshes, extended to 3D
prismatic meshes by adding a second layer of nodes as a trans-
lation of the original nodes in normal direction to the plane of
the original 2D domain. Hence, we double the number of nodal
unknowns, while keeping the number of cell and face unknowns
constant (cf. table 1). In order to account for the stratification
of saturation in normal direction inside the fractures, which can
play a major role in the flow process (see below), we need at
least two layers of cells in the fractures for the equi-dimensional
model, to obtain valid reference solutions. Obviously, the larger
number of cells for the equi-dimensional mesh is due to the need
of tiny cells inside the DFN. In this regard, it is worth to mention
that, with the hybrid-dimensional models, the size of fracture
faces is not restricted by the fracture width, while with the equi-
dimensional model, the fracture width imposes an upper bound
for the size of faces between the matrix and the fracture, due to
mesh regularity. However, all meshes are at fracture scale, here.
The mesh for the hybrid-dimensional models is the same, but
the number of degrees of freedom differs. The supplementary
degrees of freedom for the discontinuous models are located at

the matrix-fracture intersections and capture the pressure discontinuities, as described in the previous
section.

The discrete problem is solved implicitly, where the non-linear system of equations occurring at
each time step is solved via the Newton algorithm with relaxation. The stopping criterion is critrelNewton
on the (L1) relative residual. The resolution of the linear systems is performed by the GMRes solver
(with stopping criterion critrelGMRes on the relative residual), preconditioned by CPR-AMG. The time
loop uses adaptive time stepping, i.e. the objective for the (max per d.o.f.) change in saturation per
time step, ∆Sobj , is given and from this the time step is deduced under the condition that it does
neither exceed a given maximal time step ∆tmax nor 1.2 times the time step of the previous iteration.
Also, if at a given time iteration the Newton algorithm does not converge after 35 iterations, then the
actual time step is divided by 2 and the time iteration is repeated. The number of time step failures
at the end of a simulation is indicated by NChop.

Model Nb Cells Nb dof Nb dof el.

equi dim. 22477 45315 22838

disc. hybrid 16889 35355 18466

cont. hybrid 16889 34291 17402

Table 1: Nb Cells is the number of cells of the mesh; Nb dof is the number of d.o.f. (with two
physical primary unknowns per d.o.f.); Nb dof el. is the number of d.o.f. after elimination of cell
unknowns without fill-in.

The numerical parameters are chosen as follows:
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Model critrelNewton critrelGMRes ∆Sobj ∆tmax
equi dim. 1.E−5 1.E−6 0.5 10d

disc. hybrid 1 1.E−6 1.E−6 0.5 10d

disc. 2 / cont. hybrid 1.E−6 1.E−6 0.5 60d

Table 2: Numerical parameters.

5.1 Comparisons between the equi and hybrid-dimensional solutions for gravity
dominated flow with zero capillary pressure

In this test case, we neglect capillary effects by setting the capillary pressure to zero. To solve this
problem, we use the matrix and fracture pressure and saturation (for, say, the non-wetting phase)
as primary unknowns. The following geological configuration is considered. In the matrix domain,
permeability is isotropic of 0.1 Darcy and porosity is 0.2. In the DFN, permeability is isotropic of
100.0 Darcy and porosity is 0.4.
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Figure 16: Comparison of the equi-dimensional (first line), discontinuous hybrid-dimensional 1 (mid
line) and discontinuous 2 / continuous hybrid-dimensional (last line) numerical solutions for oil satu-
ration at times t = 360, 1800, 3600, 5400 days (from left to right). Zero matrix and fracture capillary
pressures and mf permeability ratio λf/λm = 1000.
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Figure 17: Comparison of the equi-dimensional and hybrid-dimensional matrix and fracture volumes
occupied by oil as a function of time. Zero matrix and fracture capillary pressures and mf permeability
ratio λf/λm = 1000.

Model N∆t NNewton NChop

equi dim. 1270 8927 71

disc. hybrid 1 907 5023 48

disc. hybrid 2 182 1593 0

cont. hybrid 149 1356 0

Table 3: N∆t is the number of successful time steps; NNewton is the total number of Newton iterations
(for successful time steps); NChop is the number of time step chops. Zero matrix and fracture capillary
pressures and mf permeability ratio λf/λm = 1000.

This test case shows impressively, how the incorporation of non linear normal fluxes at the mf
intersections of the discontinuous hybrid-dimensional model 1 allows to get much closer to the equi-
dimensional reference solution than the discontinuous 2 and continuous hybrid-dimensional models.
Only one solution is presented for the discontinuous 2 and continuous hybrid-dimensional, since both
models produce almost indistiguishable results. The supplementary unknowns at the mf interfaces
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enable us to capture the segregation of saturation inside the DFN (due to gravity, here). In this view,
the supplementary d.o.f. appear as a mesh refinement at themf interfaces, that allows to reproduce the
transport in normal direction to the DFN, which is not the case for the discontinuous 2 and continuous
hybrid-dimensional models, since there, saturations at the interfaces are not calculated, but fracture
saturations are used for the upwinding in the non linear mf fluxes. In the gravity dominated test
case shown in figure 16, this becomes particularly important, when gravitational acceleration is in a
steep angle to the fracture network, which can be observed at the upper fracture. The drawback of
this feature is that we have to deal with small accumulation volumes at the mf intersections, which is
reflected in terms of robustness, but the hybrid-dimensional model is still much more robust than the
full equi-dimensional model. The absence of capillarity, of course, emphasizes this difference between
the hybrid-dimensional models, since at the mf interfaces, the matrix does not behave as a capillary
barrier (saturation does not jump) and nothing holds back the oil from leaving the DFN. Also no
capillary diffusion inside the fracture prevents the gravity segregation effect in the normal direction of
the fracture.

5.2 Comparisons between the equi and hybrid-dimensional solutions for gravity
dominated flow with discontinuous capillary pressure

The tests presented here account for capillarity. Inside the matrix domain the capillary pressure
function is given by Corey’s law pm = −am log(1 − S1

m). Inside the fracture network, we suppose
pf = −af log(1 − S1

f ). The hybrid-dimensional models presented in the previous part of this paper
are built to account for saturation jumps at the matrix-fracture interfaces (cf. figure 4). To treat the
degenerated case of af = 0, we adopt a novel variable switch technique presented in [10]. This consists
of introducing generalized variables as primary unknowns, that are used to parametrize the saturation
and capillary pressure curves in order to avoid singularities at the heterogeneities. As a counterpart,
for the discontinuous hybrid-dimensional model 1, the derivatives w.r.t. the generalized variables of
the saturation at the matrix side of the mf interfaces is zero, for certain values of these generalized
variables. To ensure a non singular Jacobian, we replace the accumulation terms occurring in the
equations (12) for νm ∈ dof Γ

Dm by

1

2

∑
K∈Mνm

|ωK,νm |φK
(Sα(rtK , p

n
νm)− Sα(rtK , p

n−1
νm )

∆tn
+
Sα(rtνf , p

n
νm)− Sα(rtνf , p

n−1
νm )

∆tn

)
with νf = νf (νm). This formula is volume conservative. It is important to note that the interfacial
volumes ωνmK , νm ∈ dof Γ

Dm , have to be chosen small in comparison with the fracture volumes. Oth-
erwise, the discretization would artificially widen the drain, as discussed in [10] for the continuous
hybrid-dimensional model.

5.2.1 drain-matrix permeability ratio of 1000

The geological setting is as follows. In the matrix domain, permeability is isotropic of 0.1 Darcy and
porosity is 0.2. In the DFN, permeability is isotropic of 100.0 Darcy and porosity is 0.4. The Corey
parameters are am = 105 and af = 0.
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Figure 18: Comparison of the equi-dimensional (first line), discontinuous hybrid-dimensional 1 (mid
line) and discontinuous 2 / continuous hybrid-dimensional (last line) numerical solutions for oil sat-
uration at times t = 360, 1800, 3600, 5400 days (from left to right). Corey parameters are am = 105,
af = 0 and mf permeability ratio λf/λm = 1000. The mf fluxes (15) are used for the discontinuous
2 / continuous hybrid-dimensional model.
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Figure 19: Comparison of the oil
saturations at time 5400 days ob-
tained with the continuous hybrid-
dimensional using the mf fluxes (15)
(left) and the mf fluxes (16) (right).
Corey parameters are am = 105,
af = 0 and mf permeability ratio
λf/λm = 1000.
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Figure 20: Comparison of the equi-dimensional and hybrid-dimensional matrix and fracture volumes
occupied by oil as a function of time. Corey parameters are am = 105, af = 0 and mf permeability
ratio λf/λm = 1000.

Model N∆t NNewton NChop

equi dim. 3054 18993 406

disc. hybrid 1 1530 7839 20

disc. hybrid 2 271 2010 1

cont. hybrid 1 149 1477 0

cont. hybrid 2 149 1418 0

Table 4: N∆t is the number of successful time steps; NNewton is the total number of Newton iterations
(for successful time steps); NChop is the number of time step chops. Corey parameters are am = 105,
af = 0 and mf permeability ratio λf/λm = 1000.

5.2.2 drain-matrix permeability ratio of 100

The geological setting is as follows. In the matrix domain, permeability is isotropic of 0.1 Darcy and
porosity is 0.2. In the DFN, permeability is isotropic of 10.0 Darcy and porosity is 0.4.
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Figure 21: Comparison of the equi-dimensional (first line), discontinuous hybrid-dimensional 1 (mid
line) and discontinuous 2 / continuous hybrid-dimensional (last line) numerical solutions for oil sat-
uration at times t = 360, 1800, 4320, 5400 days (from left to right). Corey parameters are am = 105,
af = 104 and mf permeability ratio λf/λm = 100. The mf fluxes (15) are used for the discontinuous
2 / continuous hybrid-dimensional model.

zero capillary pressure in the DFN: The Corey parameters are am = 105 and af = 0.
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Figure 22: Comparison of the equi-dimensional and hybrid-dimensional matrix and fracture volumes
occupied by oil as a function of time. Corey parameters are am = 105, af = 0 and mf permeability
ratio λf/λm = 100.

Model N∆t NNewton NChop

equi dim. 933 6552 30

disc. hybrid 1 1182 5619 19

disc. hybrid 2 185 1196 0

cont. hybrid 149 1082 0

Table 5: N∆t is the number of successful time steps; NNewton is the total number of Newton iterations
(for successful time steps); NChop is the number of time step chops. Corey parameters are am = 105,
af = 0 and mf permeability ratio λf/λm = 100.

non-zero capillary pressure in the DFN: The Corey parameters are am = 105 and af = 104.
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Figure 23: Comparison of the equi-dimensional and hybrid-dimensional matrix and fracture volumes
occupied by oil as a function of time. Corey parameters are am = 105, af = 104 and mf permeability
ratio λf/λm = 100.

Model N∆t NNewton NChop

equi dim. 610 2697 6

disc. hybrid 1 188 1243 5

disc. hybrid 2 154 801 0

cont. hybrid 192 1222 0

Table 6: N∆t is the number of successful time steps; NNewton is the total number of Newton iterations
(for successful time steps); NChop is the number of time step chops. Corey parameters are am = 105,
af = 104 and mf permeability ratio λf/λm = 100.
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Figure 24: Zoom on bottom DFN. Comparison of the equi-dimensional oil saturation stratification in
the fractures for Corey parameters af = 0 (left) and af = 1.E4 (right) at time t = 360 days.

We observe a degradation of the hybrid-dimensional solutions w.r.t. the equi-dimensional solution,
when the mf permeability ratio decreases. This is due to the decrease of the mf conductivity ratio
as already observed for the tracer test case in subsection 4.3. Figures 22 and 23 reveil that the
matching of equi- and hybrid-dimensional solutions can be enhanced by adding capillarity in the
DFN. More precisely, we note that the hybrid-dimensional solutions change insignificantly, but the
equi-dimensional solution changes towards the hybrid-dimensional solutions. Capillarity has a diffusive
effect and smoothens out the stratification in the DFN, as shown in figure 24, which agrees better with
the hybrid-dimensional approach of averaging physical quantities over the fracture width. This effect
is in analogy to the transport problem with normal diffusion in the fracture, as given in section 4.4.
It is checked by comparing Figure 18 and the left picture of Figure 19 that the discontinuous 2 and
continuous hybrid-dimensional solutions are almost indistiguishable. On the other hand, Figure 19
exhibits that the solution of both models depends strongly on the choice of the mf fluxes given either
by (15) or by (16). For (15), we observe as expected that (i) oil does not penetrate in the matrix from
the portion of the bottom fracture which is not yet saturated with oil, and (ii) the barrier effect of the
matrix is reduced compared with the equi-dimensional or discontinuous hybrid-dimensional model 1
solutions at the mf interfaces saturated with oil. On the other hand, for (16), (i) oil penetrates in the
matrix even when the fracture is not yet saturated with oil, and (ii) the barrier effect of the matrix is
better reproduced. The discontinuous hybrid-dimensional model does not suffer from these difficulties
since it distinguihes the unknowns at the interfaces capturing the saturation jumps and the unknowns
inside the fracture providing for this test case a zero capillary pressure as expected.

5.3 Comparisons between the equi and hybrid-dimensional solutions for gravity
dominated flow with discontinuous capillary pressure at the matrix-drain in-
terfaces and an upper barrier of matrix rock type

In the matrix domain, permeability is isotropic of 0.1 Darcy and porosity is 0.2. The two lower fractures
are drains of isotropic permeability 100.0 Darcy and porosity 0.4. In the upper fracture, permeability
is isotropic of 0.001 Darcy and porosity is 0.2. Note that the continuous hybrid-dimensional model
does not incorporate a normal permeability in the DFN. We conducted the test case also for this model
and observed, as expected, the unability to reproduce the barrier behaviour of the upper fracture. The
Corey parameters are am = abarrier = 105 and adrain = 0.
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Figure 25: Comparison of the equi-dimensional (first line), discontinuous hybrid-dimensional 1 (second
line) and discontinuous hybrid-dimensional 2 (last line) numerical solutions for oil saturation at times
t = 360, 1800, 3600, 5400 days (from left to right). Corey parameters are am = abarrier = 105, adrain =
0 and mf permeability ratios λbarrier/λm = 0.01 and λdrain/λm = 1000.
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Figure 26: Comparison of the equi-dimensional, discontinuous hybrid-dimensional 1 and discontinuous
hybrid-dimensional 2 numerical liquid pressure at time t = 5400 days (from left to right). Corey
parameters are am = abarrier = 105, adrain = 0 and mf permeability ratios λbarrier/λm = 0.01 and
λdrain/λm = 1000.
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Figure 27: Comparison of the equi-dimensional and hybrid-dimensional matrix and fracture volumes
occupied by oil as a function of time. Corey parameters are am = abarrier = 105, adrain = 0 and mf
permeability ratios λbarrier/λm = 0.01 and λdrain/λm = 1000.

Model N∆t NNewton NChop

equi dim. 2777 15518 376

disc. hybrid 1 1305 6444 9

disc. hybrid 2 241 1676 1

Table 7: N∆t is the number of successful time steps; NNewton is the total number of Newton iterations
(for successful time steps); NChop is the number of time step chops. Corey parameters are am =
abarrier = 105, adrain = 0 and mf permeability ratios λbarrier/λm = 0.01 and λdrain/λm = 1000.

6 Conclusion

The discontinuous hybrid-dimensional models 1 and 2 for two-phase flow through fractured porous
media with pressure discontinuities at the matrix-fracture (mf) interfaces introduced here account for
network of fractures acting both as drains or barrier, general and discontinuous capillary pressures,
and gravity forces. It is compared with the equi-dimensional model on various tracer and two-phase
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flow test cases. For the tracer problem with a fracture dividing the matrix domain, analytical solu-
tions for different model parameters have been derived, both, for the hybrid- and equi-dimensional
models. It turned out that the hybrid-dimensional models lose in precision with decreasing conduc-

tivity ratios
dfλf
Lλm

, which corresponds to steepening the angle between the equi-dimensional velocity
inside the fracture and the fracture tangential directions. Then, it has been shown that adding a small
normal diffusion, of the order of the normal convective flux divided by the fracture width or larger,
in the fracture drives the equi-dimensional solution very close to the hybrid-dimensional solution. It
was expected since the averaging procedure in the derivation of the reduced models corresponds to
add a diffusion in the normal direction inside the fracture network. This translates to the two-phase
flow tests, as described below. The Vertex Aproximate Gradient (VAG) scheme, as introduced in
[12] for the single-phase stationary hybrid-dimensional model, has been presented in a finite volume
formulation for the two-phase flow models. The VAG scheme is used to compare the numerically
derived solutions of four different models for a 2D flow process through a faulted reservoir. More
precisely, the discontinuous hybrid-dimensional solutions (models 1 and 2 derived in this paper) have
been compared to the continuous hybrid-dimensional solution (cf. [9]) w.r.t. a reference solution given
by the equi-dimensional model (full model with fractures represented as heterogeneous layers), for a
variety of geological and physical configurations in regard to matrix and fracture permeabilities and
capillary pressure curves. Since the stratification in normal direction inside the fractures can play a
major role, it is worth to mention that more than one layer of fracture cells is necessary in order to get
valid reference solutions. We observed, that the discontinuous 2 and continuous hybrid-dimensional
models produce solutions, which are almost indistiguishable. In terms of robustness, the test cases
show that these models have a clear advantage. Yet, the discontinuous hybrid-dimensional model 1
still is much more robust than the equi-dimensional model. Moreover, for fracture matrix conductiv-

ity ratios
dfλf
Lλm

> 10, the equi-dimensional model is unpracticable. As for the transport problem, we
observed that for high fracture matrix conductivity ratios, the equi- and hybrid-dimensional solutions
match well and that for lower conductivity ratios, they differ more. On the other hand, by adding
capillarity in the DFN, the hybrid-dimensional solutions fit much more to the equi-dimensional solu-
tion. In fact, the equi-dimensional solution moves towards the hybrid-dimensional solutions. In the
first test case, gravitational segregation has a major influence on the global flow behaviour. This effect
cannot be reproduced by the discontinuous 2 and continuous hybrid-dimensional models, with single
unknowns for the saturation at the DFN and instantaneous normal transport between the interior of
the fractures and the mf interfaces. This remark applies to any cell centered scheme. The supplemen-
tary information on the saturations at the mf interfaces used in the mf mass exchange fluxes of the
discontinuous hybrid-dimensional model 1 enables us to capture gravitational segregation inside the
DFN. Furthermore, in the examples given with capillary pressure in the matrix domain, it appears
that model 1, using both interface and average capillary pressure unknowns in the fracture, restores
the forces due to the capillary pressure difference between the mf interfaces and the interior of the
fractures, whereas for the discontinuous 2 and continuous hybrid-dimensional models, the capillary
pressure is taken constant accross the fractures, for the construction of the mf mass exchange fluxes.
These features make model 1 much more precise on the transport accross the DFN compared with the
discontinuous hybrid-dimensional model 2 and the continuous hybrid dimensional model which cannot
both capture the saturation jump at the interface and provide a good approximation of the capillary
pressure inside the fracture. Due to the assumption of pressure continuity at the mf interfaces (and
the induced absence of λf,n as a model parameter), the continuous hybrid-dimensional model is unus-
able, when it comes to the simulation of barriers. In the barrier test case presented here, we see that
the discontinuous hybrid-dimensional models 1 and 2 perform well, both, in terms of accuracy and
robustness. In any case, we observed a significant gain in precision for the discontinuous 1 hybrid-
dimensional solution w.r.t. the equi-dimensional reference solution, compared to the discontinuous 2
and continuous hybrid-dimensional solutions.
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