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Introduction

Understanding and predicting the asymptotic behaviour of systems arising from mechanics and physics is a fundamental issue. A key concept in the study of dissipative systems is the global attractor, a compact invariant set which attracts uniformly the bounded sets of the phase space (see [START_REF] Babin | Attractors of evolution equations[END_REF][START_REF] Hale | Asymptotic behavior of dissipative systems[END_REF][START_REF] Ladyzhenskaya | Attractors for semigroups and evolution equations[END_REF][START_REF] Raugel | Global attractors in partial differential equations[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF] for reviews on this subject).

One major drawback of the global attractor is that the rate of attraction of the trajectories may be small, and consequently, it may be sensible to perturbations. In fact, global attractors are generally upper semi-continuous with respect to perturbations, but the lower semi-continuity property can be proved only in some particular cases (see e.g. [START_REF] Babin | Attractors of evolution equations[END_REF][START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF][START_REF] Raugel | Global attractors in partial differential equations[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]). This includes of course perturbations which are obtained by time and/or space discretization of the governing equations [START_REF] Zelati | Multivalued attractors and their approximation: applications to the Navier-Stokes equations[END_REF][START_REF] Stuart | Dynamical systems and numerical analysis[END_REF][START_REF] Wang | Approximation of stationary statistical properties of dissipative dynamical systems: time discretization[END_REF][START_REF] Wang | Numerical algorithms for stationary statistical properties of dissipative dynamical systems[END_REF].

The notion of exponential attractor has been proposed in [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF]: it is a compact positively invariant set which contains the global attractor, has finite fractal dimension and attracts exponentially the trajectories. Compared with the global attractor, an exponential attractor is expected to be more robust to perturbations; it can also capture important transient behaviours. We note however that, contrary to the global attractor, an exponential attractor is not necessarily unique, so that its construction relies upon an algorithm.

The continuity of exponential attractors was shown in [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF] for classical Galerkin approximations, but only up to a time shift (see also [START_REF] Fabrie | Uniform inertial sets for damped wave equations[END_REF][START_REF] Galusinski | Perturbations singulières de problèmes dissipatifs : étude dynamique via l'existence et la continuité d'attracteurs exponentiels[END_REF]). In [START_REF] Efendiev | Exponential attractors for a singularly perturbed Cahn-Hilliard system[END_REF], Efendiev, Miranville and Zelik proposed a construction of exponential attractors where the continuity holds without time shift (see also [START_REF] Efendiev | Continuous dependence on a parameter of exponential attractors for chemotaxis-growth system[END_REF]). Moreover, the symmetric Hausdorff distance between the perturbed attractor and the unperturbed attractor is estimated. Their construction, which is based on a uniform "smoothing property" and an appropriate error estimate, is valid in Banach spaces; it has been adapted to many situations, including singular perturbations (see [START_REF] Fabrie | Uniform exponential attractors for a singularly perturbed damped wave equation[END_REF][START_REF] Gatti | A construction of a robust family of exponential attractors[END_REF][START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF] and references therein). But, up to now, perturbations due to time or space discretization have not been considered (see however [START_REF] Aida | Global stability of approximation for exponential attractors[END_REF] for related robustness results for Galerkin approximations)

The purpose of this paper is to address the case of a time discretization on a model problem. The natural perturbation parameter is the time step τ > 0; τ = 0 corresponds to the continuous-in-time system. For every τ ≥ 0 small enough, we obtain an exponential attractor M τ for the corresponding system, and we prove that M τ converges to M 0 for the symmetric Hausdorff distance, with an explicit estimate of this distance. Moreover, the fractal dimension of M τ is bounded by a constant, and M τ attracts the bounded sets of the phase space, uniformly with respect to τ .

We first state the continuity result in an abstract form, in a Banach setting (Theorem 2.5). The assumptions needed here may seem rather lengthy, but they should be interpreted as a methodology (see Remark 2.6 for details). The essential tool is the construction in [START_REF] Efendiev | Exponential attractors for a singularly perturbed Cahn-Hilliard system[END_REF].

The abstract result is applied to a dissipative reaction-diffusion equation with a polynomial nonlinearity on a bounded domain (see (3.1)). This example includes the famous Allen-Cahn [START_REF] Allen | A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsing[END_REF] in any space dimension, also known as the Chafee-Infante equation [START_REF] Chafee | A bifurcation problem for a nonlinear partial differential equation of parabolic type[END_REF]. The time semi-discrete problem is provided by the backward Euler scheme (see (4.1)).

For the continuous problem, existence of a global attractor which has finite fractal dimension is well-known (see e.g. [START_REF] Chepyzhov | Attractors for equations of mathematical physics[END_REF][START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF][START_REF] Marion | Attractors for reaction-diffusion equations: existence and estimate of their dimension[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]), and exponential attractors have been constructed in [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF][START_REF] Efendiev | The dimension of the global attractor for dissipative reactiondiffusion systems[END_REF]. A fully discrete approximation of the problem was considered in [START_REF] Shen | Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations[END_REF], where the upper semi-continuity of the global attractor with respect to the discretization parameters was shown in one, two and three space dimension, with growth restriction on the nonlinearity in the latter case.

The proof is organized as follows. The estimates for the continuous problem are derived in Section 3, their discrete counterparts are derived in Section 4, and the error between the continuous and the discrete solution is estimated in Section 5. The main result is summarized in Theorem 6.1. We point out (Corollary 6.2) that this result implies a uniform bound on the dimension of the global attractors, which is generally very difficult to obtain (see e.g. Remark 3 in [START_REF] Ezzoug | Semi-discrete weakly damped nonlinear 2-D Schrödinger equation[END_REF]).

We believe that our abstract result can be applied to a large class of parabolic problems, and for a large choice of time discretizations, possibly with some slight modifications. For instance, the two-dimensional Navier-Stokes equation discretized by the backward Euler scheme could be considered. In this case, the discrete-in-time system should not be defined on the whole Hilbert space, by lack of uniqueness [START_REF] Zelati | Multivalued attractors and their approximation: applications to the Navier-Stokes equations[END_REF], but on a properly chosen ball of radius R(τ ) where R(τ ) → ∞ as τ → 0.

We also expect that our methodology can be generalized to damped wave equations. Finally, we note that it would be very interesting to obtain a result similar to Theorem 6.1, but for a space discretization instead of a time discretization.

The abstract setting

Throughout Section 2, H denotes a Banach space with norm • H . We recall that a continuous-in-time semi-group {S(t), t ∈ R + } on H is a family of (nonlinear) operators such that S(t) is a continuous operator from H into itself, for all t ≥ 0, with S(0) = Id (identity in H) and

S(t + s) = S(t) • S(s), ∀s, t ≥ 0.
A discrete-in-time semi-group {S(t), t ∈ N} on H is a family of (nonlinear) operators which satisfy these properties with R + (= [0, +∞)) replaced by N. A discrete-in-time semi-group will usually be denoted {S n , n ∈ N}, where S(= S(1)) is a continuous (nonlinear) operator from H into itself.

A (continuous or discrete) semi-group {S(t), t ≥ 0} defines a (continuous or discrete) dynamical system: if u 0 is the state of the dynamical system at time 0, then u(t) = S(t)u 0 is the state at time t ≥ 0. The term "dynamical system" will sometimes be used instead of "semi-group".

We note that in the definitions above, the Banach space H can be replaced by a metric space (for instance a bounded subset of H). Definition 2.1 (Global attractor). Let {S(t), t ≥ 0} be a continuous or discrete semi-group on H. A set A ⊂ H is called the global attractor of the dynamical system if the following three conditions are satisfied:

(1) A is compact in H;

(2) A is invariant, i.e. S(t)A = A, for all t ≥ 0;

(3) A attracts all bounded sets in H, i.e., for every bounded set B in H,

lim t→+∞ dist H (S(t)B, A) = 0.
Here, dist H denotes the non-symmetric Hausdorff semi-distance in H between two subsets, which is defined as

dist H (A, B) = sup a∈A inf b∈B a -b H .
It is easy to see, thanks to the invariance and the attracting property, that the global attractor, when it exists, is unique [START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF].

Let A ⊂ H be a subset of H. For ε > 0, we denote N ε (A, H) the minimum number of balls of H of radius ε > 0 which are necessary to cover A. The fractal dimension of A (see e.g. [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]) is the number

dim F (A) = lim sup ε→0 log(N ε (A, H)) log(1/ε) .
Definition 2.2 (Exponential attractor). Let {S(t), t ≥ 0} be a continuous or discrete semi-group on H. A set M ⊂ H is an exponential attractor of the dynamical system if the following three conditions are satisfied:

(1) M is compact in H and has finite fractal dimension;

(2) M is positively invariant, i.e. S(t)M ⊂ M, for all t ≥ 0;

(3) M attracts exponentially the bounded subsets of H in the following sense:

∀B ⊂ H bounded, dist H (S(t)B, M) ≤ Q( B H )e -αt , t ≥ 0,
where the positive constant α and the monotonic function Q are independent of B. Here, B H = sup b∈B b H .

The exponential attractor, if it exists, contains the global attractor (actually, the existence of an exponential attractor yields the existence of the global attractor, see [START_REF] Babin | Attractors of evolution equations[END_REF][START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF]).

Remark 2.3. If B is a closed bounded subset of H and if L is a (nonlinear) continuous operator from B into B, we will say that a set M d ⊂ B is an exponential attractor for (the dynamical system generated by) the iterations of L if (1) M d is compact and has finite fractal dimension in H, (2) M d is positively invariant, i.e. LM d ⊂ M d , and (3) M d attracts B exponentially, i.e.

dist H (L n B, M d ) ≤ Ce -αn , n ∈ N,
where C and α > 0 are independent of n.

We first give conditions which ensure the existence of an exponential attractor for a continuous semi-group. These conditions could be weakened [START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF], but here, we have in mind our perturbation result (see Remark 2.6).

Theorem 2.4. Let H and V be two Banach spaces such that V is compactly embedded into H. Let {S 0 (t), t ∈ R + } be a continuous semi-group on H. Suppose that the following four conditions are satisfied. H1 (Bounded absorbing set): There exists a bounded set B in H such that

∀B ⊂ H bounded, ∃ t(B) ≥ 0, (t ≥ t(B) ⇒ S 0 (t)B ⊂ B) .
H2 (Smoothing property): For all T > 0, for all u 1 , u 2 ∈ B,

S 0 (T )u 1 -S 0 (T )u 2 V ≤ c 1 (T ) u 1 -u 2 H ,
where the function c 1 : (0, +∞) → (0, +∞) is continuous. H3 (Hölder continuity in time): For all T > 0, there exist β = β(T ) ∈ (0, 1] and a constant c 2 (T ) such that for all t 1 , t 2 ∈ [0, T ], for all u ∈ B,

S 0 (t 1 )u -S 0 (t 2 )u H ≤ c 2 (T )|t 1 -t 2 | β . (2.1)
H4 (Lipschitz continuity on bounded sets): For all T > 0 and for all B ⊂ H bounded, there exists c 3 (T, B) such that for all t ∈ [0, T ], for all

u 1 , u 2 ∈ B, S 0 (t)u 1 -S 0 (t)u 2 H ≤ c 3 (T, B) u 1 -u 2 H . (2.2)
Then the continuous dynamical system {S 0 (t), t ∈ R + } possesses an exponential attractor M 0 .

Proof. We may assume, without loss of generality, that B is closed in H (otherwise, replace B by its closure in H). We choose T 0 > t(B) (cf. assumption (H1)) and consider the continuous mapping L 0 = S 0 (T 0 ) : B → B. This mapping L 0 enjoys the smoothing property (assumption (H2) for T = T 0 ). By Proposition 1 in [START_REF] Efendiev | Exponential attractors for a nonlinear reactiondiffusion system in R 3[END_REF], the dynamical system generated by iterations of L 0 possesses an exponential attractor (cf. Remark 2.3) which attracts B exponentially, i.e.

dist H (L n 0 B, M d 0 ) ≤ Ce -αn , n ∈ N, where C and α > 0 only depend on B. Next, we set

M 0 = t∈[0,T 0 ] S 0 (t)M d 0 . (2.3)
Assumptions (H3) and (H4) imply that the function F (t, u) = S 0 (t)u is β-Hölder continuous for the time variable and Lipschitz continuous for the phase variable on

[0, T 0 ] × B. Since M 0 = F ([0, T 0 ] × M d 0 )
, this shows that M 0 is compact and has finite fractal dimension, with

dim F (M 0 ) ≤ 1 β + dim F (M d 0 ). (2.4) 
A standard argument [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF] shows that M 0 is positively invariant, i.e. S 0 (t)M 0 ⊂ M 0 for all t ≥ 0, and that M 0 attracts B exponentially, i.e.

dist H (S 0 (t)B, M 0 ) ≤ C ′ e -α ′ t ,
where we can choose C ′ = c 3 (T 0 , B)Ce α and α ′ = α/T 0 . For R > 0, consider now the closed ball B R = {u ∈ H : u H ≤ R}. Since B is an absorbing set (assumption (H1)), there exists

t R = t(B R ) such that t ≥ t R implies S 0 (t)B R ⊂ B. Thus, for t ≥ t R , we have dist H (S 0 (t)B R , M 0 ) = dist H (S 0 (t -t R )S 0 (t R )B R , M 0 ) ≤ C ′ e -α ′ (t-t R ) .
(2.5)

For t ∈ [0, t R ], we have dist H (S 0 (t)B R , M 0 ) ≤ dist H ( s∈[0,t R ] S 0 (s)B R , M 0 ) =: Q R , (2.6) 
with Q R < +∞ because the set s∈[0,t R ] S 0 (s)B R is bounded, as well as M 0 . Indeed, using (H3) and (H4), we see that if s ∈ [0, t R ] and u ∈ B R , by choosing u 1 ∈ B, we have

S 0 (s)u H ≤ S 0 (s)u -S 0 (s)u 1 H + S 0 (s)u 1 -S 0 (0)u 1 H + u 1 H ≤ c 3 (t R , B R ∪ B)(R + B H ) + c 2 (t R )t β R + B H .
By setting Q(R) = e α ′ t R max(C ′ , Q R ), from (2.5) and (2.6), we deduce

dist H (S 0 (t)B R , M 0 ) ≤ Q(R)e -α ′ t , t ≥ 0,
where α ′ > 0 and the function Q are independent of R. We note that Q can easily be changed into a monotonic function by using that

B R ⊂ B R ′ if R < R ′ .
This finishes the proof.

We now state our perturbation result in a Banach setting. For a possible comparison with concrete situations, we note that the time t and the time step τ may have a unit, but the elements of H and the norms in H and V are dimensionless.

Theorem 2.5. Let H and V be two Banach spaces such that V is compactly embedded into H. Let {S 0 (t), t ∈ R + } be a continuous semi-group on H which satisfies assumptions (H1)-(H4) from Theorem 2.4, and let {S n τ , n ∈ N}, τ ∈ (0, τ 0 ] (τ 0 > 0) be a family of discrete semi-groups on H. Suppose that the following five additional conditions are satisfied.

H5 (Bounded absorbing set independent of τ ): The bounded set B ⊂ H

from assumption (H1) can be chosen such that, for all B ⊂ H bounded, there is a time t(B) ≥ 0 such that, for all τ ∈ (0, τ 0 ] and n ∈ N which satisfy nτ ≥ t(B), we have S n τ B ⊂ B.

H6 (Smoothing property, uniform with τ ): For all T ≥ τ 0 , there exist τ0 (T ) ∈ (0, τ 0 ] and a constant c 4 (T ) such that for all τ ∈ (0, τ0 (T )], for all u 1 , u 2 ∈ B,

S [T /τ ] τ u 1 -S [T /τ ] τ u 2 V ≤ c 4 (T ) u 1 -u 2 H .
Here, [•] is the floor function, i.e. for every real number x, [x] is the largest integer less than or equal to x. H7 (Finite time uniform error estimate): For all T > 0, there exist γ = γ(T ) ∈ (0, 1] and a constant c 5 (T ) such that, for all τ ∈ (0,

τ 0 ], sup u∈B,0≤nτ ≤T S n τ u -S 0 (nτ )u H ≤ c 5 (T )τ γ .
H8 (Lipschitz continuity on bounded sets, uniform with τ ): For every time T > 0 and for all B ⊂ H bounded, there exists c 6 (T, B) such that for all τ ∈ (0, τ 0 ], for all 0 ≤ nτ ≤ T , for all u 1 , u 2 ∈ B,

S n τ u 1 -S n τ u 2 H ≤ c 6 (T, B) u 1 -u 2 H . (2.7)
H9 (Bound on bounded sets, uniform with τ ): For all T > 0 and for all B ⊂ H bounded, there exists c 7 (T, B) such that for all τ ∈ (0, τ 0 ], for all 0 ≤ nτ ≤ T , for all u ∈ B,

S n τ u H ≤ c 7 (T, B). (2.8) 
Then, for every τ ∈ (0, τ ′ 0 ], τ ′ 0 > 0 small enough, the discrete dynamical system associated to {S n τ , n ∈ N} possesses an exponential attractor M τ on H, and the continuous dynamical system {S 0 (t), t ∈ R + } possesses an exponential attractor M 0 such that:

(1) the fractal dimension of M τ is bounded, uniformly with respect to τ ∈ [0,

τ ′ 0 ], dim F M τ ≤ c 8 ,
where c 8 is independent of τ ;

(2) M τ attracts the bounded sets of H, uniformly with respect to τ ∈ (0,

τ ′ 0 ], i.e. ∀τ ∈ (0, τ ′ 0 ], ∀B ⊂ H bounded, dist H (S n τ B, M τ ) ≤ Q( B H )e -c 9 nτ
, n ∈ N, where the constant c 9 and the monotonic function

Q are independent of τ ; (3) the family {M τ , τ ∈ [0, τ ′ 0 ]} is continuous at 0, dist sym (M τ , M 0 ) ≤ c 10 τ c 11 ,
where c 10 and c 11 ∈ (0, 1) are independent of τ and dist sym denotes the symmetric Hausdorff distance between sets, defined by

dist sym (A, B) := max (dist H (A, B), dist H (B, A)) .
Remark 2.6. Assumptions (H5), (H6) and (H8) are the discrete counterparts of assumptions (H1), (H2) and (H4) respectively (uniformly with respect to τ ). Assumption (H9) is a weak discrete version of (H3). Assumption (H7) gives the relation between the continuous and the discrete semi-groups. We stress that the bounded set B is the same in (H1)-(H3) and (H5)-(H7).

Remark 2.7. 1. The constants c i , i = 8, . . . , 11 can be computed explicitly in terms of the physical parameters of the problem in concrete situations. In particular, from (2.4), (2.10), (2.13), and [START_REF] Efendiev | Exponential attractors for a nonlinear reactiondiffusion system in R 3[END_REF][START_REF] Efendiev | Exponential attractors for a singularly perturbed Cahn-Hilliard system[END_REF] we find that, for all τ ∈ [0,

τ ′ 0 ], dim F (M τ ) ≤ log 2 [N 1/(4c ′ 4 ) (B(0, 1; V ), H)] + 1/β, (2.9) 
where N ε (B(0, 1; V ), H) is the number of ball of radius ε in H which are necessary to cover the unit ball centered at 0 in V . 2. The continuity holds at τ = 0 only.

Proof. As previously, we may assume that B is closed in H. We use assumption (H5) with B = B, and we set T 0 = t(B) + τ 0 . In particular, S 0 (T 0 )B ⊂ B. Moreover, for all τ ∈ (0, τ 0 ], we have [T 0 /τ ]τ ≥ t(B), and so

S [T 0 /τ ] τ B ⊂ B. Let β ∈ (0, 1) be such that S 0 is β-Hölder continuous in time on [0, T 0 ] × B
(assumption (H3)). We may assume that assumption (H7) holds on [0, T 0 ] with γ ≤ β (otherwise replace γ by β). We define

τ ′ 0 = τ0 (T 0 ) ∈ (0, τ 0 ] (cf. (H6)). For τ ∈ (0, τ ′ 0 ], we set ε = ε(τ ) = (τ /τ ′ 0 ) γ (or, equivalently, τ = τ (ε) = ε 1/γ τ ′ 0 ), and we denote L ε = S [T 0 /τ ] τ
. We also set L 0 = S 0 (T 0 ). Note that ε, which is a renormalization of τ , belongs to [0, 1]. By assumptions (H2) and (H6), the family of operators L ε : B → B satisfies a uniform smoothing property, i.e., for all ε

∈ [0, 1], for all u 1 , u 2 ∈ B, L ε u 1 -L ε u 2 V ≤ c ′ 4 u 1 -u 2 H , (2.10) where c ′ 4 = max{c 1 (T 0 ), c 4 (T 0 )} is independent of ε. Let ε ∈ (0, 1]
. For all u ∈ B, we have, using the triangle inequality, assumptions (H7) and (H3),

L ε u -L 0 u H ≤ S [T 0 /τ ] τ u -S 0 ([T 0 /τ ]τ )u H + S 0 ([T 0 /τ ]τ )u -S 0 (T 0 )u H ≤ c 5 (T 0 )τ γ + c 2 (T 0 )τ β , and so L ε u -L 0 u H ≤ c ′ 5 ε where c ′ 5 = c 5 (T 0 )τ ′γ 0 + c 2 (T 0 )τ ′β 0 is independent of ε. Assumption (H8) shows that for all u 1 , u 2 ∈ B, L ε u 1 -L ε u 2 H ≤ c 6 (T 0 , B) u 1 -u 2 H .
By induction, we find that for every integer i ≥ 1, for all u ∈ B,

L i ε u -L i 0 u H ≤   i-1 j=0 c 6 (T 0 , B) j   c ′ 5 ε. (2.11)
Indeed, we have seen that the estimate (2.11) is satisfied for i = 1. Assume that it is satisfied for i ≥ 1. Then

L i+1 ε u -L i+1 0 u H ≤ L ε (L i ε u) -L ε (L i 0 u) H + L ε (L i 0 u) -L 0 (L i 0 u) H ≤ c 6 (T 0 , B) L i ε u -L i 0 u H + c ′ 5 
ε, and using the induction assumption (2.11) at step i, we find that (2.11) is satisfied at step i + 1. Estimate (2.11) implies that, for some constant C = C(c ′ 5 , c 6 (T 0 , B)) independent of ε, we have, for all ε ∈ [0, 1], for all i ∈ N, for all u ∈ B,

L i ε u -L i 0 u H ≤ C i ε.
We may therefore apply the abstract result concerning the existence and convergence of exponential attractors, Theorem 4.4 in [START_REF] Efendiev | Exponential attractors for a singularly perturbed Cahn-Hilliard system[END_REF]. Namely, for every ε ∈ [0, 1], there exists a set M d ε ⊂ B which is an attractor for the iterations of L ε (cf. Remark 2.3). Moreover,

(1) the fractal dimension of

M d ε is bounded, uniformly with respect to ε, dim F M d ε ≤ C 1 , where C 1 is independent of ε; (2) M d ε attracts B uniformly with respect to ε, dist H (L k ε B, M d ε ) ≤ C 2 e -C 3 k , C 2 > 0, k ∈ N, where C 2 and C 3 are independent of ε; (3) the family {M d ε , ε ∈ [0, 1]} is continuous at 0, dist sym (M d ε , M d 0 ) ≤ C 4 ε C 5 , where C 4 and C 5 ∈ (0, 1) are independent of ε. Now, for τ ∈ (0, τ ′ 0 ], we set M τ = 0≤nτ ≤T 0 S n τ M d ε(τ ) .
(2.12)

The attractor M 0 is defined as previously by (2.3) (with T 0 and M d 0 as above). By arguing as in the continuous case (Theorem 2.4), we see that for every τ ∈ (0, τ ′ 0 ], M τ is an exponential attractor for the semi-group {S n τ : n ∈ N}. Indeed, for all n, S n τ is Lipschitz continuous on B (assumption (H8)), so M τ is compact and its fractal dimension satisfies

dim F (M τ ) ≤ dim F (M d ε(τ ) ) ≤ C 1 . (2.13) 
Moreover, using

L ε M d ε = S [T 0 /τ ] τ M d ε(τ ) ⊂ M d ε(τ )
, we see that

S τ M τ = 1≤n≤[T 0 /τ ] S n τ M d ε(τ ) ∪ S [T 0 /τ ]+1 τ M d ε(τ ) ⊂ M τ . Let us show that M τ attracts B. For n ∈ N, we write n = k[T 0 /τ ] + r with k ∈ N and r ∈ {0, . . . , [T 0 /τ ] -1}. We have dist H (S n τ B, M τ ) = dist H (S r τ L k ε(τ ) B, M τ ) ≤ dist H (S r τ L k ε(τ ) B, S r τ M d ε(τ )
). Next, we use that S r τ is Lipschitz continuous on B (cf. (2.7)), and we obtain dist

H (S r τ L k ε(τ ) B, S r τ M d ε(τ ) ) ≤ c 6 (T 0 , B)dist H (L k ε(τ ) B, M d ε(τ ) ) ≤ c 6 (T 0 , B)C 2 e -C 3 k . Using k > n/[T 0 /τ ] -1 ≥ nτ /T 0 -1, we note that e -C 3 k ≤ e C 3 e -C 3 nτ /T 0 , and we obtain dist H (S n τ B, M τ ) ≤ C ′ 2 e -C ′ 3 nτ , where C ′ 2 = c 6 (T 0 , B)C 2 e C 3 and C ′ 3 = C 3 /T 0 do not depend on τ . For R > 0, we consider now the closed ball B R = {u ∈ H : u H ≤ R}. Since B is an absorbing set (assumption (H5)), there exists t R = t(B R ) ≥ τ ′ 0 such that for all τ ∈ (0, τ ′ 0 ], nτ ≥ t R -τ ′ 0 implies S n τ B R ⊂ B. Let τ ∈ (0, τ ′ 0 ]. Then, for n ≥ [t R /τ ], since S [t R /τ ] τ B R ⊂ B, we can write dist H (S n τ B R , M τ ) = dist H (S n-[t R /τ ] τ S [t R /τ ] B R , M τ ) ≤ C ′ 2 e -C ′ 3 (n-[t R /τ ])τ . (2.14) 
Let now n ∈ {0, . . . , [t R /τ ]}. Using (2.8), we see that for all u ∈ B R ,

S n τ u H ≤ c 7 (t R , B R ). which shows that S n τ B R ⊂ B g(R) where g(R) = c 7 (t R , B R ) is independent of τ . Using also M τ ⊃ M d ε(τ ) , we see that dist H (S n τ B R , M τ ) ≤ dist H (B g(R) , M d ε(τ ) ). (2.15)
Since M ε(τ ) ⊂ B, by the triangle inequality, we have

dist H (B g(R) , M d ε(τ ) ) ≤ g(R) + B H =: Q R . (2.16) By setting Q(R) = e C ′ 3 t R max{C ′ 2 , Q R }, from (2.14)-(2.16), we deduce dist H (S n τ B R , M τ ) ≤ Q(R)e -C ′ 3 nτ , n ∈ N,
where C ′ 3 and the function Q are independent of τ . The function Q can easily be changed into a monotonic function by using that B R ⊂ B R ′ if R < R ′ . This yields conclusion (2) of Theorem 2.5.

It remains to prove conclusion (3). Let τ ∈ (0, τ ′ 0 ]. Using the definitions of M 0 , M τ and the triangle inequality, we see that

dist sym (M τ , M 0 ) ≤ h 1 (τ ) + h 2 (τ ) + h 3 (τ ),
where

h 1 (τ ) = dist sym ( 0≤nτ ≤T 0 S n τ M d ε(τ ) , 0≤nτ ≤T 0 S 0 (nτ )M d ε(τ ) ), h 2 (τ ) = dist sym ( 0≤nτ ≤T 0 S 0 (nτ )M d ε(τ ) , 0≤nτ ≤T 0 S 0 (nτ )M d 0 ), h 3 (τ ) = dist sym ( 0≤nτ ≤T 0 S 0 (nτ )M d 0 , 0≤t≤T 0 S 0 (t)M d 0 ).
By assumption (H7), we have h 1 (τ ) ≤ c 5 (T 0 )τ γ . Using that S 0 (nτ ) is Lipschitz continuous on B (assumption (H3)), we have

h 2 (τ ) ≤ c 3 (T 0 , B)dist sym (M d ε(τ ) , M d 0 ) ≤ c 3 (T 0 , B)C 4 (τ /τ ′ 0 ) C 5 γ .
Using that S 0 is β-Hölder continuous in time (assumption (H3)), we find that

h 3 (τ ) ≤ c 2 (T 0 )τ β .
Summing up, we have proved that

dist sym (M τ , M 0 ) ≤ c 10 τ c 11 ,
where c 10 and c 11 = C 5 γ ∈ (0, 1) are independent of τ . This concludes the proof.

The continuous problem

3.1. The continuous semi-group S 0 . We consider the following reaction-diffusion equation

∂ t u -d∆u + g(u) = 0 in Ω × R + , (3.1) 
subject to homogeneous Dirichlet boundary conditions. Here, Ω is an open bounded subset of R I (I ≥ 1) with sufficiently smooth boundary, d > 0 is given, and g is a polynomial of odd degree with a positive leading coefficient,

g(s) = 2p-1 j=0 b j s j , b 2p-1 > 0, p ≥ 1.
Note that equation (3.1) is linear if and only if p = 1. When g(s) = s 3 -s (in which case p = 2), equation (3.1) is known as the Allen-Cahn equation.

We supplement (3.1) with an initial condition

u(0) = u 0 . (3.2) 
We set

H = L 2 (Ω) with norm | • | H and scalar product (•, •) H . We denote V = H 1 0 (Ω) with norm • V = |∇ • | H .
For an nonempty interval J of R and for a Banach space E, we denote C 0 (J; E) the space of functions which are continuous on J with values in E; for q ≥ 1, L q (J; E) is the usual Banach space of (classes of) functions endowed with the norm v → ( J v(t) q E dt) 1/q . The norm in L q (Ω) is denoted • L q . The following existence and uniqueness result is well-known (see e.g. [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]).

Theorem 3.1. For u 0 ∈ H, there exists a unique solution u of (3.1)-(3.2) which satisfies u ∈ C 0 (R + ; H) and u ∈ L 2 (0, T ; V ) ∩ L 2p (0, T ; L 2p (Ω)), for all T > 0. For all t ≥ 0, the mapping

u 0 → u(t) is continuous in H. If, furthermore, u 0 ∈ V , then u belongs to C 0 ([0, T ]; V ) ∩ L 2 (0, T ; H 2 (Ω)), for all T > 0.
This theorem is sufficient to define the continuous-in-time semi-group S 0 : More generally, thanks to the Sobolev imbeddings (see e.g. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), there is a constant C S (I, Ω, q) such that

S 0 (t) : u 0 ∈ H → u(t) ∈ H.
w L q ≤ C S (I, Ω, q) w V , ∀w ∈ V, (3.4) 
for every q ∈ [1, +∞) if I = 1 or I = 2 and for every q ∈ [1, 2I/(I -2)] if I ≥ 3.

In our a priori estimates, we will consider two cases: 

V ⊂ L 4p-2 (Ω) ⊂ L 2p (Ω).
In this case, a bounded absorbing set in V will be sufficient. In Case 2, we will consider a bounded absorbing set in V ∩ L q (Ω) for q large enough, so that we will need estimates both in V and in L q (Ω). In fact, both cases could be treated with a bounded set in V ∩ L ∞ , by using more fully the regularization properties of the equation. But for other problems, L ∞ estimates may be difficult to obtain, so that we prefer this approach here. We note that Case 1 includes the Allen-Cahn equation in space dimension 1, 2 and 3 (g(s) = s 3 -s with p = 2).

Next, we collect a few inequalities related to g. Since 2p-2 j=1 jb j s j-1 is a polynomial of degree less than s 2p-2 , there exists a constant c ′ 1 > 0 such that

2p-2 j=1 jb j s j-1 ≤ 1 2 (2p -1)b 2p-1 s 2p-2 + c ′ 1 , ∀s ∈ R. Thus, g ′ (s) = 2p-1 j=1 jb j s j-1 satisfies |g ′ (s)| ≤ 3 2 (2p -1)b 2p-1 s 2p-2 + c ′ 1 , ∀s ∈ R, (3.5) 
and 2p -1 2 b 2p-1 s 2p-2 -c ′ 1 ≤ g ′ (s) ≤ 3 2 (2p -1)b 2p-1 s 2p-2 + c ′ 1 , ∀s ∈ R. (3.6) 
We note that by the mean value theorem we have, for all s 1 , s 2 ∈ R,

(g(s 1 ) -g(s 2 ))(s 1 -s 2 ) = g ′ (ξ s 1 ,s 2 )(s 1 -s 2 ) 2 ≥ -c ′ 1 (s 1 -s 2 ) 2 , (3.7 
)

for some ξ s 1 ,s 2 ∈ R. Let G(s) = s 0 g(σ)dσ = 2p-1 j=0 b j s j+1 /(j + 1) (3.8)
denote an anti-derivative of g. Using a similar argument, we have

1 4p b 2p-1 s 2p -ĉ′ 1 ≤ G(s) ≤ 3 4p b 2p-1 s 2p + ĉ′ 1 , ∀s ∈ R, (3.9) 
for some constant ĉ′ 1 > 0. By a similar argument, for every q ≥ 2, there exists a constant c ′ q > 0 such that 

1 2 b 2p-1 |s| 2p+q-2 -c ′ q ≤ g(s)|s| q-2 s ≤ 3 2 b 2p-1 |s| 2p+q-2 + c ′ q , ∀s ∈ R. ( 3 
i V ≤ R 1 (i = 1, 2), then Ω |g(w 1 ) -g(w 2 )||w 3 |dx ≤ h 1 (R 1 ) w 1 -w 2 V |w 3 | H , (3.11) 
where

h 1 (R 1 ) = h 1 (R 1 , I, Ω, p, b 2p-1 , c ′ 1 ) is monotonic in R 1 . If Case 2 holds and w i L I(2p-2) ≤ R 2 (i = 1, 2), then Ω |g(w 1 ) -g(w 2 )||w 3 |dx ≤ h 2 (R 2 ) w 1 -w 2 V |w 3 | H , (3.12) 
where

h 2 (R 2 ) = h 2 (R 2 , I, Ω, p, b 2p-1 , c ′ 1 ) is monotonic in R 2 . Proof. First note that for all s 1 , s 2 ∈ R, we have g(s 1 ) -g(s 2 ) = 1 0 g ′ (σs 1 + (1 -σ)s 2 )(s 1 -s 2 )dσ.
Using (3.5) and the convexity of the function s → |s| 2p-2 , we find

|g(s 1 ) -g(s 2 )| ≤ b ′ 2p-1 |s 1 | 2p-2 + |s 2 | 2p-2 + c ′ 1 |s 1 -s 2 |, ∀s 1 , s 2 ∈ R, (3.13) where b ′ 2p-1 = 3 4 (2p -1)b 2p-1 .
Let w 1 , w 2 ∈ V and w 3 ∈ H. By (3.13), we have

Ω |g(w 1 )-g(w 2 )||w 3 |dx ≤ Ω [b ′ 2p-1 (|w 1 | 2p-2 +|w 2 | 2p-2 )+c ′ 1 ]|w 1 -w 2 ||w 3 |dx. (3.14)
Assume first that Case 1 holds and that w i V ≤ R 1 (i = 1, 2). If p = 1 (the linear case), then we may use the Cauchy-Schwarz inequality and the Poincaré inequality (3.3), and we find (3.11) with h 1 = (2b ′ 2p-1 + c ′ 1 )c 0 (here, h 1 does not depend on R 1 ). If p ≥ 2, we use that V ⊂ L 4p-2 (Ω), i.e. (3.4) holds with q = 4p -2 and ĈS = C S (I, Ω, 4p -2). In (3.14), we use Hölder's inequality with

|w i | 2p-2 ∈ L (4p-2)/(2p-2) (Ω) (i = 1, 2), w 1 -w 2 ∈ L 4p-2 (Ω) and w 3 ∈ L 2 (Ω). We obtain (3.11) with h 1 (R 1 ) = 2b ′ 2p-1 Ĉ2p-2 S R 2p-2 1 + c ′ 1 |Ω| (2p-2)/(4p-2)
ĈS .

Assume now that Case 2 holds and that w i L I(2p-2) ≤ R 2 (i = 1, 2). We use that V ⊂ L 2 ⋆ (Ω) with 2 ⋆ = 2I/(I -2), i.e. (3.4) holds with q = 2 ⋆ and C ⋆ S = C S (I, Ω, 2 ⋆ ). In (3.14), we use Hölder's inequality with

|w i | 2p-2 ∈ L I (Ω) (i = 1, 2), w 1 -w 2 ∈ L 2 ⋆ (Ω)
, and w 3 ∈ L 2 (Ω). We obtain (3.12) with

h 2 (R 2 ) = 2b ′ 2p-1 (C ⋆ S ) 2p-2 R 2 2 + c ′ 1 |Ω| 1/I C ⋆ S .
This concludes the proof.

3.3.

A priori estimates for the solution. In Section 3.3, u denotes a solution of (3.1)-(3.2). We denote ρ 2 0 = c ′′ 2 c 2 0 /(2d), ρ ′2 0 = 2ρ 2 0 and, for every q ≥ 2,

c ′′ q = qc ′ q |Ω| where |Ω| = Ω 1dx. ( 3.15) 
Propositions 3.3 and 3.4 are proved in [START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF].

Proposition 3.3 (Absorbing set in H). If |u 0 | H ≤ R, then |u(t)| H ≤ ρ ′ 0 , ∀t ≥ t 0 (R), (3.16) 
where

t 0 (R) = max c 2 0 d log R ρ 0 , 0 . (3.17)
In the remainder of the paper, r > 0 denotes an arbitrary (but fixed) real number (r has the same unit as t).

Proposition 3.4 (Absorbing set in V ). If |u 0 | H ≤ R, then u(t) V ≤ ρ 1 , t ≥ t 1 (R), (3.18) 
where

ρ 2 1 = κ r exp(2c ′ 1 r), κ = 1 2d (rc ′′ 2 + ρ ′2 0 ), t 1 (R) = t 0 (R) + r.
Lemma 3.5. Let q ≥ 2. The function y(t) = Ω |u(t)| q dx is locally integrable on (0, +∞), as well as dy/dt. Moreover,

d dt Ω |u| q dx + q 2 b 2p-1 Ω |u| 2p+q-2 ≤ c ′′ q on (0, +∞). (3.19)
In particular, if u 0 ∈ L q (Ω), then for all t ≥ 0, we have

Ω |u(t)| q dx ≤ Ω |u 0 | q + c ′′ q t. (3.20)
Proof. By parabolic regularity [START_REF] Cazenave | Introduction aux problèmes d'évolution semi-linéaires[END_REF][START_REF] Sell | Dynamics of evolutionary equations[END_REF], u ∈ C 0 ((0, +∞); C 0 (Ω)) (where C 0 (Ω) is the space of continuous functions on Ω which vanish on ∂Ω) and ∂ t u, ∆u belong to C 0 ((0, +∞); L 2 (Ω)). In particular, the functions y and dy/dt are locally integrable. We multiply (3.1) by |u| q-2 u and integrate over Ω. We obtain, after some simple transformations, 1 q

d dt Ω |u| q dx + (q -1)d Ω |∇u| 2 |u| q-2 dx + Ω g(u)|u| q-2 udx = 0.
Using (3.10), (3.15), we obtain (3.19). We infer (3.20) by integration on [0, t].

For all i ∈ N, we set a i = i(2p -2) + 2. We introduce the sequence (ρ ′ i ) i defined recursively for i ∈ N by

ρ ′a i+1 i+1 = κ ′ i r + rc ′′ a i+1 , with κ ′ i = 2 a i b 2p-1 (rc ′′ a i + ρ ′a i i ). Proposition 3.6 (Absorbing set in L q ). Let i ∈ N. If |u 0 | H ≤ R, then u(t) L a i ≤ ρ ′ i , t ≥ t i (R), (3.21) 
where t i (R) = t 0 (R) + ir.

Proof. We proceed by induction. We first note that (3.21) is satisfied for i = 0 by (3.16). Let i ≥ 0 and assume that (3.21) holds. We first apply (3.19) with q = a i and we integrate on [t, t + r]. This yields

a i 2 b 2p-1 t+r t u(s) a i+1 L a i+1 ds ≤ rc ′′ a i + u(t) a i L a i , ∀t ≥ 0.
Using the induction assumption (3.21), we see that

t+r t u(s) a i+1 L a i+1 ds ≤ κ ′ i , ∀t ≥ t i (R). (3.22)
Next, we apply (3.19) with q = a i+1 , and we use the uniform Gronwall lemma [START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]. We obtain that (3.21) is satisfied at step i + 1. By induction, (3.21) is satisfied for every i ∈ N.

We introduce the monotonic function

Q 1 (s) = 3b 2p-1 2dp s 2p + 4ĉ ′ 1 |Ω| d . (3.23) Lemma 3.7. If u 0 ∈ V ∩ L 2p (Ω), then u(t) 2 V + b 2p-1 2dp u(t) 2p L 2p + 2 d t 0 |∂ t u| 2 H ds ≤ u 0 2 V + Q 1 ( u 0 L 2p ), ∀t ≥ 0, (3.24)
where Q 1 is defined by (3.23). In particular, for all t 1 , t 2 ≥ 0, we have

|u(t 1 ) -u(t 2 )| 2 H ≤ Q 2 ( u 0 V , u 0 L 2p )|t 1 -t 2 |, (3.25)
for some function Q 2 which is monotonic in its arguments.

Proof. We multiply (3.1) by ∂ t u and integrate over Ω. We obtain, after integration by parts,

|∂ t u| 2 H + d dt d 2 u 2 V + Ω G(u)dx = 0. (3.26) 
Integrating on [0, t] yields

d 2 u(t) 2 V + Ω G(u(t))dx + t 0 |∂ t u| 2 H ds ≤ d 2 u 0 2 V + Ω G(u 0 )dx. (3.27) 
Estimate (3.24) follows from (3.9). Let now t 2 ≥ t 1 ≥ 0. Then

|u(t 2 ) -u(t 1 )| 2 H = t 2 t 1 ∂ t u(s)ds 2 H ≤ |t 2 -t 1 | t 2 t 1 |∂ t u(s)| 2 H ds,
and (3.25) follows from (3.24) with

Q 2 ( u 0 V , u 0 L 2p ) = d 2 u 0 2 V + Q 1 ( u 0 L 2p ) .

3.4.

Estimates for the difference of solutions. In the following lemmas, u 1 and u 2 denote two solutions of (3.1), and

v(t) = u 1 (t) -u 2 (t) is their difference, which satisfies ∂ t v -d∆v + g(u 1 ) -g(u 2 ) = 0 in Ω × R + . (3.28) 
Lemma 3.8. For all t ≥ 0,

|v(t)| 2 H + 2d t 0 v 2 V ds ≤ |v(0)| 2 H exp(2c ′ 1 t). (3.29) 
Proof. We multiply (3.28) by 2v, integrate over Ω, and use (3.7). We obtain

d dt |v| 2 H + 2d v 2 V ≤ 2c ′ 1 |v| 2 H .
The classical Gronwall lemma yields (3.29).

We introduce the functions

Q1 (s) = s 2 + Q 1 (C S (I, Ω, 2p)s) 1/2 , (3.30) 
where C S is the Sobolev constant (3.4), Q 1 is given by (3.23) and

h1 (R 1 ) = 1 2d h 2 1 ( Q1 (R 1 )), R 1 > 0, (3.31) 
where h 1 is defined by (3.11).

The following two lemmas show a smoothing property.

Lemma 3.9. Assume that Case 1 holds. If

u i (0) V ≤ R 1 (i = 1, 2), then for all t > 0, we have v(t) 2 V ≤ C 1 (t, R 1 )|v(0)| 2 , (3.32) 
where the function C 1 : (0, +∞) 2 → R + is continuous.

Proof. Using V ⊂ L 2p (Ω), Lemma 3.7 and (3.4) with q = 2p, we first note that

u i (t) V ≤ Q1 (R 1 ), ∀t ≥ 0, for i = 1, 2.
Next, we multiply (3.28) by t∂ t v and integrate over Ω. We obtain

t|∂ t v| 2 H + td 2 d dt v 2 V = -t Ω [g(u 1 ) -g(u 2 )]∂ t vdx. (3.33) 
4. The time semi-discrete problem 4.1. The discrete semi-group. For the time semi-discretization, we apply the backward Euler scheme to (3.1). Throughout this section, τ > 0 denotes the time step. The scheme reads: let u 0 ∈ H and for n = 0, 1, 2, . . . , let

u n+1 ∈ V ∩ L 2p (Ω) solve u n+1 -u n τ -d∆u n+1 + g(u n+1 ) = 0. ( 4.1) 
The following result shows that the discrete semi-group S n τ u 0 = u n is well-defined. Theorem 4.1. Assume that τ ≤ 1/c ′ 1 . Then for every u ∈ H, there exists a unique

v = v τ,u ∈ V ∩ L 2p (Ω) such that v -u τ -d∆v + g(v) = 0 in V ′ + L 2p/(2p-1) (Ω). (4.2) 
Moreover, the mapping

S τ : u → v τ,u is Lipschitz continuous from H into V , with S τ u -S τ û V ≤ c 0 dτ |u -û| H , ∀u, û ∈ H. (4.3) 
As a consequence, S τ is Lipschitz continuous from H into H, and from V into V . We note that the Lipschitz constant blows up as τ → 0 + . Proof. Let u ∈ H. We can obtain v by minimizing the function

G(w) = |w -u| 2 H 2τ + d 2 w 2 V + Ω G(w)
in the space V ∩L 2p (Ω). Let now û ∈ H, and consider a solution v of (4.2) associated to û. Then the difference

w = v -v satisfies w τ -d∆w + g(v) -g(v) = u - û τ (4.4) 
We multiply by w, integrate over Ω, use (3.7) and the Cauchy-Schwarz inequality. We obtain

|w| 2 H τ + d w 2 V -c ′ 1 |w| 2 H ≤ 1 τ |u -û| H |w| H .
Using 1/τ ≥ c ′ 1 and the Poincaré inequality (3.3), we obtain

w V ≤ c 0 dτ |u -û| H .
Since w = v -v, this shows that v is unique and that (4.3) holds.

In the remainder of the paper, we will assume that the time step τ satisfies at least

0 < τ ≤ 1/c ′ 1 . 4.2.
A priori estimates for the solution, uniform in τ . We use the same notation as in Section 3. Throughout Section 4.2, (u n ) denotes a sequence in H which complies with (4.1). The following well-known identity will prove useful:

(a -b, a) H = 1 2 (|a| 2 H -|b| 2 H + |a -b| 2 H ), ∀a, b ∈ H. (4.5) Proposition 4.2 (Absorbing set in H). Assume that τ ≤ c 2 0 /(2d). If |u 0 | H ≤ R, then for all n ∈ N such that nτ ≥ 2t 0 (R), we have |u n | H ≤ ρ ′ 0 . (4.6) 
Proof. We multiply (4.1) by u n+1 and integrate over Ω. We obtain

1 τ (u n+1 -u n , u n+1 ) H + d u n+1 2 V + Ω g(u n+1 )u n+1 dx = 0.
We use (4.5) and inequality (3.10) with q = 2. We find

1 2τ (|u n+1 | 2 H -|u n | 2 H ) + d u n+1 2 V ≤ c ′ 2 |Ω|, n ≥ 0. (4.7)
We infer from the Poincaré inequality (3.3) that

1 + 2dτ c 2 0 |u n+1 | 2 H ≤ |u n | 2 H + c ′′ 2 τ, n ≥ 0.
Let a = 1 + (2dτ /c 2 0 ). By induction, we obtain that

|u n | 2 H ≤ a -n |u 0 | 2 H + c ′′ 2 τ 1 -a -n a -1 , n ≥ 0.
We note that exp(s/2) ≤ 1 + s, for all s ∈ [0, 1]. Applying this to s = 2dτ /c 2 0 ≤ 1, we see that a -1 ≤ exp(-dτ /c 2 0 ), and we find

|u n | 2 H ≤ exp(-ndτ /c 2 0 )|u 0 | 2 H + c ′′ 2 c 2 0 2d (1 -exp(-ndτ /c 2 0 )), n ≥ 0.
This implies (4.6).

We will use the following lemma from [START_REF] Shen | Long time stability and convergence for fully discrete nonlinear Galerkin methods[END_REF].

Lemma 4.3 (Discrete Uniform Gronwall Lemma). Let n 0 , N ∈ N, a 1 , a 2 , a 3 , τ, r ′ > 0 and (d n ), (g n ), (h n ) be three sequences of nonnegative real numbers which satisfy

d n+1 -d n τ ≤ g n d n + h n , ∀n ≥ n 0 , and 
τ k 0 +N n=k 0 g n ≤ a 1 , τ k 0 +N n=k 0 h n ≤ a 2 , τ k 0 +N n=k 0 d n ≤ a 3 ,
for all k 0 ≥ n 0 , with r ′ = τ N > 0. Then

d n ≤ a 2 + a 3
r ′ exp(a 1 ), ∀n ≥ n 0 + N. The following lemma will prove useful.

Lemma 4.4. Assume that τ ≤ 1/(4c ′ 1 ). Then u n+1 2 V + u n+1 -u n 2 V ≤ (1 + 4c ′ 1 τ ) u n 2 V , n ≥ 0. (4.8)
Note that if u 0 ∈ V , then (4.8) is valid for n ≥ 1 only.

Proof. We multiply (4.1) by -∆u n+1 and integrate over Ω. This yields

1 τ (∇(u n+1 -u n ), ∇u n+1 ) H + d|∆u n+1 | 2 H + Ω g ′ (u n+1 )|∇u n+1 | 2 dx = 0.
Using (4.5) and (3.6), we obtain

1 τ ( u n+1 2 V -u n 2 V + u n+1 -u n 2 V ) ≤ 2c ′ 1 u n+1 2 V , n ≥ 0. We note that 1 ≤ 1 1 -s ≤ 1 + 2s, ∀s ∈ [0, 1/2], (4.9) 
and we apply this with s = 2c ′ 1 τ . We find (4.8). These formal computations are fully justified for smooth solutions, and (4.8) is valid in the general case by regularization (proceed as in Lemma 4.6 and use that S τ is continuous from V into V ). Proposition 4.5 (Absorbing set in V ). Assume that τ ≤ τ 1 where

τ 1 = min{c 2 0 /(2d), r/2, 1/(4c ′ 1 )} > 0. If |u 0 | H ≤ R, then for all n ∈ N such that nτ ≥ 2t 0 (R) + 2r, we have u n V ≤ ρ1 , (4.10) 
where 

ρ2 1 = κ1 r exp(8c ′ 1 r), κ1 = 2c ′′ 2 r + ρ ′2 0 d . Proof. Let k 0 , N ∈ N \ {0}. Summing (4.7) from n = k 0 -1 to k 0 + N -1, we obtain |u k 0 +N | 2 H + 2τ d k 0 +N n=k 0 u n 2 V ≤ c ′′ 2 τ (N + 1) + |u k 0 -1 | 2 H . If k 0 τ ≥ 2t 0 (R) + τ , from (4.6) we infer that 2τ d k 0 +N n=k 0 u n 2 V ≤ c ′′ 2 τ (N + 1) + ρ ′2 0 . (4.11) 
u n 2 V ≤ κ′ 1 r ′ exp(4c ′ 1 (r ′ + τ )), ∀n ≥ n 0 + N.
This implies (4.10).

Lemma 4.6. Let q ≥ 2 and assume that u n ∈ L q (Ω) for some n ≥ 0. Then u n+1 belongs to L 2p+q-2 (Ω) and satisfies

1 τ u n+1 q L q -u n q L q + q 2 b 2p-1 u n+1 2p+q-2 L 2p+q-2 ≤ c ′′ q .
(4.12)

Proof. For simplicity, we denote u = u n and v = u n+1 = S τ u. First assume that u ∈ C ∞ c (Ω). Then, by elliptic regularity, v ∈ W 2,s (Ω) ∩ W 1,s 0 (Ω) for all s > 0, and in particular, v ∈ L ∞ (Ω). We multiply (4.2) by |v| q-2 v and integrate over Ω. This yields

1 τ (v -u, |v| q-2 v) H + (q -1)d Ω |∇v| 2 |v| q-2 dx + Ω g(v)|v| q-2 vdx = 0. (4.13)
Let f (s) = |s| q /q. Then f ∈ C 2 (R) with f ′′ (s) ≥ 0 on R, so by the Taylor-Lagrange formula, for all s 1 , s 2 ∈ R, we have

f (s 1 ) -f (s 2 ) = (s 1 -s 2 )f ′ (s 2 ) + (s 1 -s 2 ) 2 2 f ′′ (ξ s 1 ,s 2 ) ≥ (s 1 -s 2 )f ′ (s 2 ).
We apply this with s 1 = u(x), s 2 = v(x) and we integrate over Ω. We obtain

1 q Ω |u| q dx - 1 q Ω |v| q dx ≥ Ω (u -v)|v| q-2 vdx.
We infer from (4.13) and (3.10) that (4.12) is true when u ∈ C ∞ c (Ω). If u ∈ L q (Ω), we obtain (4.12) by considering a sequence u ε ∈ C ∞ c (Ω) such that u ε → u in L q (Ω). As a consequence, we have: Lemma 4.7. Let q ≥ 2. If u 0 ∈ L q (Ω), then u n q L q ≤ u 0 q L q + nτ c ′′ q , ∀n ≥ 0. We introduce the sequence (ρ ′ i ) defined by ρ′ 0 = ρ ′ 0 and, for i ≥ 0,

ρ′a i+1 i+1 = κ′ i r + 2c ′′ a i+1 r with κ′ i = 4 a i b 2p-1 (2c ′′ a i r + ρ′a i i ). Proposition 4.8 (Absorbing set in L q ). Assume that τ ≤ min{1/c ′ 1 , c 2 0 /(2d), r/2}. If |u 0 | H ≤ R and i ∈ N, then for all n ∈ N such that nτ ≥ ti (R), we have u n L a i ≤ ρ′ i , (4.14) 
where ti (R) = 2t 0 (R) + 3ir does not depend on τ .

Proof. We proceed by induction. We first note that (4.14) is satisfied for i = 0 by Proposition 4.2. Let i ≥ 0 and assume that (4.14) holds for nτ ≥ ti (R). Let k 0 τ ≥ ti (R) + τ and N = [r/τ ] ≥ 2. We apply Lemma 4.6 with q = a i and we add the resulting inequality from n = k 0 -1 to n = k 0 + N -1. This yields

a i 2 b 2p-1 τ k 0 +N n=k 0 u n a i+1 L a i+1 ≤ c ′′ a i τ (N + 1) + u k 0 -1 a i L a i .
We set r ′ = N τ ∈ [r -τ, r]. Using the induction assumption, we see that

τ k 0 +N n=k 0 u n a i L a i ≤ κ′′ i , κ′′ i = 2 a i b 2p-1 (c ′′ a i (r ′ + τ ) + ρ′a i i ). (4.15) 
For n ≥ k 0 + 1, we may apply Lemma 4.6 with q = a i+1 and we obtain

1 τ u n+1 a i+1 L a i+1 -u n a i+1 L a i+1 ≤ c ′′ a i+1 . (4.16) 
Let n 0 τ ≥ ti (R) + τ . We infer from (4.15), (4.16) and Lemma 4.3 that

u n a i+1 L a i+1 ≤ κ′′ i r ′ + c ′′ a i+1 (r ′ + τ ), ∀n ≥ n 0 + N + 1.
This implies (4.14).

Lemma 4.9.

If u 0 ∈ V ∩ L 2p (Ω), then u n 2 V + b 2p-1 2dp u n 2p L 2p + 1 dτ n-1 k=0 |u k+1 -u k | 2 H ≤ u 0 2 V + Q 1 ( u 0 L 2p ), ∀n ≥ 0, ( 4 
.17) where Q 1 is the monotonic function independent of τ defined by (3.23).

Theorem 5.1. Assume that Case 1 holds. For all T > 0 and R 1 > 0, there is a constant C(T, R 1 ) independent of τ such that u 0 = u 0 and u

0 V ≤ R 1 imply sup t∈[0,N τ ] |e τ (t)| H ≤ C(T, R 1 )τ 1/2 , where N = [T /τ ].
Proof. From Lemma 4.9, we infer that u n V ≤ Q(R 1 ) for all n ≥ 0, where Q1 (independent of τ ) is defined by (3.30). Thus, u τ (t) V ≤ Q1 (R 1 ) and ūτ (t) V ≤ Q1 (R 1 ), ∀t ≥ 0.

Using (5.3), (3.11) and Young's inequality, we infer that

d dt |e τ (t)| 2 H ≤ C 3 (R 1 )|e τ (t)| 2 H + d u τ (t) -ūτ (t) 2 V , a.e. t ≥ 0,
for some constant C 3 (R 1 ) independent of τ . Let T > 0 and set N = [T /τ ]. Using e τ (0) = 0, the classical Gronwall lemma yields

|e τ (t)| 2 H ≤ d exp(C 3 (R 1 )T ) N τ 0 u τ (s) -ūτ (s) 2 V ds, ∀t ∈ [0, N τ ]. (5.4) On [nτ, (n + 1)τ ), we have u τ (s) -ūτ (s) V ≤ u n+1 -u n V , so that N τ 0 u τ (s) -ūτ (s) 2 V ds ≤ τ N -1 n=0 u n+1 -u n 2 V .
This shows, using (5.1) and (5.4), that

|e τ (t)| 2 H ≤ d exp(C 3 (R 1 )T ) exp(4c ′ 1 T )R 2 1 τ, ∀t ∈ [0, N τ ].
The proof is complete. Theorem 5.2. Assume that Case 2 holds. For all T > 0 and R 1 , R 2 > 0 there is a constant C(T, R 1 , R 2 ) independent of τ such that u 0 = u 0 , u 0 V ≤ R 1 and

u 0 I(2p-2) L I(2p-2) ≤ R 2 imply sup t∈[0,N τ ] |e τ (t)| H ≤ C(T, R 1 , R 2 )τ 1/2 .
Proof. Let T > 0, set N = [T /τ ] and q = I(2p -2). Lemma 4.7 shows that u n L q ≤ Q2 (T + 1/c ′ 1 , R 2 ) for all 0 ≤ n ≤ N + 1, where Q2 (independent of τ ) is defined by (3.34). Thus,

u τ (t) L q ≤ Q2 (T + 1/c ′ 1 , R 2 ) and ūτ (t) L q ≤ Q2 (T + 1/c ′ 1 , R 2 ), ∀t ∈ [0, N τ ]. Using (5.
3), (3.12) and Young's inequality, we obtain

d dt |e τ (t)| 2 H ≤ C 4 (T, R 2 )|e τ (t)| 2 H + d u τ (t) -ūτ (t) 2 V , ∀t ∈ [0, N τ ].
Using e τ (0) = 0, the classical Gronwall lemma yields 6. The convergence result Theorem 6.1. Let H = L 2 (Ω) and τ 0 = min{c 2 0 /(2d), 1/(4c ′ 1 )}. The continuous semi-group {S 0 (t), t ∈ R + } associated to (3.1) and the family of discrete semi-groups {S n τ , n ∈ N}, τ ∈ (0, τ 0 ], associated to (4.1) satisfy the conclusions of Theorem 2.5 with τ ′ 0 = τ 0 . Proof. We apply Theorem 2.5 with V = H 1 0 (Ω) which is compactly imbedded in H [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. If Case 1 holds, we choose r ≥ 1/(2c ′ 1 ) and we consider the set B = {w ∈ H : w V ≤ ρ1 } which is absorbing in H, uniformly with respect to τ ∈ [0, τ 0 ] since ρ 1 < ρ1 . The estimates of Sections 3-5 show that assumptions (H1)-(H9) are satisfied with β = γ = 1/2 and, in (H6), τ (T ) = τ = min{τ 0 , 1/(2 h1 (R 1 ))}, (cf. (3.31)) and the conclusions of Theorem 2.5 follow for some τ ′ 0 ∈ (0, τ 0 ] small enough. For τ ∈ [τ ′ 0 , τ 0 ], we set T 0 = t(B)+τ 0 (cf. (H5)) and Sτ = S [T 0 /τ ] τ

|e τ (t)| 2 H ≤ d exp(C 4 (T, R 2 )T ) N τ 0 u τ (s) -ūτ (s) 2 V ds, ∀t ∈ [0, N τ ]. ( 5 
, so that Sτ B ⊂ B. By (4.3), Sτ satisfies a smoothing property on B with a Lipschitz constant bounded by a constant Λ = Λ(T 0 , τ 0 , τ ′ 0 , c 0 , d) independent of τ . Proposition 1 in [START_REF] Efendiev | Exponential attractors for a nonlinear reactiondiffusion system in R 3[END_REF] shows that the map Sτ : B → B possesses an exponential attractor M d τ , i.e. a compact and positively invariant subset of B which has finite fractal dimension and which satisfies

dist H ( Sn τ B, M d τ ) ≤ 2 B H 2 -n , n ∈ N. Moreover, dim F (M d τ ) ≤ log 2 N 1/(4Λ) (B(0, 1; V ), H) , (6.1) 
where N ε (B(0, 1; V ), H) is the minimal number of balls of radius ε in H which are necessary to cover the unit ball of center 0 in V . Next, we define M τ by the formula (2.12). We conclude as in the proof of Theorem 2.5 that M τ is an exponential attractor for S τ in H, with fractal dimension bounded by a constant independent of τ ∈ [τ ′ 0 , τ 0 ] and which attracts the bounded sets of H, uniformly with τ ∈ [τ ′ 0 , τ 0 ]. This concludes the proof when Case 1 holds (the continuity holds only at τ = 0).

If Case 2 holds, we choose r ≥ 1/(2c ′ 1 ) and we consider the set B = {w ∈ H : w V ≤ ρ1 and w L a I ≤ ρ′ I } which is absorbing in H, uniformly with respect to τ ∈ [0, τ 0 ] since ρ1 > ρ 1 and ρ′ I > ρ ′ I . We note that a I = I(2p -2) + 2 ≥ I(2p -2) and a I ≥ 2p. Thus, assumptions (H1)-(H9) hold with β = γ = 1/2 and, in (H6), τ0 (T ) = min{τ 0 , 1/(2 h2 (T, |Ω| 1/s ρ′ I ))} > 0, where 1/s = 1/(I(2p -2)) -1/(I(2p -2) + 2). The conclusions of Theorem 2.5 hold for some τ ′ 0 ∈ (0, τ 0 ] small enough. For τ ∈ [τ ′ 0 , τ 0 ], we argue as previously. The proof is complete. Corollary 6.2. For every τ ∈ [0, τ 0 ], the semi-group {S τ (t), t ≥ 0} possesses a global attractor A τ in H which is bounded in V (uniformly in τ ), compact and connected in H. Moreover, dist H {A τ , A 0 } → 0 as τ → 0 + , and the fractal dimension of A τ is bounded by a constant independent of τ .

Proof. Existence of a connected global attractor is a consequence of Theorem 1.1 in [START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]. Upper semi-continuity of A τ as τ → 0 + is a consequence of assumptions (H1), (H5), (H7) and Proposition 1 in [START_REF] Wang | Approximation of stationary statistical properties of dissipative dynamical systems: time discretization[END_REF]. The upper bound on the fractal dimension follows from Theorem 6.1 and from the inclusion A τ ⊂ M τ . Remark 6.3. Our upper bound on the fractal dimension of the attractors is quite crude (see (2.9), (6.1)). An upper bound which is optimal with respect to the physical parameters and which is based on the smoothing property has been obtained in [START_REF] Efendiev | The dimension of the global attractor for dissipative reactiondiffusion systems[END_REF] for a continuous-in-time reaction-diffusion system which includes equation (3.1). It is based on L ∞ -estimates (see also [START_REF] Eden | Exponential attractors for dissipative evolution equations[END_REF] for the classical construction based on the squeezing property). It could be interesting to investigate if such an optimal bound can be extended to our situation, where L ∞ -estimates can be derived for the continuous and the discretized problem.

3. 2 .

 2 Some useful inequalities. First recall the Poincaré inequality: there exists a constant c 0 = c 0 (I, Ω) such that |w| H ≤ c 0 w V , ∀w ∈ V.(3.3)

Case 1 : 1 ;

 11 I ∈ {1, 2} (no restriction on p), or I = 3 and p ∈ {1, 2}, or I ≥ 4 and p = Case 2: I = 3 and p ≥ 3, or I ≥ 4 and p ≥ 2. If Case 1 holds, then we have the continuous imbeddings

Let n 0

 0 τ ≥ 2t 0 (R) + τ and N = [r/τ | ≥ 2. We set r ′ = N τ ∈ [r -τ, r] and κ′ 1 = c ′′ 2 (r ′ + τ ) + ρ ′2 0 2d . Using (4.11), (4.8) and Lemma 4.3, we obtain

. 5 )From ( 5 . 1 )

 551 we infer that|e τ (t)| 2 H ≤ [d exp(C 4 (T, R 2 )T ) exp(4c ′ 1 T )R 2 1 ]τ, ∀t ∈ [0, N τ ].
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Using (3.11) and Young's inequality, we find

The classical Gronwall lemma yields

We infer from (3.29) that

i.e. estimate (3.32) holds.

When Case 2 holds, we use the functions

with q = I(2p -2), and

where h 2 is defined by (3.12).

Lemma 3.10. Assume that Case 2 holds. If u i (0

, then for all t > 0, we have

where the function C 2 : (0, +∞) 2 → R + is continuous.

Proof. Let T > 0. Using (3.20) with q = I(2p -2), we note that

Arguing as in the proof of Lemma 3.9, and using (3.12), we obtain

The classical Gronwall lemma and (3.29) yield

Using this for t = T , we obtain (3.36).

Proof. We multiply (4.1) by u n+1 -u n and integrate over Ω. We obtain

for all n ≥ 0. By the Taylor-Lagrange formula, for all

for some ξ s 1 ,s 2 ∈ R, and so, using (3.6), we have

We choose s 1 = u n (x), s 2 = u n+1 (x), and we integrate over Ω. We infer from the resulting inequality, from (4.18) and (4.5) that

for all n ≥ 0. By summation, we obtain

for all n ≥ 0, where we used that 1/τ -c ′ 1 /2 ≥ 1/(2τ ). Using (3.9), we conclude that (4.17) holds with Q 1 defined by (3.23).

4.3.

Estimates for the difference of solutions, uniform with τ . Let (u n ) and (û n ) be two sequences generated by the scheme (4.1) and corresponding to the initial condition u 0 and û0 respectively. We denote v n = u n -ûn their difference, which satisfies

Lemma 4.10. Assume that τ ≤ 1/(4c ′ 1 ). Then

Proof. We multiply (4.19) by v n+1 , integrate over Ω, and we use (4.5) and (3.7). We find

H , ∀n ≥ 0. From (4.9), we infer that ). For all T > 0 and for all R > 0, there exists a constant C(T, R) independent of τ such that

Proof. Let T > 0, R > 0, |u 0 | H ≤ R and 0 ≤ nτ ≤ T . We choose û0 = 0. Using successively the triangle inequality, (4.20) and the Cauchy-Schwarz inequality, we find

We conclude with (4.17) that

, and this proves the assertion.

Proposition 4.12 (Smoothing property). Assume that Case 1 holds and that

Proof. Lemma 4.9 shows that u n V ≤ Q1 (R 1 ) and ûn V ≤ Q1 (R 1 ) ∀n ≥ 0, where Q1 , defined by (3.30), is independent of τ . We multiply (4. [START_REF] Hale | Asymptotic behavior of dissipative systems[END_REF]) by (v n+1 -v n ) and we integrate over Ω. We find

for all n ≥ 0. We multiply this by n, we use (4.5) and (3.11), and we obtain

for all n ≥ 0. Next, we use Young's inequality and the identity

V , and we find

V . We infer from (4.9) that

V ), ∀n ≥ 0. Using α 0 = 0, we find by induction that

We infer (4.22) from (4.20) and from (4.21) applied to s = 2 h1 (R 1 )τ .

Proposition 4.13 (Smoothing property). Let T > 0. Assume that Case 2 holds and that τ ≤ min{1/c ′ 1 , 1/(2 h2 (T, R 2 ))} where h2 (independent of τ ) is defined by

Proof. Let T > 0 and set q = I(2p -2). Lemma 4.7 shows that

where Q2 (independent of τ ) is defined by (3.34). Arguing as in the proof of Proposition 4.12 and using (3.12), we find

V , for all 0 ≤ n < [T /τ ]. We conclude similarly.

Finite time uniform error estimate

For the error estimate on a finite time interval, we follow the methodology in [START_REF] Wang | Approximation of stationary statistical properties of dissipative dynamical systems: time discretization[END_REF]. We assume that τ ∈ (0, 1/(4c ′

1 )] and we consider a sequence (u n ) generated by (4.1). We first derive a very useful estimate. Using (4.21) with s = 4c ′ 1 τ , from (4.8) we infer by induction that

To the sequence (u n ), we associate two functions u τ , ūτ : R + → H, namely

and ūτ (t) = u n+1 , t ∈ [nτ, (n + 1)τ ).

We assume that u 0 ∈ V ∩L 2p (Ω). Then, by definition, every u n belongs to V ∩L 2p (Ω), so that

(Ω)). The scheme (4.1) can be rewritten ∂ t u τ -d∆ū τ + g(ū τ ) = 0, a.e. t ≥ 0, or equivalently, ∂ t u τ -d∆u τ + g(u τ ) = -d∆(u τ -ūτ ) + [g(u τ ) -g(ū τ )], a.e. t ≥ 0.

(5.