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Most land plant species live in symbiosis with arbuscular mycorrhizal fungi. These fungi differentiate essential functional
structures called arbuscules in root cortical cells from which mineral nutrients are released to the plant. We investigated the role of
microRNA393 (miR393), an miRNA that targets several auxin receptors, in arbuscular mycorrhizal root colonization. Expression of the
precursors of the miR393 was down-regulated during mycorrhization in three different plant species: Solanum lycopersicum, Medicago
truncatula, and Oryza sativa. Treatment of S. lycopersicum, M. truncatula, and O. sativa roots with concentrations of synthetic auxin
analogs that did not affect root development stimulated mycorrhization, particularly arbuscule formation. DR5-GUS, a reporter for
auxin response, was preferentially expressed in root cells containing arbuscules. Finally, overexpression of miR393 in root tissues
resulted in down-regulation of auxin receptor genes (transport inhibitor response1 and auxin-related F box) and underdeveloped
arbuscules in all three plant species. These results support the conclusion that miR393 is a negative regulator of arbuscule formation by
hampering auxin perception in arbuscule-containing cells.

Arbuscular mycorrhiza (AM) is a widespread sym-
biosis between soil fungi (Glomeromycota spp.) and
most land plant species. The fungus colonizes the roots
of its host plant, where it obtains carbohydrates (Bago
et al., 2003). In exchange, it provides mineral nutrients
to the plant, especially phosphate, that are taken up from
the soil by its extraradical mycelium, thus considerably

improving plant nutrition in soils of low fertility (Bago
et al., 2003; Smith and Smith, 2011). After spore germi-
nation, the fungus forms a hyphopodium on the root
surface, penetrates the rhizodermis through a prepene-
tration apparatus, colonizes the root tissue intercellularly,
and eventually, forms highly ramified structures called
arbuscules in cortical cells, where mineral nutrients are
released to the host (Parniske, 2008; Harrison, 2012). Each
branch of the arbuscule is surrounded by a plant-derived
periarbuscular membrane that prevents fungal pene-
tration of the root cell cytosol and controls nutrient and
signal exchange between the symbionts. Arbuscule
formation relies on drastic reorganization of the plant
cell and the implementation of a plant genetic program
that remains poorly known, because only few genes
associated with this process have been identified so far
(for review, see Delaux et al., 2013; Gutjahr and Parniske,
2013).

It is well established that plant hormones are key
regulators of plant physiologic and developmental pro-
cesses (Santner et al., 2009), and it has recently become
apparent that some of them are also important for
arbuscule development. For example, the abscisic acid-
deficient mutant sitiens was impaired in arbuscule for-
mation and viability, indicating an important function

1 This work was supported by the French Agence Nationale pour
la Recherche (ANR) Project miRcorrhiza (grant no. ANR–12–JSV7–
0002–01), the French Laboratory of Excellence Project Vers une Théorie
Unifiée des Interactions Biotiques: Rôle des Perturbations Environne-
mentales (grant nos. ANR–10–LABX–41 and ANR–11–IDEX–0002–02),
the Fédération de Recherches 3450 Institute, and the French-Bavarian
University Center (Bayerisch-Französisches Hochschulzentrum/Centre
de Coopération Universitaire Franco-Bavarois; collaboration between
C.G. and J.-P.C.).

2 These authors contributed equally to this work.
* Address correspondence to combier@lrsv.ups-tlse.fr.
The author responsible for distribution of materials integral to the

findings presented in this article in accordance with the policy de-
scribed in the Instructions for Authors (www.plantphysiol.org) is:
Jean-Philippe Combier (combier@lrsv.ups-tlse.fr).



of abscisic acid in arbuscule maintenance (Herrera-Medina
et al., 2007). Conversely, gibberellic acid (GA3) treatment or
constitutive GA3 signaling in DELLA-deficient mutants
suppresses arbuscule formation, and a reduction of
GA3 signaling by stabilized DELLA proteins promotes
arbuscule development (Floss et al., 2013; Foo et al.,
2013). Auxin has also been suggested to play a role
in AM symbiosis, although its exact role in this type
of plant-microbe interaction remains elusive (Hause
et al., 2007; Hanlon and Coenen, 2011). Although an
increase in auxin content in mycorrhizal roots has been
previously reported forMedicago truncatula, maize (Zea
mays), and soybean (Glycine max; Ludwig-Müller et al.,
1997; Kaldorf and Ludwig-Müller, 2000; Fitze et al.,
2005; Ludwig-Müller and Güther, 2007), no change in
auxin content in mycorrhizal roots of tobacco (Nicoti-
ana tabacum) and leek (Allium porrum) has been ob-
served (Torelli et al., 2000; Shaul-Keinan et al., 2002).
Meixner et al. (2005) found that indole-3-acetic acid
(IAA) levels were higher in mycorrhizal soybean roots.
This increase of IAA content in mycorrhizal roots was
lower in the mutant nark, which is deficient in auto-
regulation of nodulation, suggesting that IAA might
play a role in the autoregulation of mycorrhization.
Congruently, a strong decrease of AM colonization but
with normal fungal structures was observed in both
the auxin-resistant tomato (Solanum lycopersicum) mu-
tant diageotropica and the auxin hypertransporting to-
mato mutant polycotyledon, indicating that, indeed,
auxin could play a role in AM colonization (Hanlon
and Coenen, 2011). It is, however, unknown whether
reduced colonization was a direct consequence of the
defective auxin signaling or transport or whether it
was a consequence of cross talk with other hormone
signaling or biosynthesis pathways (Hanlon and Coenen,
2011). Auxin signaling has also been implicated in
legume root symbiosis with nitrogen-fixing rhizobia
(Suzaki et al., 2012). However, disturbance of auxin
signaling only had an impact on nodule development
but not infection, which shares cell biological features
with AM colonization (Mao et al., 2013; Turner et al.,
2013).

Auxin was the first plant hormone to be described,
possibly because of its paramount importance for most
plant developmental processes. Among its many hor-
monal functions (Overvoorde et al., 2010), it is crucial to
regulate cell elongation and cell and organ polarity (Lau
et al., 2008; Kramer, 2009) and could potentially also
exert such a role in plant cell developmental changes
during symbiont accommodation. Auxin is perceived
by nuclear-localized F-box domain-containing proteins
(Dharmasiri et al., 2005; Kepinski and Leyser, 2005), and
one important pathway linking auxin perception to
gene expression is now well established. It involves the
ubiquitination of Auxin (Aux)/IAA proteins by the
transport inhibitor response1 (TIR1)/auxin-related
F-box (AFB) proteins subunit of the Skp, Cullin, F-box
containing complexTIR1/AFB ubiquitin ligase and the
degradation of Aux/IAA proteins by the 26S protea-
some. This degradation then releases the Aux/IAA-

mediated inhibition of auxin response factors and al-
lows these transcription factors to modulate the ex-
pression of their target genes (Hayashi, 2012). TIR1
and several AFB genes encoding auxin receptors are
regulated posttranscriptionally by microRNA393
(miR393) during root development and response to
pathogens (Navarro et al., 2006, 2008; Parry et al., 2009;
Vidal et al., 2010).

miRNAs are small noncoding RNAs that regulate the
expression of target genes having complementary se-
quences by cleaving their mRNAs or inhibiting their
translation (Voinnet, 2009). miRNAs are involved inmost
biological processes, such as development, response to
stresses, and interactionswithmicroorganisms. To date,
only a fewmiRNAs have been characterized with respect
to their role in AM symbiosis. miR171h quantitatively
regulatesmycorrhizal root colonization by targeting the
NODULATION SIGNALING PATHWAY2 (NSP2) tran-
scription factor gene (Lauressergues et al., 2012), and
miR396 regulates lateral root formation during fungal
colonization (Bazin et al., 2013).

The suppression of auxin signaling by miR393 plays
an important role in plant resistance to bacteria (Navarro
et al., 2006). Extrapolating from it, we were interested to
explore whether miR393 could also be involved in reg-
ulating AM interactions. We found that expression of
miR393 was down-regulated in mycorrhizal roots, indi-
cating that an active auxin perception might be needed
during AM symbiosis. In parallel, treatment of plants
with auxin analogs increased the quantity of arbuscules.
Accordingly, the Direct repeat5 (DR5)-GUS promoter,
which serves as an indicator of auxin response, was
activated inmycorrhizal roots, specifically in arbuscule-
containing cells. Overexpression of miR393 led to a
down-regulation of auxin receptor expression and a
concomitant strong defect in arbuscule formation. We
showed this for three different plant species (tomato,
M. truncatula, and rice [Oryza sativa]), indicating that
auxin perception and/or auxin signaling are important
for arbuscule development.

RESULTS

The Expression of miR393 Is Down-Regulated during
AM Symbiosis

To examinewhethermiR393might be involved in the
regulation of AM colonization, we assessed the ex-
pression of miR393 in tomato roots colonized by the
AM fungus Rhizophagus irregularis. The precursors of
miR393 in tomato were identified using the MIReNA
software (Mathelier andCarbone, 2010) and themiR393
of Arabidopsis (Arabidopsis thaliana) as query. The to-
mato genome contains only onemiR393 copy, forwhich
the mature sequence is identical to the Arabidopsis
miRNA (Supplemental Fig. S1; Lin et al., 2013). Tomato
roots inoculated with R. irregularis were harvested and
assessed for root colonization and the induction of
a mycorrhiza-specific plant marker gene, phosphate
transporter4 (PT4;Harrison et al., 2002; Paszkowski et al.,



2002; Nagy et al., 2005; Supplemental Fig. S2). Root col-
onization (approximately 60%) was accompanied by a
strong PT4 induction (Supplemental Fig. S2). Further-
more, we observed a decrease in microRNA precursor
miR393 transcript level and mature miR393 accu-
mulation (Fig. 1A; Supplemental Fig. S3). To know if
the down-regulation of miR393 is a general feature of
mycorrhization, we measured the expression of pre-
cursors of miR393 during mycorrhizal colonization
in two phylogenetically distant species: the model
plants M. truncatula and rice. The genome of both
plants contains two precursors of miR393 according to
miRbase (www.mirbase.org; Supplemental Fig. S1). We
first monitored root length colonization and the ex-
pression of mycorrhiza-specific plant PT4 and PT11 in

M. truncatula and rice, respectively (Supplemental Fig. S2;
Harrison et al., 2002; Paszkowski et al., 2002; Nagy
et al., 2005). As for tomato, the miR393 precursors of
M. truncatula and rice accumulated to lower levels in colo-
nized roots compared with noncolonized roots (Fig. 1,
B and C). In a time course experiment, the down-
regulation of miR393 in M. truncatula correlated with
the onset of arbuscule formation,whichwas revealed by
PT4 expression, at 3 weeks after inoculation and con-
tinued until 9 weeks postinoculation when the symbi-
osis was well established (Supplemental Fig. S4). This
down-regulation of miR393 was not detected in roots
treated with exogenous applications of Myc-LCOs
and COs (Supplemental Fig. S5). These molecules are
symbiotic molecular signals released by the fungus
before colonization (Maillet et al., 2011; Genre et al.,
2013). This suggests that down-regulation of miR393
specifically occurs later during root colonization. To
support this hypothesis, the down-regulation of miR393
during mycorrhization was not observed in a doesn’t
make infection3 (dmi3) mutant, which is impaired in
the formation of symbiotic structures (Supplemental
Fig. S6).

Auxin Treatment Increases Arbuscule Abundance

The previous experiments showing that miR393 was
down-regulated in AM-colonized roots suggested that
auxin might positively affect mycorrhizal colonization.
To test this hypothesis, we treated tomato and
M. truncatula plants with the synthetic auxin analog
2,4-dichlorophenoxyacetic acid (2,4-D; Song, 2013).
Because high concentrations of 2,4-D are lethal to
plants or can strongly influence root development, we
first monitored the effect of 2,4-D concentration on root
development. Because the tomato root system pro-
duced no lateral roots under our in vitro conditions,
we tested the effect of several concentrations of 2,4-D
on primary root length. For M. truncatula, we mea-
sured both root length and root branching. Concen-
trations less than 1028

M influenced neither the root
length of tomato plants nor the root length and root
branching of M. truncatula (Supplemental Fig. S7).
Therefore, we treated tomato and M. truncatula plants
three times per week with 10210

M 2,4-D during my-
corrhiza development. Whereas the root development
was not affected by prolonged watering with low
concentrations of 2,4-D, treatment with 2,4-D resulted
in a significant increase of tomato root length coloni-
zation (+16%) compared with treatment with water
(Fig. 2A), and particularly, the proportion of arbus-
cules was significantly higher in 2,4-D-treated roots
(+32%) compared with control roots (Fig. 2A). Treat-
ment of M. truncatula roots led to comparable results
(i.e. root length colonization [+57%] and arbuscule
[+119%] abundance were increased by the 2,4-D
treatment; Fig. 2B). Because monocotyledonous plants
are hardly sensitive to 2,4-D, we used 10210

M naphtyl
acetic acid (NAA) to examine the effect of auxin

Figure 1. Down-regulation of premiR393 in AM symbiosis. Quantifi-
cation by quantitative reverse transcription (qRT) -PCR of the expres-
sion of premiR393 in nonmycorrhizal (MYC2) and mycorrhizal (MYC+)
roots of tomato (A), M. truncatula (B), and rice (C) colonized by
R. irregularis. The measured transcripts were normalized to the relative
expression value in nonmycorrhizal roots. Error bars represent SEM.
*, Significant difference between the two treatments according to the
Kruskal-Wallis test (n = 6, P , 0.05).



treatment on colonization of rice. At this NAA con-
centration, the frequency of colonization was slightly
reduced (219%). Nevertheless, arbuscule abundance
in the colonized areas was strongly increased (+ 20%;
Fig. 2C). Taken together, these data showing a lower
miR393 expression in mycorrhizal roots and a higher

arbuscule formation in response to exogenous auxin
treatments suggest that auxin signaling may be in-
volved in arbuscule development.

Auxin Response Is Activated in
Arbuscule-Containing Cells

Auxin regulates the formation of lateral roots, and it
has been shown that overexpression of miR393 leads
to a decreased number of lateral roots (Vidal et al.,
2010). It is also known that mycorrhizal root systems
are generally more ramified (Oláh et al., 2005; Gutjahr
et al., 2009; Mukherjee and Ané, 2011). Thus, the de-
creased expression of miR393 that we observed in
mycorrhizal roots could be related to a stimulatory
effect of the fungus on lateral root formation. However,
auxin and auxin signaling could also play a more spe-
cific and direct role in the establishment of the symbio-
sis. To reveal the stage of mycorrhizal colonization at
which auxin signaling intervenes, we attempted to
identify cells within colonized roots that would display
a higher auxin response. We visualized the activity of
DR5, a synthetic auxin-inducible promoter, fused to the
GUS reporter gene (Ulmasov et al., 1997; Chaabouni
et al., 2009). We first characterized the DR5-GUS ex-
pression pattern in nonmycorrhizal tomato roots. GUS
staining was detected in the root tips and lateral root
primordia (Supplemental Fig. S8), which is a common
pattern of DR5 activity in roots (Chaabouni et al., 2009).
In mycorrhizal roots, strong additional GUS staining
was present in larger patches localized in the cortex and
apparently not linked to meristems (Fig. 3, A and B;
Supplemental Fig. S9). To assess whether this staining
corresponded to colonization units, we used specific
fluorescent dyes: ImaGene Green, which is a fluores-
cent substrate of GUS (see “Materials and Methods”),
and Uvitex2B or fluorescein-conjugated wheat germ
agglutinin (WGA-FITC) to visualize the fungus (Diagne
et al., 2011); each label was confirmed to be specific to
cells expressing GUS or the fungus, respectively, except
an unspecific labeling of lignified cell walls by ImaGene
Green (Supplemental Fig. S10). Interestingly, dual la-
beling revealed that the nonmeristematic regions dis-
playing GUS activity corresponded to root cortical
cells containing arbuscules (Fig. 3, D–I). To investigate
whether this specific localization of GUS activity could
be generalized to other plant species, similar experiments
were performed on stable transgenic M. truncatula and
rice DR5-GUS lines (Scarpella et al., 2003; Herrbach et al.,
2014). For both species, GUS staining was observed in
root meristems (data not shown) and arbuscule-
containing cells. However, whereas the GUS label-
ing in M. truncatula roots was highly specifically
correlated to the presence of arbuscules (Fig. 4, A–F),
the GUS staining in rice was more diffuse across all
tissue layers including root hairs. However (apart
from root meristems), its highest intensity was re-
stricted to arbuscule-containing root portions (Fig. 4,
G and H).

Figure 2. Frequency of colonization and arbuscule abundance in-
creased in response to auxin treatment. Frequency (F) of mycorrhi-
zation and arbuscule abundance (a) in roots of tomato (A) and
M. truncatula (B) in response to solvent control (22,4-D) or 10210

M 2,4-D
(+2,4-D). C, F of mycorrhization and a in roots of rice in response
to solvent control (2NAA) or 10210

M NAA (+NAA). Error bars
represent SEM. Asterisks indicate significant difference between
the two treatments according to the Kruskal-Wallis test (n = 6).
*, P , 0.05. **, P , 0.01.



These data suggest that arbuscule development or
functioning is accompanied by an auxin response.

Overexpression of miR393 Causes Inhibition of
Arbuscule Development

To specifically investigate the impact of altered auxin
signaling on mycorrhiza development, we transformed
tomato roots using Agrobacterium rhizogeneswith a vector
to overexpress the precursor of miR393 under the control
of the 35S promoter. As expected, these transgenic roots
significantly overexpressed the precursor of miR393 and
the mature miR393 (Supplemental Fig. S11). Accordingly,
transcripts of miR393 target genes were detected at lower
levels than in control roots (Supplemental Fig. S12). The
three potential target genes of miR393 in tomato had been
identified by using psrnatarget (Dai and Zhao, 2011) and
according to their homology, with the TIR1-AFB gene
family members of Arabidopsis (Supplemental Figs. S13

and S14). We analyzed the transformed roots of 15 chi-
meric plants and repeated the experiment three times. Al-
though the overall colonization of miR393-overexpressing
roots was slightly decreased (Fig. 5A), arbuscule formation
was strongly reduced (Fig. 5, A and D). Reduction in
arbuscule formation caused by miR393 overexpression
was confirmed by the expression level of the gene PT4,
which is exclusively expressed in arbuscule-containing
cells and therefore, an unequivocal marker for arbus-
cule abundance (Fig. 5B). Observation of arbuscule
morphology revealed that miR393-overexpressing roots
only allowed the formation of stunted arbuscules with
coarse, lower-order branches and no fine branches (Fig.
5, D and H). Moreover, we observed finger-like hyphal
protrusions into cortical cells, indicating that, in some
cases, arbuscule formation was already blocked at the
stage of cell penetration (Fig. 5, F and G).

To investigate whether miR393 overexpression would
perturb arbuscule development in other plant species, we
transformed M. truncatula roots with a vector containing

Figure 3. DR5:GUS expression in
arbuscule-containing cells in roots of
tomato colonized by R. irregularis. A,
DR5:GUS staining (5-bromo-6-chloro-
3-indolyl-b-D-glucuronic acid) of root
tips (white arrows) and colonized root
tissue (black arrows) by R. irregularis.
Bar = 500 mm. B, Higher magnification
of DR5:GUS staining of a colonized
root. Bar (for B and C) = 100 mm.
C, Fungal staining of the same root seg-
ment using WGA-FITC. D to F, Longi-
tudinal root confocal section containing
arbuscules. Bar = 50 mm. G to I, Con-
focal root cross section containing
arbuscules. Bar = 50 mm. D and G,
Fungal staining using Uvitex2B. E and
H, DR5:GUS staining using ImaGene
Green. F and I, Overlaps of images D and
E and images G and H, respectively.



the p35S-miR393 cassette. M. truncatula hairy roots
transformed with the p35S-miR393 construct showed
higher transcript levels of miR393 and lower transcript
levels of the miR393 target genes TIR1, AFB2, and AFB4
(Supplemental Figs. S12 and S13). They were also less
sensitive to auxin treatment, which was determined
by root elongation assays and DR5-GUS expression
(Supplemental Fig. S15). As for tomato, the three poten-
tial target genes of miR393 in M. truncatula were identi-
fied by BLAST homology with the TIR1-AFB protein
family members of Arabidopsis (Supplemental Figs. S13
and S14). Similar to tomato, the expression of the arbus-
cule marker PT4 was decreased compared with control
roots (Fig. 6A), and arbuscule formation was defective:
roots overexpressing miR393 contained many hyphal
protrusions into cortical cells that did not develop into
arbuscules, and arbuscules had a lower magnitude of
branching compared with control arbuscules (Fig. 6, B–E).
Two independent stable transgenic lines of the monocot
rice, overexpressing the miR393 (Xia et al., 2012),
revealed a similar phenotype. The roots or 35S-

miR393-transformed plants did not contain any mature
arbuscules like in control roots (Fig. 6G) but instead,
numerous abortive or poorly branched arbuscules (Fig. 6,
H–J). The arbuscule phenotype was confirmed by
decreased transcript accumulation of the arbuscule
marker gene PT11 in miR393-overexpressing roots
compared with control roots (Fig. 6F). In summary,
miR393 overexpression hampers arbuscule development
in three distantly related plant species.

DISCUSSION

Previous studies in several plant species had shown
a different auxin level in mycorrhizal roots compared
with nonmycorrhizal roots but without any consen-
sual role (Jentschel et al., 2006; Campanella et al.,
2007). Some tomato mutants with pleiotropic pheno-
types related to impaired auxin signaling or transport
exhibited a defect in mycorrhizal colonization but
without any arbuscule defect (Hanlon and Coenen,

Figure 4. DR5:GUS expression in
arbuscule-containing cells ofM. truncatula
and rice roots colonized by R. irregu-
laris. A to C, Longitudinal M. trunca-
tula root confocal section containing
arbuscules. Bar = 50 mm. D to F,
Confocal M. truncatula root cross
section containing arbuscules. Bar =
50 mm. A and D, Fungal staining using
Uvitex2B. B and E, DR5-GUS staining
using ImaGene Green. C and F, Over-
laps of images A and B and images D and
E, respectively. G, DR5:GUS staining
(5-bromo-4-chloro-3-indolyl-b-D-glucuronic
acid, cyclohexylammonium salt) shows a
colonized root of rice by R. irregularis.
Bar = 1 mm. H, Higher magnification of
DR5-GUS staining of a colonized root of
rice. Black arrows show the arbuscule-
containing cells. Bar = 5 mm.



2011). Here, we collected evidence that auxin per-
ception is required for arbuscule development,
because (1) the miR393, which is known to target
auxin receptor transcripts, was down-regulated in
mycorrhizal roots, (2) treatments of roots with low
concentrations of 2,4-D or NAA increased arbus-
cule abundance, (3) the expression of the DR5-GUS
reporter for auxin response was mainly restricted to
arbuscule-containing cells, and (4) overexpression
of miR393 strongly impaired arbuscule develop-
ment. These phenomena were observed in three
plant species, including monotyledons and dicot-
yledons, indicating that the requirement of auxin
perception for arbuscule development is conserved,
at least across the angiosperms. To date, only two
miRNAs have been reported to be regulated and play
a role during AM symbiosis (Lauressergues et al.,
2012; Bazin et al., 2013). We show here that miR393
is another miRNA regulated in AM symbiosis with
a potential negative impact on arbuscule formation.
Several fungi, such as plant pathogens (Reineke

et al., 2008) or ectomycorrhizal fungi (Tranvan et al.,
2000; Felten et al., 2009), are able to synthesize auxin.
Our data on DR5-GUS activity show that the auxin
response increased in roots colonized by R. irregularis,
mainly in cells containing arbuscules. This increase in
auxin response could be caused by increased auxin
accumulation in arbuscule-containing cells. Although
a previous study has shown that AM fungi alone
do not produce auxin (Jentschel et al., 2006), we
cannot exclude that they are capable of producing

this hormone in planta to improve their colonization
success.

Fu and Harberd (2003) have shown that, in Arabi-
dopsis, auxin stimulates GA3-mediated DELLA pro-
tein destabilization. In this context, the promoting
effect of auxin signaling on mycorrhiza formation
seems not to be in agreement with the study by Floss
et al. (2013) showing that DELLA proteins, by repres-
sing GA3 signaling, are positive regulators of arbuscule
formation. However, DELLA expression in the vas-
culature was sufficient to drive arbuscule formation in
the cortex (Floss et al., 2013), although we have ob-
served auxin responses in arbuscule-containing corti-
cal cells. It is, therefore, possible that DELLA and
auxin act in different cell types. Furthermore, we have
seen that DELLA gene expression is decreased in
M. truncatula roots with reduced sensitivity to auxin
(Supplemental Fig. S16).

Arbuscule development is preceded in the cortical cell
by the formation of a prepenetration apparatus corre-
sponding to cytoplasmic aggregations that organize the
apoplastic space in which the arbuscule will develop
(Genre et al., 2008). The fungus can then penetrate the
cell by producing an arbuscular trunk from which
coarse and later, fine hyphal branches will emerge to
form themature arbuscule (Gutjahr andParniske, 2013).
This process is severely hampered in cortical cells
of miR393-overexpressing roots, which only display
arbuscular trunks or stunted arbuscules with highly re-
duced and disorganized ramifications. This is reminiscent
of the phenotype of vapyrinmutants, which are defective

Figure 5. Overexpression of miR393 in tomato roots inhibits formation of arbuscules. A, Frequency (F) of mycorrhization and
arbuscule abundance (a) in control and miR393-overexpressing roots of tomato. B, Expression measured by qRT-PCR of my-
corrhiza-specific plant PT4 in control and miR393-overexpressing roots. The measured transcripts were normalized to the
relative expression value in control (empty vector-transformed) roots. Error bars represent SEM. *, Significant differences between
the genotypes according to the Kruskal-Wallis test (n = 6, P , 0.05). C and D, Confocal microscopy images showing my-
corrhizal colonization stained with WGA-FITC of control (C) and miR393-overexpressing (D) roots. Bars = 25 mm. E to H,
Arbuscules (arrows) images in control (E) and miR393-overexpressing roots (F–H) stained with ink. Bars = 25 mm.



in a protein of unknown function but proposed to be an
executor of intracellular accommodation (Feddermann
et al., 2010; Pumplin et al., 2010; Gutjahr and Parniske,
2013). Continuous arbuscule branching is accompanied
by the formation in cortical cells of a periarbuscular
membrane (PAM), which corresponds to an exocytosis-
mediated massive extension of the plasma membrane
surrounding each fine arbuscular branch. Interestingly,
mutants altered in the exocytotic machinery also show
arbuscule branching defects (Ivanov et al., 2012; Lota
et al., 2013), indicating that exocytosis is required for
PAM extension and arbuscule formation. The PAM con-
tains a distinct set of proteins and can be considered as a
uniquemembrane domain that differs from the peripheral
plasma membrane (Pumplin and Harrison, 2009; Kobae
and Hata, 2010; Zhang et al., 2010). Arbuscule develop-
ment requires the polarization of individual cortical cells
within the tissue context, and vesicle trafficking for
PAMconstruction is likely to be cytoskeletondependent
(Brandizzi and Wasteneys, 2013). Polarization during

arbuscule development is accompanied by rearrange-
ment of the actin and microtubule cytoskeleton, such
that,finally, actinfilaments run alongarbuscule branches
andmicrotubules formabasket-like structure around the
arbuscule (Genre and Bonfante, 1998). Auxin is regarded
to be a crucial signaling substance for development and
maintenance of cell polarity in plants (Yang, 2008), and
artificial elevation of auxin concentration in epidermal
cells leads to a reorganization of actin filaments and mi-
crotubules (Holweg et al., 2004; Nick et al., 2009). Fur-
thermore, local auxin maxima lead to a cell-specific
repolarization of membrane-localized pinoid proteins,
which are auxin efflux carriers, in a TIR1-dependent
manner (Sauer et al., 2006). Taking together these pub-
lished data, it is tempting to speculate that the malfor-
mation of arbuscules in roots overexpressingmiR393 (i.e.
with altered expression of auxin receptors and thus,
auxin signaling) could result fromadefect in cytoskeletal
rearrangement and cell polarization. AUXIN BINDING
PROTEIN1 (ABP1) is another plasmamembrane and

Figure 6. Overexpression of miR393
in M. truncatula and rice roots inhibits
formation of arbuscules. A and F,
Expression, measured by qRT-PCR, of
mycorrhiza-specific plant PT4 (A) and
PT11 (F) in control roots (transformed
with an empty vector) compared
with miR393-overexpressing roots of
M. truncatula (A) and rice (F). The mea-
sured transcripts were normalized to
the relative expression value in control
roots. Error bars represent SEM. *, Sig-
nificant differences between the geno-
types according to the Kruskal-Wallis
test (n = 6, P , 0.05). Fungal structures
(arrows) observed in control (B and G)
and miR393-overexpressing (C–E and
H–J) roots of M. truncatula (B–E) and
rice (G–J) inoculated with R. irregularis.
Fungal structures are stained with ink
(B–E) or trypan blue (G–J). Bars in B to
E = 25 mm. Bars in G to J = 5 mm.



endoplasmic reticulum-localized type of auxin receptor
(Sauer and Kleine-Vehn, 2011) that, in Arabidopsis, has
been implicated in regulating leaf pavement cell polarity
through activation of r-like guanosine triphosphatases
and cytoskeletal changes (Xu et al., 2011). It will be in-
teresting to investigate whether ABP1 also plays a role in
AM development.
The mechanisms underlying the establishment of

AM symbiosis are far from being fully understood.
Nevertheless, showing additional evidence that they
are likely conserved across plant kingdom, at least
with regard to the requirement for an auxin signaling,
provides new leads toward deciphering this highly
complex developmental process.

MATERIALS AND METHODS

Biological Materials

Medicago truncatula ‘Jemalong’ genotype A17 and tomato (Solanum lycopersi-

cum ‘MicroTom’) seeds were surface sterilized by bleach and water for 2 to 5 min

and then rinsed five times in sterile water. M. truncatula and tomato plants were

cultivated in 250-mL pots filled with Oil-Dri US special substrate (Damolin) for

8 and 12 weeks, respectively, in a growth chamber (M. truncatula: 16-h/8-h at

22°C/20°C day-night cycle, 400 mmol m22 s21; tomato: 16-h/8-h at 25°C/25°C

day-night cycle, 600 mmol m22 s21) and watered every 2 d with modified Long

Ashton medium containing a low concentration (7.5 mM) of phosphate (Balzergue

et al., 2011). Rhizophagus irregularis (formerly named Glomus intraradices)

DAOM197198 sterile spores were purchased from Agronutrition. Tomato and

M. truncatula roots were inoculated with 400 spores of R. irregularis per plant.

M. truncatula DR5-GUS plants were provided by Sandra Bensmihen (Laboratoire

des Interactions Plantes-Microorganismes; Herrbach et al., 2014). For auxin

treatment, plants were watered three times a week with Long Ashton medium

supplemented or not with 10210
M 2,4-D during mycorrhiza development. Fifteen

plants (for mycorrhization) and six plants (for quantitative PCR) per experiment

were used for all experiments with three different biological replicates. One

representative of three independent experiments is shown.

Control and miR393 overexpressing seeds of Oryza sativa ssp. ‘Japonica’ ZH11

were provided by Mingyong Zhang (Chinese Academy of Science; Xia et al.,

2012). The O. sativa ssp. ‘Japonica’ Taichung 65 DR5-GUS line (Scarpella et al.,

2003) was provided by Pieter B.F. Ouwerkerk (University of Leiden, Leiden, The

Netherlands). Rice seedlings pregerminated for 4 d in the dark were inoculated

with 500 spores of R. irregularis (SYMPLANTA) in 128-mL pots filled with quartz

sand (16-h/8-h at 26°C/26°C day-night cycle, 223 mmol m22 s21). They were

fertilized two times a week with 10 mL of one-half-strength Hoagland solution

containing 25 mM phosphate and 0.001% (w/v) Sequestrene rapid (Syngenta). For

auxin treatment, 10210
M NAA was added to the fertilizer or water and supplied

three times a week. Rice roots were harvested 6 weeks postinoculation. Six plants

were used in each experiment. The root system of each plant (n = 6) was divided

into two equal parts: one-half was used for AM quantification (n = 3), and one-

half was used for RNA extraction (n = 3, quantitative PCR analysis).

For root length measurement, composite plants were transferred to a

modified Fahraeus medium containing 2,4-D (0.2 mM) or solvent control. Root

apices were directly marked on the petri dishes at time point zero to monitor

the root elongation. At 14 d, root elongation was scored from digital images of

petri dishes using ImageJ software.

Plasmid Construction

Precursor of miR393 was amplified using Pfu polymerase (Promega), and

the primers are shown in Supplemental Table S1. They were cloned using XhoI

and NotI restriction enzymes into the pPEX-discosoma RED (DsRED) plasmid

(Combier et al., 2008) for overexpression under the control of the strong

constitutive Cauliflower mosaic virus 35S promoter.

Plant Transformation

Root transformations of tomato and M. truncatula were performed with

Agrobacterium rhizogenes as described by Boisson-Dernier et al. (2001).

Transformed roots were selected by observation of DsRED fluorescence using

a fluorescence binocular (Leica). Control roots corresponded to roots trans-

formed with A. rhizogenes carrying the empty vector pPEX-DsRED.

Expression Analyses

Total RNAwas extracted using a Plant RNeasy Mini Kit (Qiagen) according

to the manufacturer’s instructions. Total RNA was treated by DNase I

(Promega) to remove any genomic DNA contamination. Reverse transcription

was performed using M-MLV Reverse Transcriptase, RNase H Minus, Point

Mutant (Promega) on 500 ng of total plant RNA. For each experiment, six in-

dependent plants or transformants were analyzed. Quantitative PCR amplifica-

tions were conducted on a Roche LightCycler 480 System (Roche Diagnostics)

under the following conditions: 95°C for 5 min and then 45 cycles of 95°C for 15 s

and 60°C for 1 min. The various primer sets used are described in Supplemental

Table S1. The measured transcripts were normalized to the relative expression

value in nonmycorrhizal roots. For the miR393 overexpressing lines inoculated

with R. irregularis, expression of genes of interest was normalized to the relative

expression value of mycorrhizal control roots. Actin, ubiquitin, and cyclophilin

(Supplemental Table S1) were used as reference genes for normalization of gene

expression of tomato, M. truncatula, and rice, respectively.

Northern-blot analyses were performed as described by Lauressergues

et al. (2012).

Identification of Target Genes and Phylogenic Tree

Putative miR393 target genes in M. truncatula and tomato were found by

using psRNAtarget (Dai and Zhao, 2011). The protein sequences of putative

targets were extracted, and we performed a phylogenetic analysis. Amino acid

alignments were made using Tcoffee, and phylogenetic trees were performed

using Mega5 (maximum likelihood, bootstrap = 100; Tamura et al., 2011;

Supplemental Figs. S13 and S14).

Histochemical Staining and Microscopy Studies

5-Bromo-6-chloro-3-indolyl-b-D-GlcA cyclohexyl ammonium salt GUS staining

was performed as described by Combier et al. (2008). GUS expression at the

cellular/tissue level was detected by treating the transgenic tissue in 50 mM

ImaGene Green C12FDGlcU substrate (ImaGene Green GUS Gene Expression Kit;

Invitrogen) in phosphate buffer (pH 7) at 37°C for 2 h in the dark. GUS activity was

detected by fluorescence microscopy using the Leica SP2 Confocal Microscope.

Fungal structures were visualized by staining with 0.01% (w/v) Uvitex2B in

phosphate buffer (pH 7) for 30 min at room temperature (Diagne et al., 2011).

Root sections (50 mm) were made using the vibratome VT1000S from samples

embedded in 4% (w/v) agarose. For root mycorrhizal phenotyping, roots were

cleared in 10% (w/v) KOH, rinsed in sterile water, treated for 30 min with

WGA-FITC (Invitrogen), which binds fungal chitin, washed three times for

10 min in PBS, and observed using an inverted light microscope or a confocal

microscope (Leica). Alternatively, they were stained with Schaeffer black ink as

described by Vierheilig et al. (1998). Quantification of mycorrhizal colonization

was performed as described by Trouvelot et al. (1986): the frequency of my-

corrhiza in the root system and the arbuscule abundance (percentage) were

calculated in the colonized root sections using Mycocalc software (http://

www2.dijon.inra.fr/mychintec/Mycocalc-prg/download.html). Fifteen root

systems of tomato and M. truncatula and two mutant lines (6-6 and 31-2) of

rice were analyzed, and each experiment was repeated three times. Trypan

blue staining of rice roots was performed as described (Gutjahr et al., 2008)

Statistical Analyses

The mean values for relative gene expression (n = 6) or mycorrhization rates

(n = 15) were compared using the Kruskal-Wallis test, and when significant, a

pairwise comparison was made using the nonparametric Mann-Whitney test.

In the figures, asterisks indicate significant differences compared with the

control (P , 0.05 or P , 0.01), and error bars represent the SEM.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Conservation of mature miR393.
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Supplemental Figure S6. Expression of M. truncatula precursor of miR393
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marker in tomato roots.
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Supplemental Figure S12. Expression of miR393 targets in miR393-
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