
HAL Id: hal-01518788
https://hal.science/hal-01518788

Submitted on 12 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallelization strategy for elementary morphological
operators on graphs: distance-based algorithms and

implementation on multicore shared-memory
architecture

Imane Youkana, Jean Cousty, Rachida Saouli, Mohamed Akil

To cite this version:
Imane Youkana, Jean Cousty, Rachida Saouli, Mohamed Akil. Parallelization strategy for elemen-
tary morphological operators on graphs: distance-based algorithms and implementation on multicore
shared-memory architecture. Journal of Mathematical Imaging and Vision, 2017, 12 (7), pp.136-160.
�10.1007/s10851-017-0737-1�. �hal-01518788�

https://hal.science/hal-01518788
https://hal.archives-ouvertes.fr

Laboratoire d’informatique Gaspard-Monge (preprint)

Parallelization strategy for elementary morphological operators on graphs:
distance-based algorithms and implementation on multicore shared-memory
architecture

Imane Youkana · Jean Cousty · Rachida Saouli ·
Mohamed Akil

May 2017

Abstract This article focuses on the (unweighted) graph-based mathematical morphology operators presented in
[J. Cousty et al, “Morphological filtering on graphs”, CVIU 2013]. These operators depend on a size parameter that
specifies the number of iterations of elementary dilations/erosions. Thus, the associated running times increase
with the size parameter, the algorithms running in O(λ.n) time, where n is the size of the underlying graph
and λ is the size parameter. In this article, we present distance maps that allow us to recover (by thresholding)
all considered dilations and erosions. The algorithms based on distance maps allow the operators to be computed
with a single linear O(n) time iteration, without any dependence to the size parameter. Then, we investigate a
parallelization strategy to compute these distance maps. The idea is to build iteratively the successive level-sets of
the distance maps, each level set being traversed in parallel. Under some reasonable assumptions about the graph
and sets to be dilated, our parallel algorithm runs in O(n/p +K log2 p) where n, p, and K are the size of the
graph, the number of available processors, and the number of distinct level-sets of the distance map, respectively.
Then, implementations of the proposed algorithm on a shared-memory multicore architecture are described and
assessed on datasets of 45 images and 6 textured 3-dimensional meshes, showing a reduction of the processing
time by a factor up to 55 over the previously available implementations on a 8 core architecture.

Keywords Graph-based mathematical morphology · distance maps · parallel algorithm ·multicores/multithreaded
architectures.

1 Introduction

Mathematical morphology provides a set of filtering and segmenting tools that are very useful in applications to
image analysis. From a historical point of view, the first field of applications of mathematical morphology was
digital images, i.e., sets of pixels aligned on a 2D or 3D grid and equipped with binary, grayscale, or vectorial
values [29]. However, the theoretical basis of mathematical morphology relies on the abstract algebraic structure
of a complete lattice [15] allowing us to consider the processing of a very broad class of data with mathematical
morphology operators.

Imane Youkana, Jean Cousty, Rachida Saouli, and Mohamed Akil
Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, A3SI, ESIEE Paris, CNRS
E-mail: {imane.youkan, jean.cousty, rachida.saouli, mohamed.akil}@esiee.fr,

Imane Youkana and Rachida Saouli
Université de Biskra, Département d’Informatique, Biskra, Algérie.

2 Imane Youkana et al.

On the other hand, there is a growing interest for considering digital objects not only composed of points
but also composed of elements lying between them and carrying structural information about how the points
are glued together (see e.g., [24], [7,8,12,11], and [2] for recent mathematical morphology operators on graphs,
on cubical/simplicial complexes, and on hypergraphs respectively). The simplest of these representations are the
graphs. The domain of an image is considered as a graph (which can be planar or not) whose vertex set is made of
the pixels and whose edge set is given by an adjacency relation on these pixels. Note that this adjacency relation
can be either spatially invariant or spatially variant leading to operators that are either spatially invariant or
spatially variant (see [18], for early applications of spatially variant mathematical morphology). Graphs are also
useful to process other kinds of discrete structures defined for instance on 3-dimensional meshes. In this context,
it becomes relevant to consider morphological transformations acting on the subsets of vertices, the subsets of
edges and the subgraphs of a graphs and not only those acting on the set of all subsets of pixels.

Mathematical morphology on graphs was pioneered by Vincent [33] who proposes operators relying on a
dilation (and its adjunct erosion) that act on the vertices of a graph. More recently, [9] investigates four basic
dilatations and erosions that map a set of vertices to a set of edges and a set of edges to a set of vertices. It
was shown in [9] that these operators can be combined in order to obtain operators acting on the subsets of
edges, on the subsets of vertices and on the subgraphs of a given graph. In particular, interesting openings and
closings (and then the associated alternate sequential filters) are obtained by iteration of the basic operators.
The number of iterations constitutes a filtering parameter related to the size of the features to be preserved or
removed. Therefore, based on the straightforward definition, the time-complexity of the associated algorithms
increases with the size parameter. More precisely, for a parameter value of λ the algorithms run in O(λ.n) time,
where n is the size of the underlying graph.

In this article, our main contributions are threefold: i) we introduce new distance maps that lead to original
characterizations of the operators of [9]; ii) based on these distance maps, we propose the first O(n) time sequential
algorithms for all erosions/dilations of [9], avoiding the dependence to the size parameter λ; and iii) we propose
a parallelization strategy leading to fast computation, in particular, for multicore shared memory architectures.

After presenting background notions about morphology and graphs in Section 2, we study in Section 3 some
distance maps that lead to characterizations of the dilations and erosions presented in [9]. In particular, we
introduce edge-vertex and vertex-edge distance maps. Given a set of edges (resp. vertices), the edge-vertex (resp.
vertex-edge) distance map provides for each vertex (resp. edge) a distance to the closest edge (resp. vertex) of
the input set. In order to compute these distance maps, Section 4 presents adaptations of linear-time algorithms
for distance maps in unweighted graphs. These algorithms derive from breadth first search (see, e.g., [6] for an
introduction to breadth first search). The dilations and erosions of [9] can then be obtained by thresholding
these distance maps, leading to linear-time algorithms for the operators of [9]. Section 5 introduces a parallel
algorithm to compute the proposed distance maps, hence the morphological operators of [9]. Parallel and/or
separable algorithms for morphological operators and distance maps on images have been widely studied [31,
28,5,20,32,30,4,25]. Based on the regular structure of the space, such computations use a static partitioning of
the image into rows, columns or blocks processed in parallel. In order to handle the non-regular structure of a
graph, our parallelization strategy is based on a dynamic partitioning of the space which depends on the input
set and which is iteratively computed during the execution. The time complexity of our parallel algorithm is
analyzed. Under some reasonable assumptions about the graph and set under consideration, our algorithm runs
in O(n/p + K log2 p) time, where n, p, and K are the size of the underlying graph, the number of available
processors and the number of distinct level sets of the distance map, respectively. Finally, the three last sections
of the article, namely Sections 6, 7, and 8, present an implementation of the proposed parallel algorithm on
a shared memory multicore architecture and assess the proposed implementation on three datasets containing
images commonly used in the literature as well as textured meshes. The assessment shows, in particular, that
the proposed parallel implementation runs up to 55 times faster than the implementations of the operators of [9]
that were available before the present article.

Title Suppressed Due to Excessive Length 3

This article extends an article [34] published in a conference. In particular, it contains the proof of the
properties presented in [34]. The three last sections dedicated to the implementation of the proposed parallel
algorithm and its assessment are also completely original.

2 Background notions for morphology on graphs

In this section, we recall background notions for mathematical morphology on graphs. After providing basic
definition for graphs, we present in Section 2.1 four operators studied in [10,9] and whose grayscale extension
was first introduced in [23]. They constitute a set of basic building blocks for morphology on graphs. Section 2.2
presents operators obtained by composition and iterations of these building blocks. These iterated operators are
known to be efficient for processing binary images or more generally graphs [9]. Finally, in Section 2.3, we remind
a notion of a distance map in a (unweighted) graph and a link, established in [33], with two of the operators
of Section 2.2. In the remainder of the article, this link is extended to all operators of Section 2.2 and used to
propose efficient sequential and parallel algorithms for the morphological operators of [9].

2.1 Elementary morphological operators on graphs

A (undirected) graph is a pair X = (X•, X×) where X• is a set and X× is composed of unordered pairs of
distinct elements in X•, i.e., X× is a subset of {{x, y} ⊆ X• | x 6= y}. Each element of X• is called a vertex or
a point (of X), and each element of X× is called an edge (of X).

Important notation. Hereafter, the workspace is a graph G = (G•,G×) and we consider the sets G•, G×
and G of respectively all subsets of G•, all subsets of G× and all subgraphs of G.

Mathematical morphology filtering on graphs, as introduced in [9], relies on four basic operators which are
used to derive a set of edges from a set of vertices and a set of vertices from a set of edges.

Definition 1 We define the operators δ• and ε• from G× to G• and the operators ε×, and δ× from G• to G×
as follows:

δ•(X×) = {x ∈ G• | ∃{x, y} ∈ X×}, for any X× ⊆ G×; (1)

ε•(X×) = {x ∈ G• | ∀{x, y} ∈ G×, {x, y} ∈ X×}, for any X× ⊆ G×; (2)

ε×(X•) = {{x, y} ∈ G× | x ∈ X• and y ∈ X•}, for any X• ⊆ G•; and (3)

δ×(X•) = {{x, y} ∈ G× | x ∈ X• or y ∈ X•}, for any X• ⊆ G•. (4)

In other words, the operator δ• maps to any edge set X× the set of all vertices that belong to an edge in X×.
The operator ε• maps to any edge set X× the set of vertices that are “completely covered” by edges in X×, i.e.
the vertices that do not belong to any edge of the complement G× \X× of X×. The operator ε× maps to any
vertex set X• the set of all edges whose two extremities are in X•. The operator δ× maps to any vertex set X•

the set of all edges that have at least one extremity in X•.
The operators ε×, δ×, ε• and δ• are illustrated in Figures 1 (first three columns), 2 (first two columns), 3

(first two columns), and 4 (first two columns), respectively.
Many mathematical morphology operators rely on the algebraic structure of a lattice [15,14,26]. In particular,

any operator that commutes with the union (resp. intersection) is called a dilation (resp. an erosion). It is
established in [9] that the operators δ• and δ× are indeed morphological dilations and that the operators ε•

and ε× are erosions since they commute with union and intersection respectively, i.e. we have δ•(X× ∪ Y ×) =
δ•(X×) ∪ δ•(Y ×), ε•(X× ∩ Y ×) = ε•(X×) ∩ ε•(Y ×), δ×(X• ∪ Y •) = δ×(X•) ∪ δ×(Y •), and ε×(X• ∩ Y •) =
ε×(X•) ∩ ε×(Y •), for any X•, Y • ⊆ G• and X×, Y × ⊆ G×. Therefore, in the following, the operators δ× and

4 Imane Youkana et al.

G = (G•,G×) X• ε1/2(X
•) = ε×(X•) ε2/2(X

•) ε3/2(X
•)

Fig. 1 Illustration of the operator ελ/2 with λ ∈ {1, 2, 3}. The considered sets are depicted by black dots or line segments.

Y • δ1/2(Y
•) = δ×(Y •) δ2/2(Y

•) δ3/2(Y
•) δ4/2(Y

•)

Fig. 2 Illustration of the operator δλ/2 with λ ∈ {1, 2, 3, 4}, the workspace being the graph G depicted in Figure 1. The
considered sets are depicted by black dots or line segments.

Z× ε1/2(Z
×) = ε•(Z×) ε2/2(Z

×) ε3/2(Z
×) ε4/2(Z

×)

Fig. 3 Illustration of the operator ελ/2 with λ ∈ {1, 2, 3, 4}, the workspace being the graph G depicted in Figure 1. The
considered sets are depicted by black dots or line segments.

δ• (resp. ε× and ε•) are referred to as the vertex-edge dilation and the edge-vertex dilation (resp. the vertex-edge
erosion and the edge-vertex erosion).

Observe that the operators introduced in Definition 1 are given for arbitrary (unweighted, undirected) graphs.
In particular, they can be applied on spatially invariant and spatially variant pixel adjacency graphs as well as
any other kind of graphs such as, e.g., the graphs derived from three dimensional meshes in Section 7.

Title Suppressed Due to Excessive Length 5

W× ∆1/2(W
×) =

δ•(W×)

∆2/2(W
×) ∆3/2(W

×) ∆4/2(W
×)

Fig. 4 Illustration of the operator ∆λ/2 with λ ∈ {1, 2, 3, 4}, the workspace being the graph G depicted in Figure 1. The
considered sets are depicted by black dots or line segments.

The erosions and dilations introduced in Definition 1 allow for defining operators such as opening, closing and
alternate sequential filters that are useful in applications [9,22]. To this end, one needs to consider compositions
and iterations of these building blocks.

2.2 Iterated dilations and erosions on graphs

Let α be an operator acting on G• or on G× and let i be a non negative integer. The operator αi is defined by
the identity when i = 0 and by α ◦ αi−1 otherwise.

In other words, when i is greater than 1, the result of the operator αi applied to a set X can be obtained by
applying i iterations of α from X.

The elementary operators presented in Definition 1 map the elements of G• (i.e., subsets of vertices) to those
of G× (i.e., subsets of edges) or the elements of G× to those of G•. Thus, since the input and output sets of these
operators are distinct, they cannot be directly iterated. However, any composition of an operator acting from G•
to G× (resp. from G× to G•) with an operator from G× to G• (resp.from G• to G×) leads to an operator on G•
(resp. on G×). Then, such composition can be iterated and eventually followed again by an operator from G•
to G× (resp. from G× to G•). Therefore, to define iterated operators on graphs, we can distinguish two cases
depending whether a final composition with an operator from G• to G× (resp. from G× to G•) is considered or
not.

Definition 2 (Iterated dilations/erosions) Let λ be a nonnegative integer.
Case 1 (even values of λ). If λ is even, we define the operators δλ/2 and ελ/2 on G• and the operators ∆λ/2

and ελ/2 on G× by:

δλ/2(X
•) = (δ• ◦ δ×)λ/2(X•), for any X• ⊆ G•; (5)

ελ/2(X
•) = (ε• ◦ ε×)λ/2(X•), for any X• ⊆ G•; (6)

∆λ/2(X
×) = (δ× ◦ δ•)λ/2(X×), for any X× ⊆ G×; and (7)

ελ/2(X
×) = (ε× ◦ ε•)λ/2(X×), for any X× ⊆ G×. (8)

6 Imane Youkana et al.

Case 2 (odd values of λ). If λ is odd, we define the operators δλ/2 and ελ/2 from G• to G× and the opera-
tors ∆λ/2 and ελ/2 from G× to G• by:

δλ/2(X
•) = δ× ◦ δ(λ−1)/2(X

•), for any X• ⊆ G•; (9)

ελ/2(X
•) = ε× ◦ ε(λ−1)/2(X

•), for any X• ⊆ G•; (10)

∆λ/2(X
×) = δ• ◦∆(λ−1)/2(X

×), for any X× ⊆ G×; and (11)

ελ/2(X
×) = ε• ◦ ε(λ−1)/2(X

×), for any X× ⊆ G×. (12)

The operators ελ/2, δλ/2, ελ/2, and∆λ/2 are illustrated for various (even and odd) values of λ in Figures 1, 2, 3,
and 4, respectively. In particular, it can be observed that, when λ is even, the operators ελ/2 and δλ/2 map a
set vertices to a set of vertices and that the operators ελ/2 and ∆λ/2 map a set of edges to a set of edges. On
the other hand, when λ is odd, the operators ελ/2 and δλ/2 map a set of edges to a set of vertices and the
operators ελ/2 and ∆λ/2 map a set of vertices to a set of edges.

It is known in morphology that interesting filters, called openings and closings, are obtained by composition
of corresponding (adjunct) dilations and erosions [15,14,26]. Such openings and closings are useful in applica-
tions in order to filter out noise and to regularize the contours of images. The size of the structures which are
preserved/suppressed with openings and closings depends on the number of iterations of the basic dilations and
erosions. Larger structures are removed/preserved when higher numbers of iterations are considered. Therefore,
the number of iterations involved in a morphological operator is often referred to as its size parameter. The open-
ings and closings resulting from the compositions of the dilations and erosions of Definition 2 act either on sets of
vertices or on sets of edges as recalled in Table 1 (see [9] for an extensive study). Furthermore, the simultaneous
application of these filters (for a same size parameter) on the vertices and on the edges of a subgraph of G leads
to a subgraph of G, hence morphological filtering on subgraphs.

Domain Parity of λ Openings Closings
Vertex sets even δλ/2 ◦ ελ/2 ελ/2 ◦ δλ/2
- odd ∆λ/2 ◦ ελ/2 ελ/2 ◦ δλ/2
Edge sets even ∆λ/2 ◦ ελ/2 ελ/2 ◦∆λ/2
- odd δλ/2 ◦ ελ/2 ελ/2 ◦∆λ/2

Table 1 Summary of the openings and closings resulting from the dilations and erosions of Definition 2.

By further composing openings and closings with increasing size parameter, alternate sequential filters are
obtained. They generally outperform the results of elementary openings and closings in applications to image
regularization. Describing in details the filters that can be obtained thanks to the operator of Definition 2 was
done in [9] and is beyond the scope of this article.

As seen above, when the value of λ is even, the input and output sets of the operators δλ/2 and ελ/2
are subsets of vertices of the graph G. From a mathematical morphology point of view, these operators (i.e.
{δλ/2, ελ/2 | λ is even }) were first studied in [33], where a link with the notion of a distance map was established.
This link is reminded in Section 2.3 before being extended to all operators of Definition 2 in Section 3.

2.3 Vertex-vertex distance maps on graphs

Let x and y be two vertices in G•. A (vertex-vertex) path from x to y is a sequence (x0, u0, . . . , x`−1, u`−1, x`)
such that x0 = x, x` = y, and, for any i in {0, . . . , ` − 1}, and we have ui = {xi, xi+1} where ui is an edge

Title Suppressed Due to Excessive Length 7

of G. The length of a path (x0, u0, . . . , x`−1, u`−1, x`) is the number of its elements minus one, i.e., the integer
value 2`. A shortest path from x to y is a path of minimal length from x to y. We denote by L(x, y) the length
of a shortest path from x to y.

Observe that the length of any vertex-vertex path is even, which is not usual in standard graph textbooks.
Indeed, the length of a path is often considered as the number of edges along the path, whereas, in this article,
both the numbers of vertices and of edges along the path are considered. It can be remarked that the two notions
of length are equivalent up to a factor 2. The choice of multiplying by 2 the usual length of paths was driven
by Property 4 (presented hereafter) that directly links the length of paths to the operators of Section 2.2.

In order to establish such link, an elementary use of path is considered, namely the computation of distance
maps [27]: given a set X• of vertices, for any vertex of G, one can compute the graph-distance (i.e., the length
of a shortest path) to the closest vertex in X•.

Definition 3 (vertex-vertex distance map) Let X• be a subset of G. The (vertex-vertex) distance map
to X• is the map D(•,•)

X• from G• to the set of integers such that:

D
(•,•)
X• (x) = min{L(x, y) | y ∈ X•}, for any x ∈ X•. (13)

An illustration of vertex-vertex distance map is provided in Figure 5 (leftmost subfigure).
The computation of shortest paths is a well studied topic in the field of graph algorithms. In particular,

when the considered graph is unweighted, the lengths of shortest paths to a given vertex can be obtained with
a breadth-first search algorithm. As precisely studied in Section 4, such algorithm runs in linear O(|G•|+ |G×|)
time complexity.

When λ is an even integer, distance maps can be used to compute the dilation or erosion of size parameter
λ/2 of a subset of vertices. Indeed, as stated by the following property due to L. Vincent [33], one can compute
a distance map and deduce the result of the dilation or erosion by considering thresholds of that distance map
at value λ.

Property 4 (from [33]) Let X• be a subset of G. Then, the following relations hold true:

δλ/2(X
•) = {x ∈ G• | D(•,•)

X• (x) ≤ λ}, for any X• ∈ G•; (14)

ελ/2(X
•) = {x ∈ G• | D(•,•)

X• (x) > λ}, for any X• ∈ G•, (15)

where X• is the complement of X• in G•, that is X• = G• \X•.

In other words, the set δλ/2(X
•) contains any vertex with a value not greater than λ for the distance map

D
(•,•)
X• . The set ελ/2(X

•) contains any vertex with a value greater than λ for the distance map D
(•,•)
X• to the

complementary set X• of X•.
When λ is even, a naive approach based on Definition 2 to compute the dilation δλ/2(X

•) from the set X•

consists of performing λ/2 iterations of the operator (δ• ◦ δ×). A linear-time algorithm for δ• and for δ× can
be easily designed. Thus, this naive algorithm to compute δλ/2(X

•) runs in O(λ(|G•|+ |G×|)) time complexity.
On the other hand, based on Property 4, a O(|G•| + |G×|) time-complexity algorithm can be obtained for
performing the same task. To this end, one needs to compute a distance map and to threshold it at λ. Using the
algorithm presented in Section 4, such distance map can be obtained in linear-time with respect to the size of
the graph G and the simple thresholding operation can be performed in linear time with respect to the number
of vertices of the graph. Hence, the iterated dilation of size λ/2 can be computed with a single iteration instead
of iterating elementary dilation λ times. This allows to avoid the dependence to the size parameter λ in the
algorithm time-complexity.

In this section, the link, established in [33], between distance map and two of the height operators presented
in Definition 2 was reminded. This link leads to a sequential linear-time algorithm for computing the results of
the corresponding dilation and erosion. In the next section, a similar approach is developed to obtain linear-time
algorithms for the six remaining operators of Definition 2.

8 Imane Youkana et al.

3 Distance maps for morphological operators on graphs

Following the morphological approach based on distance maps recalled in Section 2.3, we introduce in this section
three original notions of distance maps on graphs called edge-edge, edge-vertex, and vertex-edge distance maps.
Given a set of edges, the edge-edge (resp. edge-vertex) distance map provides for each edge (resp. each vertex)
of the graph a distance to the closest edge in the input set. Given a set of vertices, the vertex-edge distance
map provides for each edge a distance to the closest vertex in the input set. Then, we show that all dilations
and erosions on graphs presented in [9] can be characterized with distance maps. These characterizations lead to
linear-time sequential algorithms for computing all these dilations and erosions.

Let us start by presenting notions of shortest edge-edge, vertex-edge and edge-vertex paths that are necessary
for defining the edge-edge, vertex-edge and edge-vertex distance maps.

Let u and v be two edges in G× and let x be a vertex in G•.

– A (edge-edge) path from u to v is a sequence (u0, x0, . . . , u`−1, x`−1, u`) such that u0 = u, u` = v, x0 ∈ u0,
x`−1 ∈ u`, and (x0, u1, . . . , u`−1, x`−1) is a vertex-vertex path from x0 to x`−1.

– A (vertex-edge) path from x to u is a sequence (x0, u0, . . . , x`, u`) such that x0 = x, u` = u, x` ∈ u`,
and (x0, u0, . . . , x`) is a vertex-vertex path from x0 to x`.

– A (edge-vertex) path from u to x is a sequence (u0, x0, . . . , u`, x`) such that (x`, u`, . . . , x0, u0) is a vertex-edge
path from x to u .

The length of a path is the number of its elements minus one. Hence, the length of an edge-edge path
(u0, x1, . . . , u`−1, x`−1, u`) is equal to the integer value 2`. The lengths of a vertex-edge path (x0, u0, . . . , x`, u`)
and of an edge-vertex path (u0, x0, . . . , u`, x`) are both equal to the integer value 2`+ 1. Let e1 and e2 be two
elements in G• ∪ G×. A shortest path from e1 to e2 is a path of minimal length from e1 to e2. We denote by
L(e1, e2) the length of a shortest path from e1 to e2.

Let us now present the main notions of this section, namely edge-edge, edge-vertex, and vertex-edge distance
maps.

Definition 5 Let X× and X• be two subsets of G.

– Edge-edge distance map. The (edge-edge) distance map to X× is the map D(×,×)

X× from G× to the set of
integers such that:

D
(×,×)

X× (u) = min{L(v, u) | v ∈ X×}, for any u ∈ X×. (16)

– Vertex-edge distance map. The (vertex-edge) distance map to X• is the map D(•,×)
X• from G× to the set

of integers such that:

D
(•,×)
X• (u) = min{L(x, u) | x ∈ X•}, for any u ∈ X×. (17)

– Edge-vertex distance map. The (edge-vertex) distance map to X× is the map D(×,•)
X× from G• to the set

of integers such that:

D
(×,•)
X× (x) = min{L(u, x) | u ∈ X×}, for any x ∈ X•. (18)

In other words, given a subset X× of edges, the edge-edge (resp. edge-vertex) distance map to X× provides
for each edge u (resp. vertex x) of G the minimal length of a path from u (resp. x) to an edge of X× and, given
a subset X• of vertices, the vertex-edge distance map to X• provides for each edge u of G the minimal length of
a path from u to a vertex in X•.

The vertex-edge, edge-edge and edge-vertex distance maps are illustrated in Figures 5.
The distance maps introduced above are directly linked to the morphological operators presented in Section 2.

Indeed, as stated by the following characterization theorem, the result of every dilation and of every erosion

Title Suppressed Due to Excessive Length 9

D
(•,•)
Y • D

(•,×)

Y • D
(×,×)

W× D
(×,•)
W×

2

4

4

2 4

2

2

0

4

4

4

2

0

4 0
1

3 3

3

5

5

1

1

1

1

5
3

3

3

1 3

5

3

3

5

5

3

0

00

2 2

22

2

4

44

4 4
44 4

4

2

4

66
6

1

33 3

33

3

555

1 1

1

1

5

Fig. 5 Illustration of distance maps on graphs. The two first subfigures show the vertex-vertex and vertex-edge distance
maps to the set Y • of Figure 2 (in the graph G of Figure 1). The two last subfigures show the edge-edge and edge-vertex
distance maps to the set W× of Figure 4.

presented in Definition 2 can be obtained from distance maps. More precisely, any dilation or erosion of a set,
for any given size parameter λ, can be obtained by thresholding a distance map at value λ according to the six
relations established by Theorem 6 and to the two relations of Property 4.

Theorem 6 Let λ be any positive integer.

– If λ is even, then the two following relations hold true:

∆λ/2(X
×) = {u ∈ G× | D(×,×)

X× (u) ≤ λ}, for any X× ∈ G×; and (19)

ελ/2(X
×) = {u ∈ G× | D(×,×)

X× (u) > λ}, for any X× ∈ G×, (20)

where X× is the complement of X× in G×, that is X× = G× \X×.
– If λ is odd, then the four following relations hold true:

δλ/2(X
•) = {u ∈ G× | D(•,×)

X• (u) ≤ λ}, for any X• ∈ G•; (21)

ελ/2(X
•) = {u ∈ G× | D(•,×)

X• (u) > λ}, for any X• ∈ G•; (22)

∆λ/2(X
×) = {x ∈ G• | D(×,•)

X× (x) ≤ λ}, for any X× ∈ G×; and (23)

ελ/2(X
×) = {x ∈ G• | D(×,•)

X× (x) > λ}, for any X× ∈ G×, (24)

where X× is the complement of X× in G×, that is X× = G× \X× and X• is the complement of X• in G•,
that is X• = G• \X•.

Proof

10 Imane Youkana et al.

– Let us first prove that relation (21) holds true. Let λ be odd and let X• ⊆ G•. The following statements are
equivalent.

δλ/2(X
•) = δ× ◦ δ(λ−1)/2(X

•), (by Equation 9)

δλ/2(X
•) = δ×({x ∈ G• | D(•,•)

X• (x) ≤ λ− 1}), (by Equation 14, since λ− 1 is even)

δλ/2(X
•) = δ×({x ∈ G• | ∃y ∈ X•,∃ a path from y to x of length not greater than λ− 1}),

(by Definition 3)

δλ/2(X
•) = {{x, z} ∈ G× | ∃y ∈ X•,∃ a path from y to x of length not greater than λ− 1}),

(by Equation 4)

δλ/2(X
•) = {u ∈ G× | ∃y ∈ X•, ∃ a path from y to u of length not greater than λ}),

(by definition of a path)

δλ/2(X
•) = {u ∈ G× | D(•,×)

X• (u) ≤ λ}, (by Equation 17)

– Let us now prove that relation (19) holds true. Let λ be even and let X× ⊆ G×. The following statements
are equivalent.

∆λ/2(X
×) = (δ× ◦ δ•)λ/2(X×), (by Equation 7)

∆λ/2(X
×) = δ× ◦ (δ• ◦ δ×)(λ−2)/2 ◦ δ•(X×)

∆λ/2(X
×) = δ× ◦ δ(λ−2)/2 ◦ δ

•(X×), (by Equation 5)

∆λ/2(X
×) = δ(λ−1)/2 ◦ δ

•(X×), (by Equation 9)

∆λ/2(X
×) = {u ∈ G× | D(•,×)

δ•(X×)
(u) ≤ λ− 1}, (by Equation 21)

∆λ/2(X
×) = {u ∈ G× | ∃x ∈ δ•(X×), ∃ a path from x to u of length not greater than λ− 1},

(by Equation 17)

∆λ/2(X
×) = {u ∈ G× | ∃v ∈ X×, ∃ a path from v to u of length not greater than λ}, (by Equation 1)

∆λ/2(X
×) = {u ∈ G× | D(×,×)

X× (u) ≤ λ}, (by Equation 16)

– We are now going to prove that relation (23) holds true. Let λ be odd and let X× ⊆ G•. The following
statements are equivalent.

∆λ/2(X
×) = δ• ◦∆(λ−1)/2(X

×), , by Equation 11

∆λ/2(X
×) = δ• ◦ (δ× ◦ δ•)(λ−1)/2(X×), (by Equation 7)

∆λ/2(X
×) = (δ• ◦ δ×)(λ−1)/2 ◦ δ•(X×)

∆λ/2(X
×) = δ(λ−1)/2 ◦ δ

•(X×), (byEquation 5)

∆λ/2(X
×) = {x ∈ G• | D(•,•)

δ•(X×)
(x) ≤ λ− 1}, (byEquation 14)

∆λ/2(X
×) = {x ∈ G• | ∃y ∈ δ•(X×), ∃ a path from y to x of length not greater than λ− 1},

(by Definition 3)

∆λ/2(X
×) = {x ∈ G• | ∃u ∈ X×,∃ a path from u to x of length not greater than λ} (by Equation 1)

∆λ/2(X
×) = {x ∈ G• | D(×,•)

X× (x) ≤ λ} (by Equation 18)

– Relations (20), (22) and (22) can be deduced by duality from relations (19), (21) and (23), respectively. ut

Title Suppressed Due to Excessive Length 11

In other words, Theorem 6 states that, when λ is even, the set ∆λ/2(X
×) (resp. ελ/2(X

×)) contains any

edge with a value not greater than λ (resp. greater than λ) for the distance map D(×,×)

X× (resp. D(×,×)

X×). When λ
is odd, the set δλ/2(X

•) (resp. ελ/2(X
•)) contains any edge of value not greater than λ (resp. greater than λ)

for the distance map D(•,×)
X• (resp. D(•,×)

X•) and the set ∆λ/2(X
×) (resp. ελ/2(X

×)) contains any vertex of value

not greater than λ (resp. greater than λ) for the distance map D(×,•)
X× (resp. D(×,•)

X×).
For example, the dilations {δλ/2(Y •)} for odd values of λ in {1, 3}, which are shown in Figures 2, can be

obtained by thresholding the vertex-edge distance map D(•,×)
Y • presented in the second column of Figures 5. The

dilations {∆λ/2(W×)} with even (resp. odd) value of λ in {2, 4} (resp. {1, 3}), which are shown in Figures 4,

can be obtained by thresholding the edge-edge distance map D(×,×)

W× (resp. the edge-vertex distance map D(×,•)
W×)

presented in Figures 5.
From Property 4 and Theorem 6, we deduce that the result of any operator of Definition 2 can be obtained by

thresholding a distance map at value λ, where λ is the size parameter of the operator. Thresholding, a (distance)
map that weights the vertices (resp. edges) of a graph can be done in linear-time with respect to the number of
vertices (resp. edges) of the graph with a sequential algorithm. Furthermore, a parallel algorithm that performs
this computation in O(n/p) time can be easily designed, where n is the number of vertices (resp. edges) of
the graph and where p is the number of available processors. In both sequential and parallel cases, the overall
complexity of the algorithms based on distance maps to compute the results of the operators of Definition 2
depend on the efficiency of distance maps algorithms. The next sections are devoted to sequential and parallel
algorithms for distance maps on graphs.

4 Linear-time sequential algorithms for morphological operators on graphs

In this section, sequential algorithms to compute vertex-vertex, edge-edge, vertex-edge and edge-vertex distance
maps in linear time with respect to the size of the graph G are presented. These algorithms are variations on
breadth-first search. As stated at the end of the previous section, due to Property 4 and Theorem 6, these
algorithms allow us for computing the results of all operators of Definition 2 in linear time with respect to the
size of the graph, without any dependence to the size parameter of the operators.

Algorithm 1, presented below, allows us to compute both the vertex-vertex distance map D
(•,•)
X• and the

vertex-edge distance map D(•,×)
X• to a given subset X• of vertices. The basic idea is to perform a breadth-first

exploration of the edges and vertices of G from the elements of X•. The distance map value of each vertex (resp.
edge) is computed when the vertex is first encountered during exploration. The breadth-first exploration, which
ensures correct distance values, is made possible thanks to the auxiliary queue Q that is managed with a FIFO
(First-In-First-Out) property.

In order to establish the correctness of Algorithm 1, let us analyze four invariants of Algorithm 1, i.e. four
properties that hold true at every iterations of the main loop (line 6): i) every finite value associated to a point
or an edge is the correct distance map value to the input set X•; ii) every vertex of G with a finite value that has
an adjacent edge or vertex with an infinite value belongs to Q; iii) the vertices of Q are mapped to finite values
and they are stored in increasing order, the value of the first element of Q being Qmin and the one of the last
element being not greater than Qmin + 2 ; and iv) any element e of G• or of G× such that there is a vertex x
in X• with L(x, e) < Qmin is mapped to a finite value.

These invariants trivially hold true after the initialization step (lines 1-5). At every iteration of the main loop,
a vertex x is popped from Q (line 6). Let λ be the distance map value of this vertex. In order to preserve properties
i)-iv) above, all vertices and edges adjacent to x are analyzed thanks to the foreach loop at line 8. If an adjacent
edge (resp. vertex) with an infinite value is found, then we can easily deduced that this element can be reach
from X• (through x) with a path of length λ+1 (resp. λ+2). Furthermore, such path is a shortest one (otherwise,
due to invariant ii) and iv)), there would be an adjacent vertex in Q with a value smaller than λ, a contradiction

12 Imane Youkana et al.

Algorithm 1: Vertex-vertex and vertex-edge distance maps.

Data: a connected graph G = (G•, G×), and subset X• of G•.
Result: the distance maps D(•,•)

X• and D(•,×)
X• to the set X•.

1 Q := an empty queue with FIFO property;
2 foreach vertex x in G• do
3 if x ∈ X• then Q.push(x); D(•,•)

X• (x) := 0;

4 else D(•,•)
X• (x) := ∞;

5 foreach edge {x, y} in G× do D(•,×)
X• ({x, y}) := ∞;

6 while Q.isNotEmpty() do
7 x := Q.pop();
8 foreach vertex y adjacent to x in G do // i.e., when {x, y} ∈ G×

9 if D(•,×)
X• ({x, y})= ∞ then D

(•,×)
X• ({x, y}) := D

(•,•)
X• (x) + 1;

10 if D(•,•)
X• (y) =∞ then Q.push(y); D(•,•)

X• (y) := D
(•,•)
X• (x) + 1;

with invariant iii)). Thus, the new value is correct and invariant i) is preserved. The newly discovered vertex
is pushed in Q at line 10 in order to preserve invariant ii). Note that invariant iii) is trivially preserved since
the newly inserted vertex has a value of λ + 2. Let us finally establish that invariant iv) holds true at the end
of the while loop iteration. It can be seen that any element e in G• ∪ G× such that there is a vertex y in X•

with L(y, e) < Qmin is adjacent to a vertex z such that L(y, z) < Qmin − 2. But it can be observed that we
have Qmin ∈ {λ, λ+2}. Thus, we deduce that L(y, z) < λ. Hence, since invariant iv) holds true at the beginning
of the while loop iteration, we deduce that z is mapped to a finite value. Furthermore, since L(y, z) < λ, we
deduce that z is not in Q. Therefore, by (the contraposition of) ii), we may affirm that e is mapped to a finite
value, which proves that invariant iv) holds true at the end of the iteration of the while loop. Thus, invariants
i)-iv) hold true when the foreach loop at line 8 terminates. Hence, we deduce that when the algorithm halts the
produced maps D(•,•)

X• and D
(•,×)
X• are indeed the vertex-vertex distance and the the vertex-edge distance map

to X•.

Let us now analyze the time complexity of Algorithm 1. The initialization of the queue Q (line 1) is done in
constant time. Since a push operation on a queue can be done in constant time, the overall complexity of the
initialization loop at lines 1-4 is done in O(|G•|) and the edge distance map initialization is done in O(|G×|) by
the loop at line 5. In order to analyze the complexity of the main loop of Algorithm 1, it is important to note
that every vertex of the graph is pushed at most once in Q. This is ensured by immediately setting to a finite
value a point which is inserted in Q and by only inserting in Q points with an infinite value (see lines 3 and 10).
Thus, since a vertex is popped from Q at every iteration of the while loop, we deduce that there are at most |V |
iterations of this loop. At each iteration of the while loop the vertices and edges adjacent to the vertex which is
popped are explored (foreach loop at line 8). Thus, if the graph G is represented as an array of lists associating
to each vertex the list of its adjacent edges, the complexity of line 8 is O(|V |+ |E|). The instructions, inside this
foreach loop are executed at most 2 × |E| times, each of them being individually performed in constant time.
Therefore, the overall complexity of these instructions is O(|E|). Thus, we deduce that the overall complexity of
the algorithm is O(|V |+ |E|).

Algorithm 2, presented hereafter, is similar to Algorithm 1 but allows us to compute both the edge-edge and
edge-vertex distance maps to a given subset of edges instead of the vertex-vertex and vertex-edge distance maps
to a subset of vertices. The initialization steps (lines 2 to 8), which has to be made from a set of edges rather
than from a set of vertices, is the main difference with Algorithm 1. However, the same arguments can be used
to establish the correctness and complexity of Algorithm 2. Thus, the following property can be deduced.

Title Suppressed Due to Excessive Length 13

Algorithm 2: Edge-edge and edge-vertex distance maps.

Data: a connected graph G = (G•, G×) and a subset X× of G×.
Result: the distance maps D(×,×)

X× and D(×,•)
X× to the set X×.

1 Q := an empty queue with FIFO property;

2 foreach vertex x in G• do D
(×,•)
X× (x) := ∞;

3 foreach edge {x, y} in G× do
4 if {x, y} ∈ X× then
5 if D(×,•)

X× (x)== ∞ then Q.push(x); D(×,•)
X× (x):= 1 ;

6 if D(×,•)
X× (y)== ∞ then Q.push(y); D(×,•)

X× (y):= 1 ;

7 D
(×,×)

X× ({x, y}) := 0;

8 else D(×,×)

X× ({x, y}) := ∞ ;

9 while Q.isNotEmpty() do
10 x := Q.pop();
11 foreach vertex y adjacent to x in G do // i.e., when {x, y} ∈ G×

12 if D(×,×)

X× ({x, y})== ∞ then D
(×,×)

X× ({x, y}) = D
(×,•)
X× (x)+1;

13 if D(×,•)
X× (y)== ∞ then Q.push(y); D(×,•)

X× (y) := D
(×,•)
X× + 2 ;

Property 7 Algorithm 1 outputs two maps D(•,•)
X• and D(•,×)

X• that are the vertex-vertex and vertex-edge distance
maps, respectively, to the input subset X• of G•. Algorithm 2 outputs two maps D(×,×)

X× and D(×,•)
X× that are the

edge-edge and edge-vertex distance maps, respectively, to the input subset X× of G×. Furthermore Algorithms 1
and 2 both run in linear time with respect to |V |+ |E|.

5 Parallel strategy for distance maps on graphs

This section presents a parallel strategy to compute the distance maps introduced in Section 3, hence the math-
ematical morphology operators on graphs of [9]. To this end, related parallelization strategies of distance map
algorithms are first presented (Section 5.1). Then, the proposed parallel algorithm is introduced (Section 5.2) and
necessary auxiliary functions are described (Section 5.3). Finally, the time complexity of the proposed algorithm
is analyzed (Section 5.4).

5.1 Related work on parallel algorithms for distance maps

Several parallel and/or separable algorithms for computing distance maps on images have been proposed. In
particular, based on the regular structure of the space such computations use a static partitioning of the input
image into rows, columns, or blocks processed in parallel. For example, Shyu et al.[30] proposed an efficient
parallel algorithm to compute the Chamfer distance transformation of a binary image. Shyu et al.’s parallel
implementation requires the decomposition of the input image into bands, each band is distributed to a processor.
In each processor, the distance transformation can be computed by preforming two passes over the image : a
forward pass to propagate the distance transform from the causal neighbors, followed by a backward pass to
propagate the distance transform from anti-causal neighbors. This method computes the distance transformation
on a distributed system. Therefore, the intermediate results across several processors must be synchronized using
Message Passing Interface (MPI). Pham et al.[25] presented a parallel implementation of distance transformation

14 Imane Youkana et al.

using OpenMP. In fact, this implementation is based on the parallel execution of the sequential Chamfer distance
transformation proposed in [30] using the shared memory model on multicore CPUs. The parallel implementation
of this distance transformation requires more than one iteration of forward and backward passes unlike the
Chamfer distance transformation. As a result, the distance transformation can be propagated from one band
to the next one in following iterations contrary to [30]. Man et al.[20] [21] presented a parallel algorithm for
computing Euclidean distance map on both multicore processors and GPU system. The idea of this algorithm
consists of performing two steps, in each step both a forward and backward scan is performed. In fact, The input
image is partitioned into rows and columns where in the first step columns are scanned and in the second rows are
scanned. The scanning of a particular column (resp. row) is independent to the scanning of the others columns
(resp. rows). The work of [28] described a separable algorithm to efficiently compute the distance transformation,
the separability means that the computations are performed dimension by dimension.

5.2 Parallel algorithm for distance maps on graphs

Contrary to the parallel computation of distance maps on an image, which, as seen in the previous subsection,
is often based on a static partitioning of the image into rows, columns or blocks processed in parallel, our
parallelization strategy on graphs is based on dynamic partitioning. The partition depends on the input set and
is iteratively computed during the execution. More precisely, our strategy iteratively considers the successive
level-sets of the distance maps, each level set being partitioned and then traversed in parallel. In this section, this
parallel strategy is presented and a precise description of a parallel algorithm for vertex-vertex and vertex-edge
distance maps (i.e., a parallelization of Algorithm 1) is given. For the sake of simplicity, we only give a precise
description of a parallelization of Algorithm 1, but the proposed strategy can also be adapted to edge-edge and
and edge-vertex distance maps computations to obtain a parallelization of Algorithm 2.

Let us first present our strategy from a high level point of view. To this end, we recall the notion of a level
set. Given an integer λ and a (distance) map D from G• in the set of integers, the λ-level set of D is the set of
all elements of value λ for D (i.e., the set {x ∈ G• | D(x) = λ}).

We are now ready for providing the overview of Algorithm 3. Given a subset X• of G•, after an initialization
step where an integer variable λ is set to 0 and where the elements of X• are inserted in a variable set E (hence E
is the (λ = 0)-level-set of D(•,•)

X•), our algorithm can be sketched as follows:

1. Partition E (i.e., the λ-level set of D(•,•)
X•) into p balanced subsets E1, . . . , Ep (line 10 of Algorithm 3).

2. Assign each of the p subsets E1, . . . , Ep to one of the p processors (line 11 of Algorithm 3).
3. Let, in parallel, each processor browse on the neighbors of the elements in its assigned subset Ei, insert those

which are not yet traversed into a private variable set Si, and set their distance map values to λ+2 (lines 13
to 18 of Algorithm 3).

4. Merge the private sets {Si | i ∈ {1, . . . , p}} and store the result in E so that E becomes the (λ+ 2)-level set
of D(•,•)

X• (line 19 of Algorithm 3).
5. Increment λ and repeat steps 1-4 until E becomes empty (line 20).

In Step 3, in order to concurrently check if a vertex has been already traversed, we need to equip each vertex
with a synchronization Boolean variable that is handled with an atomic test-and-set instruction. The test-and-
set instruction sets a given variable to true and returns its old value as a single atomic (i.e., non-interruptible)
instruction.

Algorithm 3 provides the precise description of our parallel strategy. It uses two auxiliary functions called
Partition and Union. The function Partition takes two arguments. The first one is the set E to be partitioned
and the second one is an integer p corresponding to the number of classes of the returned partition. The function
Partition returns a balanced partition of E into p classes, the partition being balanced in the sense that any of
its classes contains either |E|/p or |E|/p+ 1 elements. The function Union is simply computing the union of its
arguments.

Title Suppressed Due to Excessive Length 15

Algorithm 3: Parallel vertex-vertex and vertex-edge distance maps.

Data: A connected graph (G•,G×), a subset X• of G•, the number p of processors.
Result: The distance maps D(•,•)

X• and D(•,×)
X• to the set X•.

1 E := ∅; λ :=0;
2 Set to False all elements of a shared Boolean array Traversed of size |G•|
3 (E1, . . . ,Ep):= Partition(X•, p);
4 (F1, . . . ,Fp):= Partition(G×, p);
5 foreach processor i in {1, . . . ,p} do in parallel
6 foreach vertex x ∈ Ei do D

(•,•)
X• (x) := λ; Traversed[x] := True ;

7 foreach edge e ∈ Fi do D
(•,×)
X• (e) := ∞ ;

8 E:=Union(E1, . . . , Ep);
9 while E 6= ∅ do

10 (E1, . . . ,Ep):= Partition(E, p);
11 foreach processor i in {1, . . . , p} do in parallel
12 Si:=∅;
13 foreach x in Ei do
14 foreach vertex y adjacent to x in G do // i.e., when {x, y} ∈ G×

15 if D(•,×)
X• ({x, y}) =∞ then D

(•,×)
X• ({x, y}) := λ+ 1;

16 if test-and-set(Traversed[y]) = False then
17 Si:=Si ∪ {y};
18 D

(•,•)
X• (y) := λ;

19 E:=Union(S1, . . . , Sp);
20 λ:=λ+ 2;

Before further studying Algorithm 3, let us analyze an execution example. To this end, the graph G =
(G•,G×) and the set X• = {A,B, F, S, T} shown Figure 6(a,b) are considered. For the sake of simplicity, in
this example, let us focus only on the distance map D(•,•)

X• and let us discard the instructions concerning D(•,×)
X• .

Figure 6(c) illustrates the iterations of the main loop of Algorithm 3 with three processors, i.e., with p = 3.
After the initialization, we have E = X• = {A,B, F, S, T}, λ = 0, and D(•,•)

X• (A) = D
(•,•)
X• (B) = D

(•,•)
X• (F) =

D
(•,•)
X• (S) = D

(•,•)
X• (T) = 0. In the first iteration, the first step consists of partitioning the input set E =

{A,B, F, S, T} into 3 balanced subsets E1 = {A,B}, E2 = {F, S}, E3 = {T}. Then, the sets E1, E2, and E3

are assigned to the processors 1, 2, and 3, respectively. Each processor pi (i ∈ {1, 2, 3}), in parallel, explores the
non-already traversed neighbors of the vertices in its subset Ei and inserts these neighbors into a private set.
As shown in Figure 6(c), the resulting private sets S1, S2, and S3 are such that S1 = {C,G}, S2 = {K,R,N},
S3 = {O}. Observe that the vertex G (written in bold in the figure) was concurrently found by two distinct
processors (numbered 1 and 2) since it is a successor of B, which belongs to E1, and a successor of F , which
belongs to E2. But thanks to the test on the synchronized Boolean array Traversed, it was actually inserted
only into S1 and not into S2. When an element is inserted into a set Si, its distance map value is updated
with the current value of λ plus 2 which here is equal to 2 since we are at the first iteration. Thus, we now
have D(•,•)

X• (C) = D
(•,•)
X• (G) = D

(•,•)
X• (K) = D

(•,•)
X• (R)D

(•,•)
X• (N) = D

(•,•)
X• (0) = 2. Then, once the parallel

neighbor search on E1, E2, and E3 is over, the sets S1, S2, and S3 are merged thanks to a call to the Union
function resulting into the updated set E = {C,G,K,R,N,O}. This updated set E, the 2-level set of D(•,•)

X• ,
is considered for the next iteration of the main while loop of the algorithm. Before starting a new iteration the

16 Imane Youkana et al.

value of λ is updated and therefore set to 2. After this first iteration, since E is nonempty, a second iteration
of the main while loop is considered. In fact, on this example, four iterations of the main loop are necessary to
compute the resulting distance maps, as shown on Figure 6(c).

 B C D E

 J I H GF

 K
 L M N O

 P Q R S T

 A

(a) A subset X• of vertices (bold) (b) Labeling of the vertices of G.

A B F S T

E3E2E1

KC G R N O

S1 S2 S3

E

E1 E2 E3

S1 S2 S3

Associated updated distance map values:

E

A B F S T

222 2 22 2

C G K R N O

E1 E2 E3

It
er

at
io

n
 1

Partition

C K R N OG

E

Union

Partition

Associated updated distance map values:

Associated updated distance map values:

4 4 4 4 4 4 4 4

D P Q I JH L M

E

Union

It
er

at
io

n
 2

Partition

Union

D P Q I JH ML

S1 S2 S3

Partition

It
er

at
io

n
 3

Union

It
er

at
io

n
 4

D P Q I JMH L

E1 E2 E3

S1 S2 S3

Associated updated distance map values:

E

E

E

6

Initialization of E:

(c) The different steps of our parallel algorithm.

Fig. 6 Illustration of the proposed parallel algorithm (Algorithm 3): a step-by-step execution example with p = 3
processors.

Title Suppressed Due to Excessive Length 17

5.3 Parallel partition and disjoint union algorithms

Let us now present the parallel algorithms for the Partition and Union functions used in Algorithm 3.
The parallel partition algorithm (see Algorithm 4) consists of computing in parallel, with p processors, a

balanced partition {E1, . . . , Ep} of a set E. The partition is balanced in the sense that the k first sets of the
partition contain |E|/p+1 elements whereas the following ones contain |E|/p elements, where k is the remainder
in the integer division of |E| by p and where a/b denotes the quotient of the integer division of a by b. The
elements of E, stored in an array of size |E|, are moved to arrays previously allocated for the subsets E1, . . . , Ep
in the order of their indices: the first set receives the first elements of the array E and so on (see Figure 7). Thus,
each processor computes the index of the first and of the last element that must be copied (lines 2 to 6) before
actually copying the elements of E located between the computed indices (line 7). The computation of the first
and of the last indices can be done in constant time and the copying step is done in linear time with respect
to |E|/p (each processor moves at most |E|/p+1 elements according to its number of elements). For these steps,
there is no dependence between processors. Thus, all processors can perform these steps in parallel.

Algorithm 4: Partition.
Data: An array E of n = |E| elements, the number p of processors.
Result: A balanced partition (E1, . . . ,Ep) of E.

1 foreach processor i in {1, . . . ,p} do in parallel
2 if i ≤ (n mod p) then
3 start[i] := (i− 1) ∗ (n/p+ 1); end[i] := start[i] + n/p;

4 else
5 start[i] := (n mod p) ∗ (n/p+ 1) + (i− 1− (n mod p)) ∗ (n/p);
6 end[i] := start[i] + n/p - 1;

7 foreach ji in {start[i], . . . , end[i]} do Ei[ji − start[i]] := E[ji] ;

0 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

start[1] end[4] start[5]start[2]end[1] end[5]start[3]end[2] start[4]end[3]

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 0 1 2

E

E1 E2 E3 E5E4

Fig. 7 Illustration of the Partition algorithm with p = 5 processors.

The parallel Union algorithm (see Algorithm 5) computes the union of p disjoint sets {S1, . . . , Sp} with p

processors. The elements of each set are stored in an array and each processor pi (i ∈ {1, . . . , p}) copies the

18 Imane Youkana et al.

elements of the array Si in the array E. The elements of Si are stored consecutively in the resulting array E
from the index start[i], where start[i] is the sum of the cardinalities of the sets S1, . . . , Si−1 (see Figure 8):
start[i] =

∑
j∈{1,...,i−1} |Sj |. Thus, our algorithm first computes the values {start[i] for any i in {1, . . . , p}}

(line 1) before actually copying the elements into E (line 3). Given the cardinalities |S1|, . . . , |Sp|, computing
the values start[i] for any i in {1, . . . , p} is known as the prefix-sum problem. It can be solved in parallel with p
processors with a O(log2 p) running-time algorithm [17]. Then, each processor i copies in parallel (line 3) the
elements of Si into E at the correct position.

Algorithm 5: Union.
Data: A series S1, . . . , Sp of p sets.
Result: An array E whose elements constitutes the union of {S1, . . . , Sp}.

1 start = ParallelPrefixSum(|S1|, . . . , |Sp|);
2 foreach processor i in {1, . . . , p} do in parallel
3 foreach ji in {0, . . . , |Si| − 1} do E[start[i] + ji] := Si[ji] ;

2 3 1 22 2 31 10 0 0

14131211108 9765431 20

start[3]start[2] start[4] start[5]start[1]

Processor 1
0

E

S3 S4 S5S2S1

Processor 3 Processor 5Processor 4Processor 2
0 1

Fig. 8 Illustration of the Union algorithm with p = 5 processors.

5.4 Complexity analysis

In this subsection, the worst-case time complexity of Algorithm 3 is analyzed (Theorem 11). This complexity
depends of the ratio, called the unbalancing balancing factor of the graph (Definition 9), of the maximum degree
of a vertex of the graph over the minimum one. The complexity of Algorithm 3 is analyzed under an assumption
about the graph and set under scrutiny. Indeed, in some “degenerated” cases, which we seek to avoid by this
assumption, the distance map computation problem becomes sequential. This is the case, in particular, when the
graph depicts a “linear shape”, e.g., when each vertex is adjacent to at most two other vertices. An example of
such graph is shown in Figure 9a. In order to handle such problematic situations, the following notion of a regular
set is proposed.

Definition 8 (regular set) Let p be a positive integer and let X• be a subset of G•. We say that X• is p-regular
(for G) if every nonempty level-set of D(•,•)

X• contains at least p elements.

Title Suppressed Due to Excessive Length 19

0 26

2

18208

10 1614

22

28

12

4

30

6

24

0

0

0

2

2

2

4

4

6

6

6

8 8

84

P1

P2

P1 P1 P1
P1

P1 P1 P1 P1 P1

P2 P2 P2 P2

(a) (b)

Fig. 9 (a) A graph G and a subset X• (in black) of vertices that is 1-regular but not 2-regular. The distance map D(•,•)
X• is

given by the blue numbers. (b) A graph whose unbalancing factor is 3
2
used to illustrate a situation of unbalanced workload

obtained with Algorithm 3 (see text).

For instance, if we consider the graph G of Figure 9(a), the set X• (black vertices in Figure 9(a)) is 1-regular
but not 2-regular since every level set of D(•,•)

X• (represented by blue numbers in the figure) contains a single
vertex. It can be seen that when Algorithm 3 is applied to the graph G and the set X• of this example, then, at
each iteration, there is a single nonempty set among the sets E1, . . . , Ep obtained after the call to the Partition
function. Thus, it can be observed, that, at each iteration, there is no parallel calculus done in the parallel loop
line 11. Hence, in order to study the complexity of Algorithm 3, it is assumed in the following that the input
set X• is p-regular, p-being the number of available processors. This ensures that any of the sets E1, . . . , Ep,
obtained after the call to the Partition function, is nonempty. Hence, every processor processes a nonempty set Ei
at every iteration of the parallel loop line 11. In Section 7, this assumption is practically assessed in the context
of morphological processing of images and textured meshes.

Another important issue for studying the time complexity of Algorithm 3 is related to the degrees of the
vertices of G. Indeed, after line 10 of Algorithm 3, the sets {Ei | i ∈ {1, . . . , p}} are balanced and each processor
must traverse all the neighbors of exactly one of these sets. Thus, if all vertices of the graph have the same degree
(i.e., if they all belong to the same number of edges), the workload is well balanced over the processors. On the
other hand, if the degree varies from one vertex to another one, then, one may easily end up in a situation which
is unfair for one of the processors. An example of such situation is provided in Figure 9(b) which illustrates a
possible execution of Algorithm 3 on the set X• of black vertices with two processors called P1 and P2. It can
be seen that every level set of D(•,•)

X• contains three vertices which are partitioned at line 10 of Algorithm 3 into
two sets E1 and E2, handled respectively by P1 and P2. In the figure, we indicate in green the processor which
traverse every vertex. It can be seen that the obtained partition is, at each iteration, such that E1 contains two
vertices and E2 contains one vertex. Furthermore, each vertex in E1 belongs to three edges, whereas each vertex
in E2 belongs to a single edge. Overall, it can thus be checked that P1 must browse over 30 edges (10 vertices
contained in 3 edges) in the loop line 14 whereas P2 browses over only 10 edges (5 vertices contained in two edges),
leading to an unbalanced workload between P1 and P2. The occurrence of such situation and its amplitude can
be bounded thanks to the notion of unbalancing factor of a graph, that is introduced hereafter (Definition 9).
Then, the time-complexity of Algorithm 3, established in Theorem 11, can be expressed as a function of this
unbalancing factor.

We recall that, if x is a vertex of G, the degree of x, denoted by d(x), is the number of edges that contain x,
i.e., d(x) = |{{x, y} ∈ G×}|. Furthermore, we denote by dmin(G) (resp. dmax(G)) the minimum (resp. maximum)
of the degrees of the vertices of G: dmin(G) = min{d(x) | x ∈ G•} (resp. dmax(G) = max{d(x) | x ∈ G•}).

Definition 9 (unbalancing factor) The unbalancing factor of G, denoted by β(G), is the fraction:

β(G) =
dmax(G)

dmin(G)
. (25)

20 Imane Youkana et al.

For instance, the unbalancing factor of the graph G shown in Figure 9(b) is equal to 3/2 since dmin(G) = 2
and dmax(G) = 3. The unbalancing factor of the 4-adjacency graph of Figure 6(a) is 2. Note that if we modify
this graph by identifying the vertices of the first and last lines and those of the first and last columns (so that a
torus is obtained), then the degree of every vertex in the obtained graph is equal to 4, leading to an unbalancing
factor of 1.

The time complexity of Algorithm 3 depends of the unbalancing factor of G. The next lemma is an important
result in order to establish this time complexity.

Lemma 10 Let p be a positive integer and let X• be a p-regular subset of G•. When Algorithm 3 is executed
on G, X•, and p, then the following statements hold true.

1. The instruction lines 15 and 16 are executed less than 4β(G)
2β(G)+p+1 |G

×| times by each processor;
2. Using an array of linked lists to represent the graph G (i.e., one linked list for any vertex to store its adjacent

edges), the continuation condition in the for each loop at line 14 is tested less than 2
p+1 |G

•|+ 4β(G)
2β(G)+p+1 |G

×|
times by each processor.

Proof At every iteration of the main loop line 9 the set E is the λ-level set of D(•,•)
X• . Let nλ be the cardinality

of E. Then, by definition of the Partition function, for any i in {1, . . . , p} , the number nλ,i of elements in the
set Ei obtained at line 10 is either equal to nλ/p or to nλ/p+ 1, where a/b denotes the quotient in the integer
division of a by b. Let δ×(E) (resp. δ×(Ei)) be the set that contains any edge with a vertex in E (resp. in Ei).
Let us also denote by mλ and mλ,i the cardinalities of δ×(E) and δ×(Ei), respectively. Note that for a given
value of λ, the instruction lines 15 and 16 are executed exactly mλ,i times by the processor i. In order to establish
Lemma 10.1, we are going to prove that mλ,i ≤

2β(G)
2β(G)+p−1mλ. To this, end we are going to distinguish two cases.

– Let us first assume that nλ > p. Thus, we have q ≤ nλ,i ≤ 2q, where q is the quotient in the integer
division of nλ by (p + 1). Since nλ > p, the quotient q is nonnull. By definition of dmin(G) and dmax(G),
we have dmax(G).nλ,i ≤ mλ,i ≤ dmax(G).nλ,i. Hence, we deduce that dmin(G)q ≤ mλ,i ≤ 2dmax(G)q. By
definition of mλ, we have:

mλ,i

mλ
=

mλ,i

mλ,i +
∑
j∈{1,...,p}\{i}mλ,j

= 1−
∑
j∈{1,...,p}\{i}mλ,j

mλ,i +
∑
j∈{1,...,p}\{i}mλ,j

. (26)

Hence, since mλ,i ≤ 2dmax(G)q, we deduce that:

mλ,i

mλ
≤ 1−

∑
j∈{1,...,p}\{i}mλ,j

2dmax(G)q +
∑
j∈{1,...,p}\{i}mλ,j

, which can be rewritten as: (27)

mλ,i

mλ
≤ 2dmax(G)q

2dmax(G)q +
∑
j∈{1,...,p}\{i}mλ,j

(28)

Since, dmin(G)q ≤ mλ,j , for any j ∈ {1, . . . , p} we deduce that:

mλ,i

mλ
≤ 2dmax(G)q

2dmax(G)q + (p− 1)dmin(G)q
, which can be simply rewritten as: (29)

mλ,i

mλ
≤ 2dmax(G)

2dmax(G) + (p− 1)dmin(G)
, which can again be rewritten as: (30)

mλ,i

mλ
≤

2dmax(G)
dmin(G)

2dmax(G)
dmin(G) + (p− 1)dmin(G)

dmin(G)

, which can be simplified as: (31)

mλ,i

mλ
≤ 2β(G)

2β(G) + p− 1
. (32)

Title Suppressed Due to Excessive Length 21

Thus, since mλ is positive, we deduce that:

mλ,i ≤
2β(G)

2β(G) + p− 1
mλ. (33)

– Let us now assume that nλ = p. In this case, for any i ∈ {1, . . . , p}, we have nλ,i = 1 and dmin(G) ≤ mλ,i ≤
dmax(G). Using similar arguments as in the previous case, we deduce that

mλ,i ≤
β(G)

β(G) + p− 1
mλ (34)

Hence, since 2β(G) ≥ β(G) ≥ 0, we also have in this second case:

mλ,i ≤
2β(G)

2β(G) + p− 1
mλ. (35)

Let us set mi =
∑
λ∈Nmλ,i. It can be seen that mi is the overall number of executions of the instruction lines 15

and 16 by the processor i. Since the set of all level-sets of D(•,•)
X• partitions G• and since every edge contains

exactly two vertices of G, we deduce that
∑
λ∈Nmλ = 2.|G×|. Hence, from Equations 33 and 35, we deduce the

following inequation that establishes Lemma 10.1:

mi ≤
4β(G)

2β(G) + p− 1
|G×|. (36)

Let us now establish Lemma 10.2. To this end, it can be seen that there are, for each processor i ∈
{1, . . . , p}, mi positive continuation tests at line 14 of Algorithm 3. It can also be seen that, for every value
of λ, there is one negative test for each element in Ei. Hence, for any processor i and any value of λ, there is at
most 2nλ

p+1 negative tests. Hence, since the level-set of D(•,•)
X• partitions G•, and since nλ is the number of elements

in the λ-level set of D(•,•)
X• , we deduce that, for any processor, there are at most 2|G•|

p+1 negative tests at line 14 of

Algorithm 3. Hence, the condition in the for each loop at line 14 is tested less than 2
p+1 |G

•|+ 4β(G)
p+1+2.β(G) |G

×|
times by each processor. ut

Let us now analyze the complexity of Algorithm 3. At every iteration of the main loop (line 9), the set E
is the λ-level set of D(•,•)

X• . Since the Partition function (Algorithm 4) presented in the previous section runs
in linear time with respect to |E|/p and since the level sets of D(•,•)

X• partitions G•, the time complexity of
line 10 is O(|G|/p). Furthermore, after the execution of line 10, we always have |Ei| ≤ |E|/p + 1, for any i ∈
{1, . . . , p}. Thus, the complexity of line 13 is O(|G|/p). From Lemma 10.2, we deduce that the time complexity
of line 14 is O(β(G)

β(G)+p |G
×| + 1

p |G
•|) and, from Lemma 10.1, we deduce that the complexity of lines 15 and

16 is O(β(G)
β(G)+p |G

×|). Let us finally analyze the complexity of line 19. By Lemma 10.1, the overall number of

insertions in a set Si is less than 4β(G)
2β(G)+p+1 |G

×|, for any i in {1, . . . , p}. In the function Union (Algorithm 5),
each element of Si is copied once in E (line 3) by the processor numbered i. Thus, when Union is called by
Algorithm 3, the overall complexity of line 3 in Algorithm 5 is O(β(G)

β(G)+p |G
×|). Furthermore, since there is one

call to ParallelPrefixSum for each call to Union, there is one call of ParallelPrefixSum for each level set of D(•,•)
X• .

Therefore, if K is the number of level sets of D(•,•)
X• , the time complexity of line 19 is O(β(G)

β(G)+p |G
×|+K log2 p)

since the complexity of ParallelPrefixSum is O(log2 p). It can be also seen that the worst-case time complexity
of the initialization steps (lines 1 to 8) is O(β(G)

β(G)+p |G
×|+ log2 p). Hence, the following theorem can be stated.

Theorem 11 Let p be a positive integer and let X• be a p-regular subset of G•. Then, Algorithm 3 terminates
in O(1p |G

•|+ β(G)
p+β(G) |G

×|+K log2 p) time, where K is the number of distinct level sets of D(•,•)
X• .

22 Imane Youkana et al.

Observe that, when the unbalancing factor of G is less than a small constant, the complexity of Algorithm 3
reduces to O(|G

•|+|G×|
p + K log2 p). Considering the complexity of the sequential distance map algorithm (Al-

gorithm 1), the best possible theoretical complexity for a parallelization of Algorithm 1 with p processors would

be O(|G
•|+|G×|
p). This complexity is reached with Algorithm 3 (in the case of small unbalancing factor) up to

a K log2 p term, which is due to the computation of the parallel dynamic partition. On the other hand, it can be
observed that, when the unbalancing factor of G is high compared to the number p of processors, the complexity
of Algorithm 3 tends to O(1p |G

•|+ |G×|+K log2 p). Hence, in this case the complexity gain over the sequential
algorithm is less interesting. Fortunately, in practical cases, the considered graphs have a small unbalancing fac-
tor. For instance, as mentioned before in this section, when an image is structured with the 4-adjacency relation,
the unbalancing factor of the resulting graph is two (or even one if the image borders are identified). Hence,
as confirmed in the following experimental sections, in practical cases, the proposed parallel algorithm offers an
interesting speedup over the sequential version.

6 Target platform and implementation for experimental results

In this section, we first present a short overview of popular parallel-programming paradigms. Then, we describe
the target platform (shared-memory multicore architecture) that is used for the experimental assessment of
Algorithm 3 presented in Section 8 . We also present some details of the associated implementation of Algorithm 3
devised for this platform. In an effort to promote reproducible results in image processing, a C implementation of
Algorithm 3 is available online at the following web address perso.esiee.fr/~dpt-it/MorphoPar/ParDMaps.tgz.

Multicore and multithreaded CPUs architectures have become an increasingly popular way to implement
dynamic, highly asynchronous, concurrent programs. They both exploit concurrency by executing multiple threads
at the more fine-grained instruction level. In fact, there are two dominant parallel programming paradigms for
multicores and multithreaded CPUs environments : the shared memory and the distributed memory (Message
passing). In distributed memory architecture, each processor has its own local memory where all variables of
a program are private. While, in shared memory architecture every processor has access to all of the memory.
The distributed memory paradigms assume that the computing infrastructure is composed of multiple nodes
with distinct memory address spaces. Each compute node can only directly reference its own memory. The
communication of data occurs through discrete messages sent from process to process. The Message Passing
Interface (MPI) is the standard language for parallel programs on distributed memory systems. It is a specification
for message passing operations which is provided as a library for C, C++ and Fortran [16]. It is based on explicit
message passing and collective communications that have non-trivial consequences for performance.

The shared memory programming model is often achieved with some form of multithreading, where multiple
threads on the same node share the same address space. Threads can easily communicate because they operate
in the same address space, so explicit synchronization must be used to synchronize the simultaneously access on
shared variables. OpenMP (Open Multi-Processing) and POSIX Threads (Pthreads) are two of the most widely
used solutions for shared memory programming.

OpenMP consists of a set of compiler directives. It is a directive-based extension to C, C++ and Fortran
languages commonly used in high performance computing. Moreover, OpenMP is becoming more important when
the number of cores per system increases. Due to the higher level specification of parallelism with OpenMP, the
gain in productivity is that OpenMP programmers do not have to concern themselves with such details as when
or how to create new threads, how to distribute their data between these threads and how to synchronize the
computation itself between the threads [16,13].

The POSIX Threads is a set of C programming language types and procedure calls. Various benefits exist
to using Pthreads such as the simplicity, the flexibility, and the portability. Pthreads library provides various
primitives for synchronizing concurrent computations and memory accesses of threads. In particular, it provides
implementations of mutexes and semaphores [3] for Linux. A mutex is a variable which is either locked or unlocked

Title Suppressed Due to Excessive Length 23

and can be handled with atomic (non-interruptible) instructions, ensuring that, at a given time, a single thread is
accessing to the variable with the atomic instruction. It is mainly used to ensure exclusive access to data shared
between threads, whereas semaphores generalize mutexes by allowing a limited number, but possibly greater than
one, to access concurrently to critical data [16,13].

Today, most modern computer systems include multicore chips that support shared memory in hardware.
Therefore, parallel computing on shared memory multicores architecture is now very popular. Because of the high
availability of this architecture, the large amount of available computing paradigms for these architectures and
the parallelism in our proposed strategy, we decided to carry out experiments and developments of Algorithm 3
on a two quadcore Intel(R) Xeon(R) E5630 processors. With such multicore-multithreaded shared memory ar-
chitecture, up to 8 threads can run in parallel, emulating the p processors (with p ≤ 8) of the theoretical parallel
model used in the previous section.

In this article, a multithreaded implementation of Algorithm 3 is devised for the above described target
architecture. POSIX Threads (Pthreads) library on a Linux system is considered for this implementation since it
allows to handle low-level synchronization between threads. We remind that such synchronization is required to
implement the proposed parallelization strategy which controls precisely the load balancing between the available
processors. It can also be noticed that the use of MPI is not adapted to our target architecture (shared memory)
and that the use of OpenMP does not allow one to control precisely the load balancing between processors as
proposed in Algorithm 3.

Despite the distribution of data in Algorithm 3, each thread has access to an overlap data (the Boolean array
Traversed) in order to check if a vertex has been already traversed or not. The only access to this shared memory
is done with the test-and-set instruction at line 16 of Algorithm 3. As mentioned in Section 5, this instruction
involves a synchronization between processors or threads. The test-and-set instruction can be implemented with
Pthreads library using a mutex variable. To this end, one must consider a mutex variable instead of a Boolean
one. Then, the test-and-set instruction is implemented due to the Pthreads function pthread_mutex_trylock. This
is a non-interruptible function that locks the mutex and returns 0 if the mutex is unlocked at the time of the call
or that returns a positive value otherwise (i.e., if the mutex is already locked when the function is called). Thus,
the implementation of the test-and-set instruction is as follows:

Boolean test-and-set(pthread_mutex_t m){
if(pthread_mutex_trylock(m) == 0) return False;
else return True;

}

With this test-and-set implementation, the Boolean array Traversed of Algorithm 3 is implemented with an
array of mutexes that are initially unlocked.

7 Experimental-assesment dataset and regularity-assumption assesment

This section describes the image and textured-mesh datasets used for experimental evaluations. In particular, the
cardinalities of the level-sets of the considered distance maps are analyzed, allowing us for assessing the regularity
assumption of Theorem 11 on these experimental datasets.

For experimental evaluations, two image datasets and one textured mesh dataset are considered. The first
image dataset is the one of [9]. It is a set of 33 binary images of different size (786 x 540, 800 x 600, 700 x 1285)
and various contents (see 2 samples in Figure 10.a). The images of this dataset have been obtained by adding
black and white random noise of different sizes and shapes to bitmap images of simple shapes (mainly letters).
We also consider the Standard dataset which is a set of 12 images found frequently in the literature such as
Lena, peppers, cameraman, lake, etc. All images of this dataset are grayscale and of the same size (512 x 512)
(see 2 examples in Figure 11(a)). Finally, a dataset of 3 three-dimensional triangular meshes is also considered.

24 Imane Youkana et al.

(a) initial binary images. (b) results of graph ASF.

Fig. 10 Illustrations of mathematical morphology ASF on graphs on two images of the dataset used in [9].

Each mesh is equipped with two binary black and white textures, one being obtained by adding random noise to
another. Hence, overall, this dataset is made of 6 binary-textured meshes (see, e.g., Figure 12).

Elementary mathematical morphology operators are often considered as a post-processing step after the bina-
rization of images since it allows to reduce noise and regularize contours. Therefore, we apply Otsu thresholding
method [19] to binarize the images of the standard dataset (see Figure 11(b)). Then, after this step, two databases
of typical binary images are obtained. These binary images are processed with the mathematical morphological
operators described in Section 2 (see examples of results in Figure 10(b) and Figure 11(c)). In order to filter an
image with the operators studied in this article, the image domain is equipped with a graph. For each image,
the vertex set of the considered graphs is made of the image pixels and the edge set is given by the well known
4-adjacency relation on these pixels. For each of these two image datasets, Table 2 provides the image sizes, the
number of images of each size, the average number of white pixels (i.e., the vertices X•), and the average number
of level-sets in the considered vertex-vertex distance maps. In order to filter textured meshes with operators on
graphs (see Figure 12), texture domains are equipped with graphs. More precisely, given a mesh, each corner
of each triangle is a vertex of the associated graph and two vertices of the graph are linked by an edge if the
associated triangle corners belong to a same triangle or if the associated triangle corners are at the same spatial
position and belong to two adjacent triangles. Table 3 provides the number of vertices and of edges of the con-
sidered graphs, the average number of white vertices in the textures, and the average number of level-sets in the
vertex-vertex distance maps associated with the textures.

Let us now analyze the datasets described above in order to assess the assumptions of Theorem 11. Indeed,
Theorem 11 asserts that if i) the unbalancing factor of the graph G is lower than a small constant and if ii) the

Title Suppressed Due to Excessive Length 25

(a) grayscale images (b) results of Otsu binarization (c) results of graph ASF

Fig. 11 Illustration of Otsu binarization followed by mathematical morphology filtering on graphs from two images of the
Standard image dataset.

Image DSs: Standard DS DS of [9]

Images size 512 × 512 786 × 540 800 × 600 700 × 1285

Number of images 12 2 29 2

Avg. number of vertices in X• 17 090 321 499 372 044 663 259

Avg. number of level-sets of D(•,•)
X• 66 4 11 6

Table 2 Main features of the image datasets used for experimental evaluation. In the table, DS stands for dataset.

considered set of vertices is p-regular, then the time complexity of Algorithm 3 is O((|G•|+ |G×|)/p+K log2 p),
where K is the number of nonempty level-sets of the distance maps and where p is the number of available
processors. Algorithm 3 is applied to sets of pixels of 2D binary images equipped with the 4-adjacency relation and
to subsets of vertices of graphs associated to binary textured map. As mentioned in Section 5.4, the unbalancing
factor of the graphs associated to the images is 2. Furthermore, by construction, the unbalancing factor of the
graph associated to the meshes is 1 (each vertex is exactly linked to four other vertices). Thus, assumption i) is
practically verified for the considered datasets. In order to assess assumption ii), we analyze the number of vertices
in each level-set of the considered distance maps and compare these numbers with the numbers of processors used
in the experiments presented in Section 8. Due to the chosen target architecture, this number is always lower
than 8. For each dataset, the proportion of level-sets with less than k vertices is estimated for k ∈ {2, 4, 6, 8}.

26 Imane Youkana et al.

Fig. 12 Mathematical morphology filtering of a texture defined over a 3 dimensional mesh; (left) two renderings of a
3 dimensional mesh M equipped with a binary texture T ; and (right) two renderings of the ASF-filtered version of the
texture T on a graph associated with the mesh M .

The result of this analysis is presented in Table 4. To perform this analysis a total of 797 (resp. 716 and 187)
level-sets are analyzed for the 12 (resp. 33 and 6) images of the standard dataset (resp. the dataset of [9] and the
binary-textured mesh dataset). Observe that the average number of level set is significantly less for the dataset
of [9] than for the standard dataset. This can be explained by the addition of random black and white noise in
the later images which implies that every image pixel is close to white pixel and to a black one. For the standard

Title Suppressed Due to Excessive Length 27

Number of textured meshes 6

Number of vertices/edges per graph 98 226 / 392 904

Average number of white vertices (vertices in X•) 45 102

Average number of level-sets in D•
X• 31

Table 3 Main features of the binary-textured mesh dataset used for experimental evaluations.

dataset, 3 level-sets contain less than 2 vertices (0.37%), 10 level-sets contain less than 4 vertices (1.25%), 16
level-sets contain less than 6 vertices (2 %), and 23 level-sets contain less than 8 vertices (2.88%). For the dataset
of [9], 6 level-sets contain less than 2 vertices (0.83%), 11 level-sets contain less than 4 vertices (1.53%), 18 level-
sets contain with less than 6 vertices (2.51%) and 20 level-sets contain less than 8 vertices (2.79%). Finally, for
the binary-textured mesh dataset, no level-set contains less than 2 vertices (0%), 3 level-sets contain less than 4
vertices (1.6%), 5 level-sets contain with less than 6 vertices and less than 8 vertices (2.67%). Hence, the number
and the proportion of level-sets with less than k ∈ 2, 4, 6, 8 vertices is relatively small. It is also observed that
the level-sets with few vertices tend to appear for the highest distance values. Hence, this analysis confirms that
the assumptions in Theorem 11 are reasonable for the considered experiments.

k 2 4 6 8

Standard dataset 0.37% 1.25% 2% 2.88%
Image dataset used in [9] 0.83% 1.53% 2.51% 2.79%
Binary-textured mesh dataset 0% 1.6% 2.67% 2.67%

Table 4 Proportion of level-sets of the vertex-vertex distance maps with less than k vertices, the total number of analyzed
level-sets being equal to 797 (resp. 716 and 187) for the 12 images (resp. 33 images and 6 textured meshes) of the standard
dataset (resp. the dataset of [9] and the textured mesh dataset).

8 Performance evaluation and experimental results

This section analyzes the results obtained by applying the implementations of the proposed sequential and parallel
algorithms on the target architecture (Section 6) to the datasets presented in Section 7. Section 8.1 first describes
the measures assessing the performance of the proposed implementations (execution times and speedups). Then,
Section 8.2 presents the evaluation results.

8.1 Performance Evaluation

The performance of the proposed sequential and parallel algorithms (Sections 3 and 5) is assessed through the
execution times obtained with the implementation and target platform described in Section 6. For assessing the
gain of the parallel implementation over the sequential one, the speedup measure is considered.

The reported execution times are obtained with Gprof, a profiling software available on GNU Linux. Gprof
measures the time spent on each function for a particular execution of a program as well as the number of times
each function is called. Each measurement reported in Section 8.2 is the average of the executions times of forty
runs of the same program on the same data.

Speedup is an important measure of the quality of a parallel program. This measure expresses how many
times a parallel program works faster than a sequential one, where both programs are solving the same problem.

28 Imane Youkana et al.

For a given number p of processors, the speedup S(p) is the ratio of the execution time T (1) of a program on a
single processor over the execution time T (p) obtained with p processors: S(P) = T (1)/T (p).

For p processors, the speedup is bounded by the the number of processors: S(p) ≤ p. The maximum value
of speedup that can be obtained is equal to the number of processors S(p) = p. This maximum speedup value
could be achieved in an ideal multiprocessor system where there are no communication costs and the workload
of processors is balanced (although in practice this is rarely achieved). In such a system, every processor needs
T (1)/p time units in order to complete its job [1].

One can consider speedup to analyze algorithms either theoretically using asymptotic time complexity or in
practice by measuring the execution times of a program, as presented in the following section.

8.2 Experimental results

The results presented in this section are obtained by the application of the proposed sequential and parallel
algorithms (namely, Algorithms 1 and 3) on the datasets presented in Section 7. We tested our implementations
on two different types of sets: the sets of white vertices and their complements, which are the sets of black vertices.
The distance map to a set of white vertices is used to obtain the dilations of this set whereas the distance map
to its complementary set is used to obtain the erosions of the set (see Property 4 and Theorem 6).

Tables 5 and 6 and Figures 13 and 14 show the average execution times of the sequential and of the parallel
implementations on 1, 2, 4, 6, and 8 cores for the different datasets. Clearly, as expected from the theoretical
analysis of Algorithm 3 in Section 5.4, the obtained running times are decreasing with the number of cores,
whatever the considered dataset.

Execution times (in seconds)

original images complemented images

Images size 512 ×
512

786 ×
540

800 ×
600

700 ×
1285

512 ×
512

786 ×
540

800 ×
600

700 ×
1285

Sequential
algorithm

0.026 0.055 0.057 0.060 0.035 0.04 0.044 0.07

P
ar

al
le

l
al

go
ri

th
m

1 core 0.025 0.053 0.055 0.065 0.032 0.039 0.042 0.072

2 cores 0.020 0.040 0.042 0.050 0.024 0.035 0.032 0.058

4 cores 0.016 0.033 0.035 0.040 0.020 0.028 0.020 0.041

6 cores 0.012 0.023 0.025 0.031 0.017 0.020 0.012 0.035

8 cores 0.010 0.014 0.016 0.015 0.013 0.011 0.008 0.018

Table 5 Average execution times of the vertex-vertex distance map algorithms for the image datasets.

The speedup values achieved by the parallel implementation of the distance map algorithm are presented in
Tables 7 and 8. We observe that, in all the cases, a good speedup over the sequential implementation is reached.
Figures 15 and 14 plot the obtained speedups when the number of threads varies from 2 to 8. On the image
datasets (resp. textured-mesh dataset) the best speedup value, obtained with 8 cores, is equal to 5.5 (resp. 5.33).
These values are obtained for the set of black pixels of the images of size 800 × 600 and for the set of black
vertices of the textured meshes, respectively.

Title Suppressed Due to Excessive Length 29

Execution times (in seconds)

original textures complemented textures

Sequential algorithm 0.015 0.016

P
ar

al
le

l
al

go
ri

th
m

1 core 0.014 0.015

2 cores 0.009 0.010

4 cores 0.006 0.007

6 cores 0.004 0.004

8 cores 0.003 0.003

Table 6 Average execution times of the vertex-vertex distance map algorithms for the textured-mesh dataset.

0 1 2 3 4 5 6 7 8

0,01

0,02

0,03

0,04

0,05

0,06

0,07 Image size 512 x 512
 Image size 786 x 540
 Image size 800 x 600
 Image size 700 x 1285

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

 Number of cores
0 1 2 3 4 5 6 7 8

0,01

0,02

0,03

0,04

0,05

0,06

0,07 Image size 512 x 512
 Image size 786 x 540
 Image size 800 x 600
 Image size 700 x 1285

 Number of cores

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(original images) (complemented images)

Fig. 13 Average execution times, for the image datasets, of the parallel vertex-vertex distance map algorithm, plotted as
a function of the number of cores.

Furthermore, we tried to vary the number of threads from 1 to 30 on the 8 cores platform for the most
favorable cases (i.e., distance maps to sets of black pixels from the images of size 800 × 600). The results are
presented in Figure 16 where it can be seen that for each number of threads the running time of the parallel
algorithm decreases until 8 threads. Then, for each number of thread greater than 8, the running time increases.
Therefore, we can deduce that the best performance (running time and speedup) is achieved when the number
of thread is not greater than the number of cores(see Figure 16).

The previous experiments was designed to asses the gain of the parallel distance map implementation over
the sequential one for processing binary 2d images and textured meshes. Let us now assess the results obtained
using distance maps to compute the results of the morphological operators presented in Definition 2. For the sake
of simplicity, we only consider the case of even size parameter λ. We recall that, due to the properties presented
in Section 3, the results of the dilations δλ/2 and erosions ελ/2 for any size parameter λ can be computed with
a single iteration by thresholding a distance map instead of applying λ iterations of elementary dilation as one
would do by straightforwardly applying the definition. However, such straightforward implementation, was, as
far as we know, up to the present article, the only available implementation of these operators.

30 Imane Youkana et al.

0 1 2 3 4 5 6 7 8

0,002

0,004

0,006

0,008

0,010

0,012

0,014

 Execution time
 Speedup

Number of cores

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
5,0
5,5

S
peedup

0 1 2 3 4 5 6 7 8

0,002

0,004

0,006

0,008

0,010

0,012

0,014

0,016

Number of cores

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
5,0
5,5

 Execution time
 Speedup

S
peedup

(original textures) (complemented textures)

Fig. 14 Average execution times and speedups, on the textured-mesh dataset, of the parallel vertex-vertex distance map
algorithm, plotted as a function of the number of cores.

Speedup

original images complemented images

Images size 2 cores 4 cores 6 cores 8 cores 2 cores 4 cores 6 cores 8 cores

512 × 512 1.3 1.62 2.16 2.6 1.45 1.75 2.05 2.69

786 × 540 1.37 1.66 2.39 3.92 1.14 1.42 2 3.63

800 × 600 1.35 1.62 2.28 3.56 1.37 2.2 3.66 5.5

700 × 1285 1.2 1.5 1.93 4 1.20 1.70 2 3.88

Table 7 Average speedups of the parallel vertex-vertex distance map algorithm on the image datasets.

Speedup

original textures complemented textures

2 cores 4 cores 6 cores 8 cores 2 cores 4 cores 6 cores 8 cores

Speedup 1.66 2.5 3.75 5 1.6 2.28 4 5.33

Table 8 Average speedups of the parallel vertex-vertex distance map algorithm on the textured-mesh dataset.

We compare the execution times of the parallel dilation implementation based on distance map on 8 cores
with the sequential version also based on distance map and with the straightforward iterative implementation.
Figure 17 displays the resulting execution times. It can be seen that the running times of the implementations
based on distance maps remain constant while the size parameter increases whereas, with the straightforward
implementation, the execution times increase linearly with the size parameter. In particular, when λ = 2, the
sequential implementation based on distance maps and the straightforward implementation runs in about the

Title Suppressed Due to Excessive Length 31

2 3 4 5 6 7 8
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

 Image size 512 x 512
 Image size 786 x 540
 Image size 800 x 600
 Image size 700 x 1285

S
pe

ed
up

Number of cores

2 3 4 5 6 7 8
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
5,0
5,5
6,0

 Image size 512 x 512
 Image size 786 x 540
 Image size 800 x 600
 Image size 700 x 1285

Number of cores

S
pe

ed
up

(original images) (complemented images)

Fig. 15 Average speedups, on the image datasets, of the parallel vertex-vertex distance map algorithm, plotted as a
function of the number of cores.

same time (0.060 sec) but when λ is equal to 24 the implementation based on distance map is more than 10
times faster than the straightforward implementation. Observe also that, due to the speedup of 5.5 achieved by
the parallel implementation for 8 cores machine, the result of the dilation of size 2/2 is obtained 5.5 times faster
with the parallel implementation than with the straightforward implementation and more than 55 times faster
when the size parameter is equal to 24/2.

9 Conclusion

This article proposes efficient sequential and parallel algorithms for the (binary) mathematical morphology op-
erators on graphs defined in [9]. To reach this goal, new notions of distance maps in unweighted graphs are
investigated and characterizations of the considered operators in terms of distance maps are provided (Section 3).
Then, efficient sequential and parallel algorithms for distance maps are proposed in Sections 4 and 5, respectively.
The sequential algorithms run in linear time with respect to the size of the graph whereas the parallel algorithm
runs, for practical cases, in O(n/p+K log2 p) time complexity, where n, p and k are the size of the graph, the
number of available processors, and the number of distinct level sets of the distance map, respectively. Based
on this study, a parallel implementation on shared memory multicore/multithreaded architecture is proposed
(Section 6) and assessed on datasets of images and textured meshes (Sections 7 and 8). In terms of execution
times, the sequential implementation based on the proposed sequential distance map algorithm shows a significant
improvement over the previous existing implementation of the operators of [9] since it runs about ten times faster
on the tested images for a dilation size of 24/2. Furthermore, the parallel implementation based on distance maps
yields another significant improvement over the sequential one: a speedup factors up to 5.5 are achieved for 8
cores machine, leading to execution times 55 times smaller than with the previous existing implementation of the
operators of [9].

This article studies the case of elementary mathematical morphology operators on graphs for processing
binary data (i.e. subsets of vertices or of edges of a graph). Even if the definition of these operators can be
straightforwardly extended to the case of grayscale data (i.e., grayscale functions on the vertices or on the edges),
an efficient extension of the proposed algorithms to grayscale case is not straightforward and is an interesting
topic for future research. On the other hand, the use of distance maps in unweighted graphs opens doors towards

32 Imane Youkana et al.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0,000
0,005
0,010
0,015
0,020
0,025
0,030
0,035
0,040
0,045

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
5,0
5,5
6,0

Image size 800 x 600.

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Image size 800 x 600.

S
pe

ed
up

Number of threads

Fig. 16 Timing and speedup of parallel vertex-vertex distance map obtained with various number of threads on 8 cores
(considering complement images size 800 × 600).

the investigation of morphological operators on graphs embedded in metric spaces (or more generally on weighted
graphs) where the result of an operator depends on the “length” of the edges according to the metric. Such study
could lead to significant quality improvements for the results of mathematical morphological operators on graphs.
A last perspective of our work, on the computer architecture side, is performance optimization based on a better
understanding of the effects of multithreading on cache memories and based on the use of massive parallelism
available in the graphic programming architecture GPU. The later optimization could require new variant around
the parallel strategy presented in this article.

Acknowledgments

We warmly thank the consortium of the RECOVER3D project funded by the French 1st Programme d’Investissements
d’Avenir (PIA) including, in particular, Ludovic Blache and Laurent Lucas, for providing us with the textured
meshes processed in the work presented in this article.

References

1. Alecu, F.: Performance analysis of parallel algorithms. Journal of Applied Quantitative Methods 129 (2007)
2. Bloch, I., Bretto, A.: Mathematical morphology on hypergraphs, application to similarity and positive kernel. Computer

vision and image understanding 117(4), 342–354 (2013)

Title Suppressed Due to Excessive Length 33

0,00

0,06

0,12

0,18

0,24

0,30

0,36

0,42

0,48

0,54

0,60

0,66

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

2/2 4/2 6/2 8/2 10/2 12/2 14/2 16/2 18/2 20/2 22/2 24/2

Size of dilation

 Dilation proposed in [9].
 Sequentiel dilation based on vertex-vertex distance map.
 Parallel dilation based on vertex-vertex distance map.

 Image size 700 x 1285

Fig. 17 Experimental evaluation of iterated dilations δλ/2 when λ is even.

3. Butenhof, D.R.: Programming with POSIX threads. Addison-Wesley Professional (1997)
4. Chia, T.L., Wang, K.B., Chen, Z., Lou, D.C.: Parallel distance transforms on a linear array architecture. IPL 82(2),

73–81 (2002)
5. Coeurjolly, D.: 2d subquadratic separable distance transformation for path-based norms. In: Discrete Geometry for

Computer Imagery, pp. 75–87. Springer (2014)
6. Cormen, T.H.: Introduction to algorithms. MIT press (2009)
7. Couprie, M., Bertrand, G.: New characterizations of simple points in 2d, 3d, and 4d discrete spaces. IEEE Transactions

on Pattern Analysis and Machine Intelligence 31(4), 637–648 (2009)
8. Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and watersheds in pseudomanifolds of arbitrary dimension.

Journal of mathematical imaging and vision 50(3), 261–285 (2014)
9. Cousty, J., Najman, L., Dias, F., Serra, J.: Morphological filtering on graphs. CVIU 117(4), 370–385 (2013)

10. Cousty, J., Najman, L., Serra, J.: Some morphological operators in graph spaces. In: Mathematical Morphology and
Its Application to Signal and Image Processing, pp. 149–160. Springer (2009)

11. Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital images using discrete
morse theory. IEEE transactions on pattern analysis and machine intelligence 37(3), 654–666 (2015)

12. Dias, F., Cousty, J., Najman, L.: Dimensional operators for mathematical morphology on simplicial complexes. Pattern
Recognition Letters 47, 111–119 (2014)

13. Grama, A.: Introduction to parallel computing. Pearson Education (2003)
14. Heijmans, H.J.: Morphological image operators. Advances in Electronics and Electron Physics Suppl., Boston: Academic

Press,| c1994 1 (1994)
15. Heijmans, H.J., Ronse, C.: The algebraic basis of mathematical morphology i. dilations and erosions. Computer Vision,

Graphics, and Image Processing 50(3), 245–295 (1990)
16. Kasim, H., March, V., Zhang, R., See, S.: Survey on parallel programming model. In: Network and Parallel Computing,

pp. 266–275. Springer (2008)
17. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. JACM 27(4), 831–838 (1980)
18. Lerallut, R., Decencière, É., Meyer, F.: Image filtering using morphological amoebas. Image and Vision Computing

25(4), 395–404 (2007)
19. Level Otsu, N.: A threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man and

Cybernetics 9(1), 62–66 (1979)
20. Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of parallel computation of Euclidean distance

map in multicore processors and GPUs. In: ICNC, pp. 120–127 (2010)

34 Imane Youkana et al.

21. Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of a parallel algorithm for computing euclidean
distance map in multicore processors and gpus. International journal of networking and computing 1(2), 260–276
(2011)

22. Mennillo, L., Cousty, J., Najman, L.: A comparison of some morphological filters for improving ocr performance. In:
Mathematical Morphology and Its Applications to Signal and Image Processing, pp. 134–145. Springer International
Publishing (2015)

23. Meyer, F., Angulo, J.: Micro-viscous morphological operators. Mathematical Morphology and its Application to Signal
and Image Processing (ISMM 2007) pp. 165–176 (2007)

24. Najman, L., Cousty, J.: A graph-based mathematical morphology reader. Pattern Recognition Letters 47, 3–17 (2014)
25. Pham, T.Q.: Parallel implementation of geodesic distance transform with application in superpixel segmentation. In:

DICTA, pp. 1–8. IEEE (2013)
26. Ronse, C., Serra, J.: Algebraic foundations of morphology. Mathematical Morphology: from theory to applications pp.

35–80 (2013)
27. Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. PR 1(1), 33–61 (1968)
28. Saito, T., Toriwaki, J.I.: New algorithms for euclidean distance transformation of an n-dimensional digitized picture

with applications. Pattern recognition 27(11), 1551–1565 (1994)
29. Serra, J.: Image analysis and mathematical morphology, v. 1. Academic press (1982)
30. Shyu, S.J., Chou, T., Chia, T.L.: Distance transformation in parallel. In: Proc. Workshop Combinatorial Math. and

Computation Theory, pp. 298–304 (2006)
31. Soille, P., Breen, E.J., Jones, R.: Recursive implementation of erosions and dilations along discrete lines at arbitrary

angles. PAMI 18(5), 562–567 (1996)
32. Svolos, A.I., Konstantopoulos, C.G., Kaklamanis, C.: Efficient binary morphological algorithms on a massively parallel

processor. In: IPDPS, p. 281 (2000)
33. Vincent, L.: Graphs and mathematical morphology. Sig. Proc. 16(4), 365–388 (1989)
34. Youkana, I., Cousty, J., Saouli, R., Akil, M.: Parallelization strategy for elementary morphological operators on graphs.

In: International Conference on Discrete Geometry for Computer Imagery, pp. 311–322. Springer (2016)

