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We describe an algorithm computing the monodromy and the pole order filtration on the Milnor fiber cohomology of any reduced projective plane curve C. The relation to the zero set of Bernstein-Sato polynomial of the defining homogeneous polynomial for C is also discussed. When C has some non weighted homogeneous singularities, then we have to assume that a conjecture holds in order to get some of our results. In all the examples computed so far this conjecture holds.

Introduction

Let C : f = 0 be a reduced plane curve of degree d ≥ 3 in the complex projective plane P 2 , defined by a homogeneous polynomial f ∈ S = C[x, y, z]. Consider the corresponding complement U = P 2 \ C, and the global Milnor fiber F defined by f (x, y, z) = 1 in C 3 with monodromy action h : F → F , h(x, y, z) = exp(2πi/d) • (x, y, z).

To determine the eigenvalues of the monodromy operators (1.1) h m : H m (F, C) → H m (F, C)

for m = 1, 2 starting from C or f is a rather difficult problem, going back to O. Zariski and attracting an extensive literature, see for instance [START_REF] Bartolo | Sur les couples de Zariski[END_REF][START_REF] Bartolo | On fundamental groups of plane curve complements[END_REF][START_REF] Budur | First Milnor cohomology of hyperplane arrangements[END_REF]9,[START_REF] Dimca | Hyperplane Arrangements: An Introduction[END_REF][START_REF] Esnault | Fibre de Milnor d'un cône sur une courbe plane singulière[END_REF]25,[START_REF] Libgober | Development of the theory of Alexander invariants in algebraic geometry[END_REF][START_REF] Oka | A survey on Alexander polynomials of plane curves[END_REF]11,[START_REF] Suciu | Hyperplane arrangements and Milnor fibrations[END_REF][START_REF] Dimca | Singularities and topology of hypersurfaces[END_REF]. When the curve C : f = 0 is either free or nearly free, we have presented in [START_REF] Dimca | A computational approach to Milnor fiber cohomology[END_REF] an efficient algorithm for listing the eigenvalues of the monodromy operator h 1 , which determines completely the corresponding Alexander polynomial ∆ C (t), see Remark 4.4 below for its definition.

In this paper we explain an approach working in the general case. This time the results of our computation give not only the dimensions of the eigenspaces H m (F, C) λ of the monodromy, but also the dimensions of the graded pieces Gr p P H m (F, C) λ , where P denotes the pole order filtration on H m (F, C), see section 2 below for the definition. More precisely, the algorithm described here gives the following.

(1) the dimensions of the eigenspaces H m (F, C) λ for m = 1, 2 for any reduced curve C : f = 0, see Remark 4.4. (2) the dimensions of the graded pieces Gr p P H 1 (F, C) λ , for any reduced curve C : f = 0. Note that the P p filtration coincides to the Hodge filtration F p on H 1 (F, C), see [START_REF] Dimca | Computing Milnor fiber monodromy for projective hypersurfaces[END_REF]Proposition 2.2].

(3) the dimensions of the graded pieces Gr p P H 2 (F, C) λ , for a reduced curve C : f = 0 having only weighted homogeneous singularities. To achieve this efficiently one has to use the recent result by M. Saito stated below in Theorem 1.1. (4) the dimensions of the graded pieces Gr p P H 2 (F, C) λ , for any reduced curve C : f = 0 under the assumption that a basic fact, stated as Conjecture 2.6, holds. This conjecture holds in all the examples we have computed so far, see Remark 6.2.

The new information on the pole order filtration P can be applied to describe the set of roots of b f (-s), where b f (s) is the Bernstein-Sato polynomial of f , see for details [START_REF] Saito | Multiplier ideals, b-function, and spectrum of a hypersurface singularity[END_REF], [START_REF] Saito | Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polynomials[END_REF]. In fact, using [START_REF] Saito | Multiplier ideals, b-function, and spectrum of a hypersurface singularity[END_REF]Theorem 2], this comes down to checking whether Gr p P H 2 (F, C) λ = 0, see Theorem 7.2 for a precise statement and our applications described in Corollaries 7.3,7.4,7.5. Here is in short how we proceed. Let Ω j denote the graded S-module of (polynomial) differential j-forms on C 3 , for 0 ≤ j ≤ 3. The complex K * f = (Ω * , d f ∧) is just the Koszul complex in S of the partial derivatives f x , f y and f z of the polynomial f . The general theory says that there is a spectral sequence E * (f ), whose first term E 1 (f ) is computable from the cohomology of the Koszul complex K * f and whose limit E ∞ (f ) gives us the action of monodromy operator on the graded pieces of the reduced cohomology H * (F, C) of F with respect to the pole order filtration P , see [12], [START_REF] Dimca | Singularities and topology of hypersurfaces[END_REF]Chapter 6], [START_REF] Dimca | Koszul complexes and spectra of projective hypersurfaces with isolated singularities[END_REF].

Our approach takes a simpler form when C is assumed to have only weighted homogeneous singularities, e.g. when C is a line arrangement A. This comes from the following result due to M. Saito [START_REF] Saito | Bernstein-Sato polynomials for projective hypersurfaces with weighted homogeneous isolated singularities[END_REF], see for a more precise statement Theorem 2.1 below.

Theorem 1.1. If the reduced plane curve C : f = 0 has only weighted homogeneous singularities, then the spectral sequence E * (f ) degenerates at the E 2 -term.

This result has been conjectured already in [12] and has been checked in many cases using a computer program in [START_REF] Dimca | A computational approach to Milnor fiber cohomology[END_REF]. The converse implication is known to hold, see [START_REF] Dimca | Koszul complexes and spectra of projective hypersurfaces with isolated singularities[END_REF]Theorem 5.2]. The algorithm described in [START_REF] Dimca | A computational approach to Milnor fiber cohomology[END_REF] for free and nearly free curves actually computes the E 2 -term of this spectral sequence.

In this paper we modify the algorithm in [START_REF] Dimca | A computational approach to Milnor fiber cohomology[END_REF] such that it applies to any reduced curve. First we compute (a large part) of the E 2 -term in Section 4, which is (more than) enough when C has only weighted homogeneous singularities, see Remark 4.3, or when we are interested only in the Alexander polynomial ∆ C (t). Then in Section 5 we compute the relevant part of the E 3 -term of the above spectral sequence. Conjecture 2.6 tells us that essentially E 3 = E ∞ and that we have missed no information on the P -filtration on H 2 (F, C) by looking only at some of the terms in the E 2 and E 3 pages.

The computations in this note were made using the computer algebra system Singular [10]. The corresponding codes are available at http://math.unice.fr/ ~dimca/singular.html

We thank Morihiko Saito for his remarks that greatly improved the clarity of the presentation. In particular, Conjecture 2.6 and Proposition 6.1 were suggested by him, and they provide an efficient method to certify all the results given by our algorithm. For an alternative approach, see Morihiko Saito's paper [START_REF] Saito | Roots of Bernstein-Sato polynomials for projective hypersurfaces with general hyperplane sections having weighted homogeneous isolated singularities[END_REF].

We would also like to thank the referees for their very careful reading of our manuscript and their useful suggestions.

Gauss-Manin complexes, Koszul complexes, and Milnor fiber cohomology

Let S be the polynomial ring C[x, y, z] with the usual grading and consider a reduced homogeneous polynomial f ∈ S of degree d. The graded Gauss-Manin complex C * f associated to f is defined by taking

C j f = Ω j [∂ t ],
i.e. formal polynomials in ∂ t with coefficients in the space of differential forms Ω j , where deg ∂ t = -d and the differential d : 

C j f → C j+1 f is C-linear and given by (2.1) d(ω∂ q t ) = (d ω)∂ q t -(d f ∧ ω)∂
P q C j f = ⊕ i≤q+j Ω j ∂ i t .
If we set P q = P -q in order to get a decreasing filtration, then one has (2.3)

Gr q P C * f = σ ≥q (K * f ((3 -q)d))
, the truncation of a shifted version of the Koszul complex K * f , where σ denotes the stupid filtration, see for instance [14,Remark 1.1.15]. Moreover, this yields a decreasing filtration P on the cohomology groups H j (C * f ) and a spectral sequence (2.4) E q,j-q 1 (f ) ⇒ H j (C * f ). On the other hand, the reduced cohomology Hj (F, C) of the Milnor fiber F : f (x, y, z) = 1 associated to f has a pole order decreasing filtration P , see [START_REF] Dimca | Koszul complexes and spectra of projective hypersurfaces with isolated singularities[END_REF]Section 3], such that there is a natural identification for any integers q, j and k ∈ [1, d] (2.5)

P q+1 H j+1 (C * f ) k = P q Hj (F, C) λ
, where λ = exp(-2πik/d). Since the Milnor fiber F is a smooth affine variety, its cohomology groups H m (F, C) have a decreasing Hodge filtration F coming from the mixed Hodge structure constructed by Deligne, see [START_REF] Peters | Mixed Hodge Structures, Ergeb. der[END_REF]. The two filtrations P and F are related by the inclusion

(2.6) F s H m (F, C) ⊂ P s H m (F, C),
for any integers s, m, see formula (4.4.8) in [START_REF] Dimca | Koszul complexes and spectra of projective hypersurfaces with isolated singularities[END_REF]. Note also that (2.7)

F 0 H m (F, C) = H m (F, C) and P m+1 H m (F, C) = 0,
for any integer m, where the first equality comes from the general properties of the Hodge filtration, see [START_REF] Peters | Mixed Hodge Structures, Ergeb. der[END_REF], while the second equality follows from the definition of the filtration P .

The E 1 -term of the spectral sequence (2.4) is completely determined by the morphism of graded C-vector spaces (2.8) d :

H 2 (K * f ) → H 3 (K * f
), induced by the exterior differentiation of forms, i.e. d : [ω] → [d(ω)]. Note that this morphism d coincides with the morphism d (1) : N → M considered in [START_REF] Dimca | Koszul complexes and spectra of projective hypersurfaces with isolated singularities[END_REF], up-to some shifts in gradings. More precisely, if we set for k ∈ [1, d],

(2.9)

E s,t 1 (f ) k = H s+t+1 (K * f ) td+k and d 1 : E s,t 1 (f ) k → E s+1,t 1 (f ) k , d 1 : [ω] → [d(ω)],
we get a new form of (a homogeneous component of) the spectral sequence (2.4), where E s,t 1 (f ) k = 0 for s + t / ∈ {1, 2}. Hence, with the above notation, one has

(2.10) E s,t ∞ (f ) k = Gr s P Hs+t (F, C) λ .
The case k = d is also discussed in [19], see also [START_REF] Saito | Roots of Bernstein-Sato polynomials for projective hypersurfaces with general hyperplane sections having weighted homogeneous isolated singularities[END_REF]. The second differential

(2.11) d 2 : E s,t 2 (f ) k → E s+2,t-1 2 (f ) k ,
for s + t = 1 can be described as follows. One has the following key result due to M. Saito [START_REF] Saito | Bernstein-Sato polynomials for projective hypersurfaces with weighted homogeneous isolated singularities[END_REF].

If [ω] ∈ E s,t 2 (f ) k , then d 1 ([ω]) = 0, which means that d f ∧ ω = 0 and there is a 2-form α ∈ Ω 2 such that d(ω) = d f ∧ α. Then one has d 2 ([ω]) = [d α]. d 1 d 1 d 1 d 2 d 2 E -1,2 1 (f ) k E 0,2 1 (f ) k E 0,1 1 (f ) k E 1,1 1 (f ) k E 1,0 1 (f ) k E 2,0 1 (f ) k
Theorem 2.1. The spectral sequences (2.9) degenerate at the E 2 -term when the reduced plane curve C : f = 0 has only weighted homogeneous singularities.

We need the following result, see [START_REF] Dimca | Koszul complexes and spectra of projective hypersurfaces with isolated singularities[END_REF]Theorem 5.3]. Let α p i ,j with j = 1, ..., µ(C, p i ) be the spectral numbers of the plane curve singularity (C, p i ), where each spectral number is repeated as many times as its multiplicity in the spectrum of (C, p i ).

Theorem 2.2. Assume that the plane curve C : f = 0 in P 2 has only weighted homogeneous singularities and consider

E 1-t,t 2 (f ) k = ker d : H 2 (K * f ) td+k → H 3 (K * f ) td+k . Then dim E 1-t,t 2 (f ) k ≤ N (C, t, k)
, where N (C, t, k) is the number of spectral numbers α p i ,j equal to td+k d , when p i ranges over all the singularities of the curve C and j = 1, ..., µ(C, p i ).

Theorem 2.2 also implies the following weaker form of Theorem 2.1, see also [START_REF] Dimca | Koszul complexes and spectra of projective hypersurfaces with isolated singularities[END_REF]Corollary 5.5].

Corollary 2.3. If the degree d reduced plane curve C has only weighted homogeneous singularities, then E 1,0 2 (f ) k = 0 for k < α(C)d, where α(C) is the minimum of the spectral numbers of the singularities of C. Moreover, the spectral sequences (2.9) degenerate at the E 3 -term and the only possibly non-zero differentials in the E 2 -terms are the differentials

d 2 : E 0,1 2 (f ) k → E 2,0 2 (f ) k for k = 1, ..., (1 -α(C))d, i.e. one has E 1-t,t 2 (f ) k = 0 for q = td + k > (2 -α(C))d.
Corollary 2.4. Let C : f = 0 be a reduced plane curve of degree d having only weighted homogeneous singularities. Then dim

Gr 1 P H 1 (F, C) λ = 0 for k < α(C)d and dim Gr 0 P H 1 (F, C) λ = 0 for k > (1 -α(C))d. Corollary 2.
3 implies that the following three related conjectures hold when all the singularities of C are weighted homogeneous.

Conjecture 2.5. The spectral sequences (2.9) degenerates at the E 3 -term for any reduced plane curve C : f = 0.

We have no idea how to prove this conjecture, not even how to check that it holds on a specific example. For our practical purposes, we need only the following weaker version of this conjecture. This version can also be checked on a given example using the algorithm described below, see Proposition 6.1.

Conjecture 2.6. In the spectral sequences (2.9) of any reduced plane curve C : f = 0, the following equalities hold

dim E 2-t,t 3 (f ) k = dim E 2-t,t ∞ (f ) k , for any integer k ∈ [1, d] and any t = 0, 1, 2.
To speed up the computations, the following more precise form of the above claims would be very useful.

Conjecture 2.7. For any reduced plane curve C : f = 0, there is a positive integer

q 0 ≤ 3d + 1, such that dim E 1-t,t 2 (f ) k = µ(C) -τ (C) and E 1-t,t 3 (f ) k = 0
for any q = td + k ≥ q 0 , where µ(C) is the total Milnor number of C, that is the sum of all the Milnor numbers of the singular points of C. Similarly, τ (C) is the total Tjurina number of C, that is the sum of all the Tjurina numbers of the singular points of C. The minimal positive integer q 0 satisfying the above property, if it exists, is denoted by q 0 (f ).

It is clear that Conjecture 2.7 implies Conjecture 2.6, but again we have no idea how to prove Conjecture 2.7, not even how to check that it holds on a specific example.

Remark 2.8. Corollary 2.3 implies that when all the singularities of C are weighted homogeneous, one has q 0 (f ) ≤ (2 -α(C))d + 1. Note that by the semicontinuity of the spectrum, one has α(C) ≥ 2/d and hence the vanishing

E 1-t,t 2 (f ) k = 0 holds in particular for q = td + k ≥ 2d -1.
However, there are curves for which q 0 (f ) > 2d -1, see Example 8.3.

Remark 2.9. The two filtrations F and P coincide on

H 1 (F, C) λ always, see [21, Proposition 2.2].
On the other hand, the two filtrations F and P do not coincide on H 2 (F, C) λ even in very simple cases, e.g.

C : f = (x 2 -y 2 )(x 2 -z 2 )(y 2 -z 2 ) = 0 and λ = -1.
A computation of the Hodge filtration on H 2 (F, C) in this case can be found in [START_REF] Bailet | Milnor fibers of hyperplane arrangements[END_REF][START_REF] Dimca | Hyperplane Arrangements: An Introduction[END_REF]. Note also that the mixed Hodge structure on H 2 (F, C) =1 is not pure in general. For a line arrangement, one can use the formulas for the spectrum given in [START_REF] Budur | Jumping coefficients and spectrum of a hyperplane arrangement[END_REF] to study the interplay between monodromy and Hodge filtration on

H 2 (F, C) =1 , see [21, Remark 2.5].

Jacobian syzygies of plane curves

Consider the graded S-submodule AR(f ) ⊂ S 3 of all relations involving the derivatives of f , namely ρ = (a, b, c) ∈ AR(f ) q if and only if af x + bf y + cf z = 0 and a, b, c are in S q , the space of homogeneous polynomials of degree q. Let d 1 = mdr(f ) be the minimal degree of a relation in AR(f ). We assume in the sequel that d 1 > 0, which is equivalent to saying that C is not the union of d lines passing through one point, a case easy to handle directly.

To each syzygy ρ = (a, b, c) ∈ AR(f ) q we associate a differential 2-form

(3.1) ω(ρ) = a d y ∧ d z -b d x ∧ d z + c d x ∧ d y ∈ Ω 2 q+2 such that the relation af x + bf y + cf z = 0 becomes d f ∧ ω(ρ) = 0. A relation ρ = (a, b, c) is called a Koszul relation if the associated differential form ω(ρ) is of the form d f ∧ α, for some α ∈ Ω 1 .
The set KR(f ) of these Koszul relations forms a graded S-submodule in AR(f ). Hence, up to a shift in degrees, for any polynomial f there is an identification

AR(f )(-2) = Syz(f ) := ker{d f ∧ : Ω 2 → Ω 3 },
such that the Koszul relations KR(f ) inside AR(f ) correspond to the submodule d f ∧ Ω 1 in Syz(f ). Since C : f = 0 has only isolated singularities, it follows that H 1 (K * f ) = 0, i.e. the following sequence, where the morphisms are the wedge product by d f , is exact for any j

0 → Ω 0 j-2d → Ω 1 j-d → (d f ∧ Ω 1 ) j → 0.
In particular, one has

(3.2) dim(d f ∧ Ω 1 ) j = 0 for j ≤ d, (3.3) dim(d f ∧ Ω 1 ) j = 3 j -d + 1 2 for d < j < 2d. and (3.4) dim(d f ∧ Ω 1 ) j = 3 j -d + 1 2 - j -2d + 2 2 for j ≥ 2d.
Remark 3.1. Let J f be the Jacobian ideal spanned by f x , f y , f z in S, and denote by M (f ) = S/J f the corresponding Jacobian (or Milnor) algebra of f . Let m(f ) j = dim M (f ) j for j ≥ 0 and recall the formulas

(3.5) dim H 2 (K * f ) j = m(f ) j+d-3 -m(f s ) j+d-3 for 2 ≤ j ≤ 2d -3, and dim H 2 (K * f ) j = τ (C) for j ≥ 2d -2, where C s : f s = 0 denotes a smooth curve of degree d, see [15]. Since H 2 (K * f ) j = Syz(f ) j /(d f ∧ Ω 1
) j , the combination of the formulas (3.2), (3.3), (3.4) and (3.5) above gives us formulas for the dimensions syz(f ) j = dim Syz(f ) j for any j ≥ 3. Note that Syz(f ) j = AR(f ) j-2 = 0 for any j < 3 by our assumption d 1 = mdr(f ) > 0. Definition 3.2. For a reduced plane curve C : f = 0 of degree d, we recall the following invariants. (i) the coincidence threshold

ct(f ) = max{q : m(f ) k = m(f s ) k for all k ≤ q},
with f s a homogeneous polynomial in S of the same degree d as f and such that C s : f s = 0 is a smooth curve in P 2 . (ii) the stability threshold st(f ) = min{q : m(f ) k = τ (C) for all k ≥ q}.

The first cycle in the algorithm

: computing E s,t 2 (f ) k 4.1. The computation of E s,t 2 (f ) k for s + t = 1, 0 ≤ t ≤ 3.
For 3 ≤ q ≤ 4d, we set q 1 = q -d and consider the linear mapping (4.1)

φ q : Ω 2 q × Ω 2 q 1 → Ω 3 q+d × Ω 3 q , given by (ω, α) → (d f ∧ ω, d ω -d f ∧ α).
This map puts together the differential in the Koszul complex K * f and d 1 from the spectral sequence (2.9). Indeed, if ω ∈ Ω 2 (resp. α ∈ Ω 2 ) is given by the formula (3.1) starting with the triple (a, b, c) ∈ S 3 q-2 (resp. the triple (u, v, w) ∈ S 3 q 1 -2 ), one sees that essentially we get a map (4.2) φ q : S 3 q-2 × S 3 q 1 -2 → S q-3+d × S q-3 , given by

((a, b, c), (u, v, w)) → (af x + bf y + cf z , a x + b y + c z -uf x -vf y -wf z ).
Since S j = 0 for j < 0, this map has a simpler form for q < d + 2. The following claims are straightforward.

i) One has ((a, b, c), (u, v, w)) ∈ K q := ker φ q if and only if d f ∧ ω = 0 and d ω = d f ∧ α. ii) Note that if ω = d f ∧ η, one can take α = -d η and the corresponding pair (ω, α) gives rise to an element in K q . iii) Consider the projection B q ⊂ S 3 q-2 of K q on the first component and note that B q /(d f ∧ Ω 1 ) q can be identified to

E 1,0 2 (f ) q , for 3 ≤ q ≤ d, to E 0,1 2 (f ) q-d , for d + 1 ≤ q ≤ 2d, to E -1,2 2 (f ) q-2d , for 2d + 1 ≤ q ≤ 3d, and respectively to E -2,3 2 (f ) q-3d , for 3d + 1 ≤ q ≤ 4d.
iv) The kernel of the projection K q → B q can be identified to the set of forms

α ∈ Ω 2 such that d f ∧ α = 0. It follows that if we set k q = dim K q and q = k q -syz(f ) q 1 -dim(d f ∧ Ω 1 ) q , we have q = dim E 1,0 2 (f ) q for 3 ≤ q ≤ d, q = dim E 0,1 2 (f ) q-d for d + 1 ≤ q ≤ 2d, q = dim E -1,2 2 (f ) q-2d for 2d + 1 ≤ q ≤ 3d, and respectively q = dim E -2,3 2 (f ) q-3d for 3d + 1 ≤ q ≤ 4d
By convention, we set K j = 0 and k j = j = 0 for j = 0, 1, 2.

4.2.

The computation of E s,t 2 (f ) k for s + t = 2, 0 ≤ t ≤ 3. Recall that, setting q = td + k, we have 1 ≤ q ≤ 4d and

dim E 2-t,t 1 (f ) k = dim H 3 (K * f ) q = dim M (f ) q-3 = m(f ) q-3 . It follows that θ q := dim E 2-t,t 2 (f ) k = dim E 2-t,t 1 (f ) k -(dim E 1-t,t 1 (f ) k -dim E 1-t,t 2 (f ) k ) = = m(f ) q-3 -syz(f ) q + dim(d f ∧ Ω 1 ) q + q .
This can be rewritten as

θ q = m(f ) q-3 -m(f ) q+d-3 + m(f s ) q+d-3 + q for 2 ≤ q ≤ 2d -3 and θ q = m(f ) q-3 -τ (C) + q for 2d -2 ≤ q ≤ 3d
-4, resp. θ q = q for 3d -3 ≤ q ≤ 4d in view of Remark 3.1 above and since st(f ) ≤ 3d -6.

Remark 4.3. When the degree d reduced plane curve C has only weighted homogeneous singularities, we have q = 0 for any q > (2 -α(C))d as implied by Corollary 2.3. Moreover, Theorem 1.1 implies that in this case E s,t 2 (f ) k = E s,t ∞ (f ) k and hence to determine the monodromy action and the pole order filtration on Milnor fiber cohomology in this case it is enough to compute the integers q only for q ≤ 2d-2. Indeed, all the terms E s,t 2 (f ) k = E s,t ∞ (f ) k for s+t = 1 and q > 2d-2 are trivial, as it follows from (2.10) and the properties of the pole order filtration P , see (2.6) and (2.7). Therefore for a reduced plane curve C having only weighted homogeneous singularities the algorithm stops at this stage. Note that when C is a line arrangement one can compute only θ q for q ≤ 2d, since P 1 H 2 (F, C) = H 2 (F, C) as shown in Corollary 6.3, but in general one may need some values θ q for 2d < q ≤ st(f ) + 2 as shown by Corollary 6.5 and Example 8.1, where

P 1 H 2 (F, C) = H 2 (F, C).
Remark 4.4. One can consider the characteristic polynomials of the monodromy, namely ) , where χ(U ) denotes the Euler characteristic of the complement U , see for instance [25,[START_REF] Loeser | Le polynôme d'Alexander d'une courbe plane projective[END_REF] or [START_REF] Dimca | Singularities and topology of hypersurfaces[END_REF]Proposition 4.1.21]. Since

(4.3) ∆ j C (t) = det(t • Id -h j |H j (F, C)), for j = 0, 1, 2. It is clear that, when the curve C is reduced, one has ∆ 0 C (t) = t -1, and moreover (4.4) ∆ 0 C (t)∆ 1 C (t) -1 ∆ 2 C (t) = (t d -1) χ(U
χ(U ) = (d -1)(d -2) + 1 -µ(C) it follows that the polynomial ∆ C (t) = ∆ 1 C (t)
, also called the Alexander polynomial of C, see [START_REF] Randell | Milnor fibers and Alexander polynomials of plane curves[END_REF], determines the remaining polynomial ∆ 2 C (t). Note that the computation of the dimension of the term E 1,0 2 (f ) k , for k = 1, ..., d described in this section is enough to determine the Alexander polynomial ∆ C (t) for all reduced plane curves. Indeed, the equality of the pole order filtration P p with the Hodge filtration F p on H 1 (F, C), see [21, Proposition 2.2] and the obvious equality

dim H 0,1 (F, C) λ = dim H 1,0 (F, C)λ, with λ the complex conjugate of λ, imply that dim H 1,0 (F, C) λ = dim E 1,0 2 (f ) k and dim H 0,1 (F, C) λ = dim E 1,0 2 (f ) d-k , where λ = exp(-2πik/d).
Note that the results by H. Esnault in [START_REF] Esnault | Fibre de Milnor d'un cône sur une courbe plane singulière[END_REF], A. Libgober in [25], F. Loeser and M. Vaquié in [START_REF] Loeser | Le polynôme d'Alexander d'une courbe plane projective[END_REF], and E. Artal Bartolo in [START_REF] Bartolo | Sur les couples de Zariski[END_REF], can be used to compute the Alexander polynomials in many cases. However these results do not seem to be easily implementable as algorithms to performed computer aided computations.

We also note that our results, reducing the computation of the Alexander polynomial to linear algebra, imply in a clear way that this polynomial is not changed when we apply an automorphism of C over Q to our defining polynomial f . In particular, the Alexander polynomial cannot be used to distinguished Galois conjugate Zariski pairs as noticed already in [START_REF] Bartolo | Topology of arrangements and position of singularities[END_REF].

Remark 4.5. As explained in Remark 4.4, if we are interested only in the Alexander polynomial ∆ C (t), then it is enough to compute the dimensions of the terms E 1,0 2 (f ) k for all k ∈ [1, d]. This justifies our approach above via the study of the kernels of the differentials d 1 's. On the other hand, if the main interest is in the study of the polar filtration on the top cohomology group of the Milnor fiber, and this is often the case when we consider higher dimensional projective hypersurfaces, as in [START_REF] Dimca | Computing Milnor fiber monodromy for projective hypersurfaces[END_REF][START_REF] Saito | Bernstein-Sato polynomials for projective hypersurfaces with weighted homogeneous isolated singularities[END_REF][START_REF] Saito | Roots of Bernstein-Sato polynomials for projective hypersurfaces with general hyperplane sections having weighted homogeneous isolated singularities[END_REF], it turns out to be more efficient to look at the dimensions of the cokernels of the differentials d j 's, for j = 1, 2. This passage from kernels to cokernels was first suggested by Morihiko Saito.

Remark 4.6. In practice, the computation of q = dim E -1,2 2 (f ) q-2d for 2d+1 ≤ q ≤ 4d takes a lot of time. A way to estimate in general the numerical invariant q 0 (f ) introduced in Conjecture 2.7 would be of a great help. All the examples computed so far suggest that Conjecture 2.7 holds. Some of these examples are given in the final section.

5.

The second cycle in the algorithm: computing E s,t 3 (f ) k In this section we explain how the algorithm described in the previous section has to be continued in the case of the presence of non weighted homogeneous singularities, and if one wants to control the P -filtration on H 2 (F, C). The general construction is described in the subsection 5.4, but for the clarity of exposition and the optimization of the computer time we discuss several cases. 5.1. The case 3 ≤ q ≤ d + 1. We consider the linear mapping (5.1) φ q : S 3 q-2 → S q-3+d × S q-3 , given by (a, b, c) → (af x + bf y + cf z , a x + b y + c z ). This map is a simpler version of the map in (4.2), and in fact φ q = φ q in this range.

It follows that (a, b, c) is in the kernel K q := ker φ q if and only if the corresponding form ω is in E 1,0 2 (f ) q for q = 3, ..., d or in E 0,1 2 (f ) 1 for q = d + 1. Note that one obviously has E 1,0 2 (f ) q = E 1,0 ∞ (f ) q for q = 3, ..., d, and also E 0,1 2 (f ) [START_REF] Dimca | A computational approach to Milnor fiber cohomology[END_REF]Remark 2.4]. We set k q = dim K q and q = k q -dim(d f ∧ Ω 1 ) q . Since the class [ω] of the form ω is determined up to an element of (d f ∧ Ω 1 ) q , it follows that

1 = E 0,1 ∞ (f ) 1 as explained in
q = dim E 1,0 ∞ (f ) q = dim Gr 1 P H 1 (F, C) λ for q = 3, ..., d and d+1 = dim E 0,1 ∞ (f ) q = dim Gr 0 P H 1 (F, C) λ , with λ = exp(-2πiq/d)
. By convention, we set K j = 0 and k j = j = 0 for j = 0, 1, 2. 5.2. The case d + 2 ≤ q ≤ d + d 1 + 1 where d 1 = mdr(f ). We set q 1 = q -d and we consider the linear mapping (5.2) φ q : S 3 q-2 × S 3 q 1 -2 → S q-3+d × S q-3 × S q 1 -3 , given by ((a, b, c), (u, v, w))

→ (af x + bf y + cf z , a x + b y + c z -uf x -vf y -wf z , u x + v y + w z ).
This map can be regarded as an extension of the map (4.2) obtained by adding the last component. Then it is clear that ((a, b, c), (u, v, w)) ∈ K q = ker φ q if and only if d f ∧ ω = 0, d ω = d f ∧ α and d α = 0. Since q 1 ≤ d 1 + 1, it follows that E 1,0 1 (f ) q 1 = 0, and hence E 2,0 2 (f ) q 1 = E 2,0 1 (f ) q 1 = M (f ) q 1 -3 . Consider the projection A q ⊂ S 3 q-2 of K q on the first component and note that A q /(d f ∧ Ω 1 ) q can be identified to E 0,1 3 (f ) q 1 . Moreover E 0,1 3 (f )

q 1 = E 0,1 ∞ (f ) q 1 since q 1 ≤ d.
The kernel of the projection K q → A q can be identified to the set of forms α ∈ Ω 2 such that d f ∧ α = 0 and d α = 0. Since q 1 ≤ d 1 + 1, the fist condition implies α = 0, and hence k q = dim K q = dim A q in this case. It follows that if we set

q = k q -dim(d f ∧ Ω 1 ) q ,
we have again

q = dim E 0,1 ∞ (f ) q 1 = dim Gr 0 P H 1 (F, C) λ .
5.3. The case d + d 1 + 2 ≤ q ≤ 2d where d 1 = mdr(f ). We set again q 1 = q -d and we consider the linear mapping

(5.3) φ q : S 3 q-2 × S 3 q 1 -2 × S 3 q 1 -2 → S q-3+d × S 2 q-3 × S q 1 -3 ,
given by

((a, b, c), (u, v, w), (u , v , w )) → (Φ 1 , Φ 2 , Φ 3 , Φ 4 ),
where Φ 1 = af x +bf y +cf z , Φ 2 = a x +b y +c z -uf x -vf y -wf z , Φ 3 = u f x +v f y +w f z and Φ 4 = u x + v y + w z -u x -v y -w z . With the notation from the previous case, let β ∈ Ω 2 be the form associated to the triple (u , v , w ). Then it is clear that ((a, b, c), (u, v, w), (u , v , w ))

∈ K q = ker φ q if and only if d f ∧ ω = 0, d ω = d f ∧ α, d f ∧ β = 0 and d α = d β. Since q 1 ≤ d, it
follows that Φ 4 = 0 has the same meaning in both S q 1 -3 and in M (f ) q 1 -3 = S q 1 -3 . Consider the projection A q ⊂ S 3 q-2 of K q on the first component and note that A q /(d f ∧ Ω 1 ) q can be identified to E 0,1 3 (f ) q 1 , which again, is clearly the same as E 0,1 ∞ (f ) q 1 . The kernel of the projection K q → A q can be identified to the set of forms α , β ∈ Ω 2 such that d f ∧α = d f ∧β = 0 and d α = d β . By setting γ = α -β , we see that this is the same as the set of forms α , γ ∈ Ω 2 such that d f ∧α = d f ∧γ = 0 and d γ = 0. This says exactly that α ∈ Syz(f ) q 1 and γ ∈ K q 1 = K q 1 , where K q 1 was introduced in the first cycle above. It follows that if we set

q = k q -syz(f ) q 1 -k q 1 -dim(d f ∧ Ω 1 ) q ,
we have again

q = dim E 0,1 ∞ (f ) q 1 = dim Gr 0 P H 1 (F, C) λ .
Note that the value for syz(f ) q 1 is determined in Remark 3.1, the value for k q 1 is computed in the first step of our algorithm, and the value of dim(d f ∧ Ω 1 ) q is given in the equations (3.2), (3.3), and (3.4). Remark 6.2. Let C : f = 0 be a reduced plane curve of degree d. To compute χ(U ), it is enough to determine the Milnor number µ(C). This can be achieved in practice as follows. We choose the coordinates x, y, z such that the line z = 0 contains no singular point of C. It follows that µ(C) = µ(C a ), where C a is the affine curve in C 2 defined by g(x, y) = f (x, y, 1) = 0. Then one has

µ(C a ) = dim C[x, y] (g x , g y , g 2 )
.

Here we have added g 2 to the Jacobian ideal (g x , g y ) since we want to take the sum of the Milnor numbers of the singularities of the polynomial g situated on the curve g = 0. For such a singularity p, the Briançon-Skoda Theorem, see [START_REF] Briançon | Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de C n[END_REF], shows that the local Milnor number at p is not affected by the addition of the generator g 2 p , since g 2 p ∈ (g p,x , g p,y ). Here we denote by g p the analytic germ induced by the polynomial g at the point p.

We assume mainly in this section that the curve C : f = 0 has some non weighted homogeneous singularity, i.e. τ (f ) = τ (C) < µ(C) = µ(f ). However, the formulas (6.1) and (6.2) hold for any reduced plane curves satisfying the stronger Conjecture 2.7, which explains why Corollaries 6.3 and 6.5 treat curves with weighted homogeneous singularities. We also assume that Conjecture 2.6 holds. When the stronger Conjecture 2.7 holds, the algorithm is much faster, since instead of computing the invariants till q = 4d we can stop practically at q = q 0 (f ) ≤ 3d + 1.

Note that for t = 0 and k = 1, ..., d we get the following dim

Gr 2 P H 2 (F, C) λ = dim E 2,0 ∞ (f ) k = dim E 2,0 3 (f ) k = = dim E 2,0 2 (f ) k -dim E 0,1 2 (f ) k + d+k = θ k -d+k + d+k .
When the stronger Conjecture 2.7 holds, and t ≥ 1, one has also

dim Gr 2-t P H 2 (F, C) λ = dim E 2-t,t ∞ (f ) k = dim E 2-t,t 3 (f ) k = = dim E 2-t,t 2 (f ) k -µ(C) + dim E -t,t+1 2 
(f ) k = θ q -q+d , for t = 1, 2 and k = 1, 2, ..., d, where we set q = µ(C) -τ (C) for q > 3d. In particular, for q ≥ q 1 (f ) = max(2d -2, q 0 (f )), we have

dim Gr 2-t P H 2 (F, C) λ = m(f ) q-3 -τ (C). Note that, when t = 2, this implies (6.1) dim Gr 0 P H 2 (F, C) λ = m(f ) 2d+k-3 -τ (C) = 0 if q ≥ q 2 (f ) = max(st(f ) + 3, q 1 (f )) and dim Gr 0 P H 2 (F, C) λ = m(f ) 2d+k-3 -τ (C) = 0 if q = st(f ) + 2 ≥ q 1 (f ). Similarly, for t = 1 and k = d -2 or k = d -1 we get (6.2) dim Gr 1 P H 2 (F, C) λ = m(f ) d+k-3 -τ (C) = 0, if q = d + k ≥ q 2 (f ).
Corollary 6.3. Let A : f = 0 be an arrangement of d lines in P 2 with Milnor fiber F .

Then P 1 H 2 (F, C) = H 2 (F, C) and Gr 1 P H 2 (F, C) λ = 0 for λ = exp(-2πi(d -1)/d).
Proof. The first part of the claim is clearly equivalent to dim Gr 0 P H 2 (F, C) λ = 0 for any λ. Since st(f ) ≤ 2d -4 for any line arrangement, see [START_REF] Dimca | Numerical invariants and moduli spaces for line arrangements[END_REF], the claim follows from (6.1). The second part of the claim follows from (6.2). Corollary 6.4. Let C : f = 0 be a reduced plane curve which is either free or nearly free, and for which Conjecture 2.7 hold, with q 0 (f ) ≤ 2d + 1. Then

P 1 H 2 (F, C) = H 2 (F, C).
Proof. When C : f = 0 is a free (resp. nearly free) curve with exponents

d 1 ≤ d 2 , it is known that st(f ) = d 2 + d -3 ≤ 2d -4 (resp. st(f ) = d 2 + d -2 ≤ 2d -3.
We conclude as above. Corollary 6.5. Let C : f = 0 be a reduced plane curve of degree d ≥ 5 having only one singularity, which is a node. Then ∆ 1 C (t) = 1 and

dim Gr 0 P H 2 (F, C) λ = m(f ) 2d+k-3 -τ (C) = m(f ) d-k-3 -1 = d -k -1 2 -1 = 0 for k = 1, 2, ..., d -4.
Proof. For the first claim, see for instance [START_REF] Dimca | Singularities and topology of hypersurfaces[END_REF]Theorem 6.4.17]. To prove the second claim, note that for such a curve ct(f ) = st(f ) = 3d -6, see [19]. This implies in particular m(f

) 2d+k-3 = m(f s ) 2d+k-3 = m(f s ) d-k-3 = m(f ) d-k-3
, where the equality in the middle follows from the Grothendieck duality of the Artinian Milnor algebra M (f s ).

Note that for this uninodal curve, the vanishing bound given in (6.1) is sharp. For more on such uninodal curves, see Corollary 7.5 below.

Application to the study of Bernstein-Sato polynomials

Let (D, 0) : g = 0 be a complex analytic hypersurface germ at the origin of C n and denote by b g,0 (s) the corresponding (local) Bernstein-Sato polynomial. If the analytic germ g is given by a homogeneous polynomial, then one can define also the global Bernstein-Sato polynomial b g (s) of g, and one has an equality b g (s) = b g,0 (s), see for more details [START_REF] Saito | Multiplier ideals, b-function, and spectrum of a hypersurface singularity[END_REF], [START_REF] Saito | Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polynomials[END_REF]. Let R g,0 (resp. Rg,0 ) be the set of roots of the polynomial b g,0 (-s) (resp. of the polynomial b g,0 (-s)/(1 -s)). Recall that one has Rg,0 ⊂ [α g,0 , n -αg,0 ], where αg,0 = min Rg,0 > 0. Moreover, α g,0 = min R g,0 > 0 coincides with the log canonical threshold lct(g) of the germ g, a.k.a. the log canonical threshold lct(C n , D) of the pair (C n , D), see [START_REF] Kollár | Singularities of pairs[END_REF]. When g is a homogeneous polynomial, we use the simpler notation R g = R g,0 , Rg = Rg,0 and so on.

Example 7.1 (Cones over smooth projective hypersurfaces). Let g be a homogeneous polynomial of degree d in n variables such that the corresponding projective hypersurface g = 0 is smooth. Using the relation between the zero set Rg and the spectrum in the case of an isolated weighted homogeneous hypersurface singularity, see for instance [START_REF] Saito | On b-function, spectrum and multiplier ideals[END_REF], one has Rg = j d : n ≤ j ≤ n(d -1) .

In this section we consider mainly the case when n = 3 and g = f is the defining equation of a reduced curve C in P 2 . Let D be the surface in C 3 defined by f = 0 and note that at a point a ∈ D, a = 0, the germ (D, a) is analytically a product between a plane curve singularity and a smooth 1-dimensional germ. It follows that Rf,a ⊂ [α f,a , 2 -αf,a ].

Recall M. Saito's fundamental result [START_REF] Saito | Multiplier ideals, b-function, and spectrum of a hypersurface singularity[END_REF]Theorem 2] quoted here in the case n = 3.

Theorem 7.2. Let C : f = 0 be a reduced curve in P 2 , let α > 0 be a rational number and set λ = exp(-2πiα).

(1) If Gr p P H 2 (F, C) λ = 0, where p = 3 -α , then α ∈ R f (2) If the sets α + N and ∪ a∈D,a =0 R f,a are disjoints, then the converse of the assertion (1) holds.

The following result is due to M. Saito in arbitrary dimension, see [START_REF] Saito | Bernstein-Sato polynomials of hyperplane arrangements[END_REF]Theorem 1]. We give a new, simple proof below to point out the relation with Corollary 6.3. Proof. We prove the result by discussing the possible cases for α. If α = 2, the result is clear by Theorem 7.2, since

H 2 (F, C) 1 = H 2 (U, C) = F 2 H 2 (U, C) = F 2 H 2 (F, C) 1 ⊂ P 2 H 2 (F, C) 1
and hence H 2 (F, C) 1 = P 2 H 2 (F, C) 1 , which implies Gr 1 P H 2 (F, C) 1 = 0. If α = 2, then we know that dα ∈ N, and hence to prove the claim we have to consider the case α = 1 + (d -1)/d and the case α = 2 + k/d for k = 1, ..., d -1. Both cases follow from Theorem 7.2 (2) and Corollary 6.3. To see this, the only point to explain is why

α / ∈ a∈D,a =0 R f,a .
Indeed, note that a singular point a ∈ D correspond to a point of multiplicity m ≥ 2 in the line arrangement. For such a point one has α f,a = 2/m, and this implies our claim.

The following result can be proved along the same lines using Corollary 6.4.

Corollary 7.4. Let C : f = 0 be a reduced plane curve which is either free or nearly free, and for which Conjectures 2.5 and 2.7 hold. Then max R f ≤ 2.

The next result shows that a nodal curve behaves quite differently from a line arrangement with respect to the zero set R f . Corollary 7.5. Let C : f = 0 be a reduced plane curve of degree d ≥ 5 having only one singularity, which is a node. Then

R f = j d : 3 ≤ j ≤ 3d -4 .
In particular

max R f = 2 + d -4 d .
Proof. Recall that for a uninodal plane curve C : f = 0 of degree d one has the following: ct(f ) = st(f ) = 3d-6 and dim H 2 (K * f ) q = 0 for q < 2d-2 and dim H 2 (K * f ) q = 1 for q ≥ 2d -2, see [19,Example 4.3 and Equation (2.17)]. Using this, the fact that R f contains the given set of rational numbers follows Theorem 2.1 and Theorem 7.2 (1). To show that α = (3d -3)/d is not in R f one uses Theorem 7.2 (2). Remark 7.6.

(1) Corollary 7.5 can be restated as

R f = R fs \ d -3 d ,
where f s is a generic polynomial of degree d in x, y, z as in Example 7.1. (2) In the case of a line arrangement A : f = 0 in P 2 , the zero set R f is not determined by the combinatorics, see Walther [38] and Saito [START_REF] Saito | Bernstein-Sato polynomials of hyperplane arrangements[END_REF]. In fact, there is a pair of line arrangements A 1 : f 1 = 0 and A 2 : f 2 = 0 of degree d = 9, going back to Ziegler [39], having the same combinatorics but different sets R f and different Hilbert functions for their Milnor algebras M (f 1 ) and M (f 2 ). (3) The zero set R f is not determined by the Hilbert function for its Milnor algebra M (f ) for a reduced plane curve C : f = 0, see [START_REF] Saito | Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polynomials[END_REF] and Example 8.4 below.

Examples

Example 8.1 (A torus curve of type (2, 4)). Consider the curve C : f = (x 2 + y 2 ) 4 + (y 4 + z 4 ) 2 = 0. This curve has 8 weighted homogeneous singularities of type A 3 with local equation u 2 + v 4 = 0, and hence µ(C) = τ (C) = 8 × 3 = 24. A direct computation shows that q = 0 for q ≥ q 0 (f ) = 11 as in Conjecture 2.7. On the other hand we have θ q = 0 for q ≥ 18, which is exactly the bound predicted by (6.1) which is in this case q ≥ q 2 (f ) = st(f ) + 3 = 15 + 3 = 18. To state the full result, we consider the pole order spectrum defined by (8.1) .

Sp j P (f ) = α>0 n j P,f,α t α for j = 0,
Note in particular that, unlike the case of line arrangements treated in Corollary 6.3, here

P 1 H 2 (F, C) = H 2 (F, C).
Example 8.2 (A free curve with non weighted homogeneous singularities). Consider the curve C : f = (y 2 z 2 -x 4 ) 2 y 2 -x 10 , introduced in [4]. This curve is free with exponents (4, 5), and hence st(f ) = 12. Moreover, one has µ(C) = 70 and τ (C) = 61. A direct computation shows that q = µ(C) -τ (C) = 9 for 18 = q 0 (f ) ≤ q ≤ 30. Moreover, we have Gr 1 P H 2 (F, C) λ = 0 for q = d + k ≥ 15, which is stronger that the bound predicted by (6.2) which is in this case . Moreover, P 1 H 2 (F, C) = H 2 (F, C) as predicted by Corollary 6.4.

q = d + k ≥ d + (d -2) = 18 ≥ st(f ) + 3 =
The free curve C above has two irreducible components. To get a similar example with an irreducible free curve, one may consider

C : f = x 4 y 2 + y 6 -3xy 4 z + 3x 2 y 2 z 2 -x 3 z 3 = 0.
This curve has a simple cusp A 2 at p = (1 : 0 : 0) and a cusp with multiplicity sequence [3 3 ], and hence Milnor number µ(C, q) = 12 at q = (0 : 0 : 1). Moreover, C occurs as a type C 4 curve in Fenske's classification, see [START_REF] Fenske | Rational 1-and 2-cuspidal plane curves[END_REF]Corollary 1.5]. Then C is free with exponents (2, 3) and one has µ(C ) = 20, τ (C ) = 19, q 0 (f ) = 10. Our algorithm gives ( .

Example 8.3 (A curve with µ(C) = τ (C) and high q 0 (f ) = 2d + 2). Consider the curve C : f = x 4 y 4 z 4 + x 12 + y 12 = 0. This curve is far from being free, since ct(f ) + st(f ) -T = 11, where T = 3(d -2), and it has µ(C) = 73 and τ (C) = 64. A direct computation shows that q = µ(C) -τ (C) = 9 for q ≥ q 0 (f ) = 26 = 2d + 2 < 3d, as required in Conjecture 2.7. In fact, Conjecture 2.6 holds for this curve since the condition in Proposition 6.1 is fulfilled. Note also that in this example the sequence q contains the sequence 20 = 3, 21 = 22 = 2, 23 = 3, and hence it is not, as in most other examples, an increasing sequence. Note that H 1 (F, C) = 0 in this case, b 2 (F ) = 455 is large, and P 1 H 2 (F, C) = H 2 (F, C).

Example 8.4 (Some examples considered by M. Saito in [START_REF] Saito | Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polynomials[END_REF]). Consider the curves C 1 : f 1 = x 5 + y 4 z + x 4 y = 0 and C 2 : f 2 = x 5 + y 4 z + x 3 y 2 = 0. Then the Milnor algebras M (f 1 ) and M (f 2 ) have the same Hilbert functions, and one has µ(f 1 ) = µ(f 2 ) = 12 and τ (f 1 ) = τ (f 2 ) = 11. Our algorithm shows that in both cases H 1 (F, C) = 0, q 0 (f 1 ) = 9, q 0 (f 2 ) = 8, while the spectrum on H 2 (F, C) is given by (8.8) Sp 0 (f 1 ) = t as proved in [START_REF] Saito | Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polynomials[END_REF]. Notice also that C 1 : f 1 = 0 and C 2 : f 2 = 0 are nearly free with exponents (2, 3). Both curves have a unique unibranch singulary located at p = (0 : 0 : 1), which is semi-weighted-homogeneous with weights (1/5, 1/4). In particular, the singularities (C 1 , p) and (C 2 , p) are topologically equivalent.

In [34, Remark 2.5], M. Saito also considers the curves C 3 : f 3 = x 5 + xy 3 z + y 4 z + xy 4 = 0 and C 4 : f 4 = x 5 + xy 3 z + y 4 z = 0. In this case one has µ(f 3 ) = µ(f 4 ) = 11, τ (f 3 ) = τ (f 4 ) = 10. Our algorithm shows that again H 1 (F, C) = 0, q 0 (f 3 ) = 10, q 0 (f 4 ) = 9, while the spectrum on H 2 (F, C) is given by (8.10) Sp 0 (f 3 ) = t Using Theorem 7.2, it follows that

9 5 ∈ R f 4 \ R f 3
as proved in [START_REF] Saito | Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polynomials[END_REF]. Notice also that C 3 : f 3 = 0 and C 4 : f 4 = 0 are neither free nor nearly free, they satisfy ct(f j ) + st(f j ) -T = 3 for j = 3, 4. In both cases, there are independent syzygies of degree 2 and 3. Note that Conjecture 2.6 holds for all these curves, since the condition in Proposition 6.1 is fulfilled. Both curves have a unique two-branch singulary located at p = (0 : 0 : 1), which is semi-weighted-homogeneous with weights (1/5, 4/15). Again, the singularities (C 3 , p) and (C 4 , p) are topologically equivalent.
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  -α] and λ = exp(-2πiα). With this notation, we have the following for our torus curve of type[START_REF] Bartolo | Topology of arrangements and position of singularities[END_REF] 4).

	(8.2)			Sp 1 P (f ) = t	14 8 + t	16 8 + t	18 8 .
	(8.3)	Sp 0 P (f ) = t	3 8 + 3t	4 8 + 6t	5 8 + 10t	6 8 + 12t	7 8 + 16t	8 8 + 18t	9 8 + 20t	10 8 +
		+18t	11 8 + 16t	12 8 + 13t	13 8 + 10t	14 8 + 7t	15 8 + 3t	16 8 + t	17 8

1, where n j P,f,α = dim Gr p P H 2-j (F, C) λ with p = [3

  15. Moreover Conjecture 2.6 holds for this curve since the condition in Proposition 6.1 is fulfilled. In this case we have

	(8.4)	Sp 1 P (f ) = t	16 10 + t	17 10 + t	18 10 + t	19 10 + t	20 10 + t	21 10 + t	22 10 + t	23 10 + t	24 10
	and												
	(8.5)												
	Sp 0 P (f ) = t	3 10 + 2t	4 10 + 3t	5 10 + 4t	6 10 + 4t	7 10 + 4t	8 10 + 4t	9 10 + 3t	10 10 + 4t	11 10 + 4t	12 10 + 3t	13 10 + 2t	14 10

  hence exactly the same formulas as in[START_REF] Saito | Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polynomials[END_REF], equations (1.4.5). Using Theorem 7.2, it follows that8 5 ∈ R f 2 \ R f 1

			3 5 + t	4 5 + t	6 5 + t	7 5 ,
	and, respectively,					
	(8.9)	Sp 0 (f 2 ) = t	4 5 + t	6 5 + t	7 5 + t	8 5 ,

5.4. The case 2d + 1 ≤ q ≤ 4d. We set q 1 = q -d and q 2 = q -2d, and we consider the linear mapping (5.4) φ q : S 3 q-2 × S 3 q 1 -2 × S 3 q 1 -2 × S 3 q 2 -2 → S q-3+d × S 2 q-3 × S q 1 -3 , given by

With the notation from the previous case, let η ∈ Ω 2 be the form associated to the triple (u , v , w ). Then it is clear that

As above, one considers the projection K q → A q and note that the kernel of this projection can be identified to the space K q 1 , whose dimension k q 1 was determined in the first cycle above. Hence

∞ (f ) k for s + t = 2 under some assumptions We start with the following very useful result. Proposition 6.1. Conjecture 2.6 holds if and only if

Proof. Note that, using the properties of the filtrations F and P given in (2.6) and (2.7), it follows that E s,t ∞ (f ) k , with s + t = 2, can be nonzero only for t = 0, 1, 2. Moreover, as explained above, one has

) λ , and the equality holds if and only if Conjectures 2.6 holds. This equality is easy to check in practice as soon as we have the dimensions of the 3-terms E

for any λ, as follows from the formula (4.4). Note that dim H 0 (F, C) λ = δ k d , which completes our proof.