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Labeled embedding of (n, n -2)-graphs in their complements

Context and definitions

Graph theoretical definitions

All graphs considered in this paper are finite, undirected, without loops or multiple edges. If T is a rooted tree of order n, we define an end vertex as a vertex which does not have any son, and a leaf-parent as a vertex whose all of its sons are end vertices.

Given a positive integer n, the graphs K n , P n and C n will denote respectively the complete graph, the path and the cycle on n vertices. For a graph G, we will use V (G) and E(G) to denote its vertex and edge sets respectively. Given V ′ ⊂ V , the subgraph G[V ′ ] denotes the subgraph of G induced by V ′ , i.e., E(G[V ′ ]) contains all the edges of E which have both extremities in V ′ . If a graph G has order n and size m, we say that G is an (n, m)-graph.

An independent set of G is a subset of vertices X ⊆ V , such that no two vertices in X are adjacent. An independent set is said to be maximal if no independent set properly contains it. An independent set of maximum cardinality is called a maximum independent set. For undefined terms, we refer the reader to [START_REF] Bondy | Graph Theory with Applications[END_REF]. A permutation σ is a one-to-one mapping of {1, . . . , n} into itself. We say that a permutation σ is fixed-point-free if σ(x) ̸ = x for all x of {1, . . . , n}.

The graph packing problem

The graph packing problem was introduced by Bollobás and Eldridge [START_REF] Bollobós | Packing of graphs and applications to computational complexity[END_REF] and Sauer and Spencer [START_REF] Sauer | Edge disjoint placement of graphs[END_REF] in the late 1970s. Let G 1 , . . . , G k be k graphs of order n. We say that there is a packing of G 1 , . . . , G k (into the complete graph K n ) if there exist bijections σ i : V (G i ) -→ V (K n ), where 1 ≤ i ≤ k, such that

σ * i (E(G i )) ∩ σ * j (E(G j )) = ∅ for i ̸ = j
, and here the map

σ * i : E(G i ) -→ E(K n )
is the one induced by σ i . A packing of k copies of a graph G will be called a k-placement of G. A packing of two copies of G (i.e., a 2-placement) is also called an embedding of G (into its complement G). In other words, an embedding of a graph G is a permutation σ on V (G) such that for each edge uv belonging to

E(G), its image σ(u)σ(v) does not belong to E(G).
In the literature, the question of the existence of an embedding of a given graph received a great attention (see the survey papers [START_REF]WoźniakPacking of graphs and permutations-a surveyDiscrete[END_REF]9]). In [START_REF] Burns | Every (p, p -2) graph is contained in its complement[END_REF], full characterizations of all the (n, n -1) and (n, n) embeddable graphs are given. The case of (n, n -2)-graphs was also solved independently in [START_REF] Bollobós | Packing of graphs and applications to computational complexity[END_REF][START_REF] Burns | Every (p, p -2) graph is contained in its complement[END_REF][START_REF] Sauer | Edge disjoint placement of graphs[END_REF]. In particular, it is proved in [START_REF] Sauer | Edge disjoint placement of graphs[END_REF] that any pair of (n, n -2)-graphs can be packed into K n .

In [START_REF] Duchêne | Labeled packing of graphs[END_REF], Duchêne et al. introduced and studied the graph packing problem for a vertex labeled graph. Roughly speaking, it consists of a graph packing which preserves the labels of the vertices. We give below the formal definition of this problem.

Definition [START_REF] Duchêne | Labeled packing of graphs[END_REF]. Given a positive integer p, let G be a graph of order n and f be a mapping from V (G) to the set {1, . . . , p}. The mapping f is called a p-labeled-

packing of k copies of G into K n if there exist bijections σ i : V (G) -→ V (K n ) for 1 ≤ i ≤ k, such that: 1. σ * i (E(G)) ∩ σ * j (E(G)) = ∅ for all i ̸ = j. 2. For every vertex v of G, we have f (v)=f (σ 1 (v))=f (σ 2 (v)) = • • • =f (σ k (v)).
The maximum positive integer p for which G admits a p-labeled-packing of k copies of G is called the labeled packing number of k copies of G and is denoted by λ k (G). Throughout this paper, a labeled packing of two copies of G will be called a labeled embedding of G. It will be denoted by a pair (f, σ).

Remark that the existence of a packing of k copies of a graph G is a necessary condition for the existence of p-labeled-packing of k copies of G. Indeed, it suffices to choose p = 1. Therefore, the result of Sauer and Spencer [START_REF] Sauer | Edge disjoint placement of graphs[END_REF] ensures the existence of a p-labeled packing for (n, n -2)-graphs. An estimation of the labeled packing number of such graphs is the main issue of the current paper.

The following result was proved in [START_REF] Duchêne | Labeled packing of graphs[END_REF]. It gives an upper bound for the labeled packing number of two copies of a general graph.

Lemma 1 (Duchêne et al.,11). Let G be a graph of order n and let I be a maximum independent set of G. If there exists an embedding of G into K n , then

λ 2 (G) ≤ |I| + ⌊ n -|I| 2 ⌋
In [START_REF] Duchêne | Labeled packing of graphs[END_REF], exact values of λ 2 (G) are given when G is a cycle or a path. In almost all cases, the upper bound of the above lemma is reached. More precisely, it is shown that for all n ≥ 6,

λ 2 (P n ) ∈ {⌊ 3n 4 ⌋, ⌊ 3n 4 ⌋ + 1} λ 2 (C n ) = ⌊ 3n 4 ⌋
The case of trees is also considered [START_REF] Tahraoui | Labeled 2-packings of trees[END_REF], but only a lower bound is proposed.

Tahraoui, Duchêne, Kheddouci and Woźniak

Labeled embedding of graphs and permutations

In this section, we give a strong relationship between a labeled embedding and its permutation structure.

A permutation σ of a finite set can be written as the disjoint union of cycles (two cycles being disjoint if they do not have any common element). Here, a cycle (a 1 , . . . , a n ) is a permutation sending a i to a i+1 for 1 ≤ i ≤ n -1 and a n to a 1 . This representation is called the cyclic decomposition of σ and is denoted by

C(σ).
According to this definition, the cycles of length one correspond to fixed points of σ. For example, the cyclic decomposition of the permutation induced by the labeled embedding of T (in Figure 1) is:

{(v 1 ), (v 2 ), (v 3 ), (v 4 ), (v 5 ), (v 6 ), (v 7 ), (v 8 , v 10 ),(v 11 , v 13 ), (v 9 , v 12 )}.
We now recall a fundamental property of labeled embeddings (see [START_REF] Duchêne | Labeled packing of graphs[END_REF]). For any labeled embedding (f, σ) of a graph G, one can remark that the vertices of every cycle of C(σ) share the same label. In other words, the labeled embedding number of G exactly corresponds to the maximum number of cycles induced by an embedding of G. It means that if G admits an embedding with k cycles, then

λ 2 (G) ≥ k.
Although this correlation between labeled embeddings and the permutation's number of cycles was rencently stated, several studies can be found about the permutation structure of an embedding. In particular, the permutation structure of embeddings of (n, n -2)-graphs was investigated by Woźniak in [START_REF] Woźniak | Embedding Graphs of Small Size[END_REF]:

Theorem 2 (Woźniak,94). Let G be a graph of order n, different from

K 3 ∪ 2K 1 and K 4 ∪ 4K 1 . If |E(G)| ≤ n -2, then there exists a permutation σ on V (G) such that σ 1 , σ 2 , σ 3 define a 3-placement of G.
Moreover, σ has all its cycles of length 3, except for one of length one if n ≡ 1 mod 3 or two of length one if n ≡ 2 mod 3.

According to our previous remarks, the above theorem induces the following result in the context of labeled embeddings.

Corollary 3. Let G be a graph of order n, different from K 3 ∪2K 1 and K 4 ∪4K 1 . If |E(G)| ≤ n -2, then λ 2 (G) ≥ ⌊ n 3 ⌋ + n mod 3
In the next section, we will show that the lower bound of Corollary 3 can be improved (including for the excluded graphs).

Main result

We first define the notion of good permutation for a graph.

Definition. Given a graph G, a permutation σ on V (G) is said to be good if

• σ is an embedding of G,
• σ has at least ⌊ 2n 3 ⌋ cycles,

• every cycle of σ is of order at most 2, i.e., for every pair of distinct vertices

u, v of G, if σ(u) = v, then σ(v) = u.
The following lemma will be useful in a special case of our main result.

Lemma 4. For k > 0, the graph kC 3 ∪ 2K 1 admits a good permutation.

Proof. According to the diagram below (Figure 1), first remark that 3C 3 admits a good permutation. Indeed, the numbers inside the vertices correspond to a labeled embedding with 6 labels, with at most two vertices sharing the same label. 

G ∈ {2K 1 , 3K 1 , K 1 ∪ K 2 , 2K 2 , K 1,2 ∪ K 1 }.
In each case, one can quickly check that there exist good permutations with at least two cycles. The property still holds for n = 5, where

G ∈ {K 3 ∪ 2K 1 , K 1 ∪ K 1,3 , K 2 ∪ K 1,2 , P 4 ∪ K 1 }.
Good permutations with at least three cycles can be found. Now let n ≥ 6 and assume there exists a good permutation for every (n T or H admits a leaf-parent of degree 2. By symmetry, we may assume that T admits a leaf-parent say x 1 , of degree 2. Let x 0 and x 2 be the two vertices of T such that (x 0 , x 1 , x 2 ) is an induced path of T and x 2 is an end vertex. Let y 1 be an end vertex of H and y 0 its parent. Now consider the graph

′ , n ′ - 2)-graph of order n ′ < n with n ′ ≥ 3. Since G is an (n, n -2)-graph,
G ′ = G -{x 1 , x 2 , y 1 }. Clearly, G ′ is an (n -3, n -5)-graph with n -3 ≥ 3.
Hence the induction hypothesis guarantees the existence of a good permutation σ ′ for G ′ . This permutation can be extended to a good permutation σ for G as follows:

σ(x 1 ) = { y 1 if σ ′ (x 0 ) = x 0 , x 1 otherwise. σ(x 2 ) = { x 2 if σ ′ (x 0 ) = x 0 , y 1 otherwise. σ(y 1 ) = { x 1 if σ ′ (x 0 ) = x 0 , x 2 otherwise. σ(v) = σ ′ (v) if v ∈ V (G ′ )
Since the number of cycles of σ G-G ′ equals two, and they all are of length at most 2, it ensures that σ is a good permutation for G.

Subcase 1.2:

T and H do not have any leaf-parent of degree 2 and T is a star. Let ℓ be a leaf of H and v be its neighbour (of degree at least 3). Let u be the unique vertex of degree at least 3 in T . Now consider the graph

G ′ = G -T -{ℓ, v}.
Clearly, G ′ is an (k, j)-graph with k -2 ≥ j and k ≥ 2. Hence the induction hypothesis guarantees the existence of a good permutation σ ′ for G ′ . This permutation can be extended to a good permutation σ for G by setting

σ(u) = v, σ(v) = u, σ(ℓ) = ℓ and σ(l i ) = l i for all leaf l i of T .
Subcase 1.3: T and H do not have any leaf-parent of degree 2 and T is not a star. Hence T admits two leaf parents, say u and t. Let u 1 , . . . , u k (resp. t 1 , . . . , t k ′ ) be the leaves adjacent to u (resp. t), with k, k ′ ≥ 2. Let ℓ be a leaf of H and v be its neighbour (of degree at least 3). Let x be the non-leaf neighbour of u (it exists since T is not a star and x = t if T is a bistar). See Figure 3 for a better view of these notations. Without loss of generality, we will assume k ≥ k ′ .

u 2 t t 2 t 1 x u k u 1 u t k ′ v l T H Figure 3. Subcase (1.3) If k ≥ 3, consider the graph G ′ = G -{u, u 1 , . . . , u k , t 1 , ℓ}. Hence G ′ is a (n -k -3, n -k -5)-graph satisfying |V (G ′ )| ≥ 3 (since |V (H)| ≥ 4)
, and the induction hypothesis can be applied. Let σ ′ be a good permutation for G ′ . We now define a permutation σ for G as follows:

σ(u) = { t 1 if σ ′ (x) = v, ℓ otherwise. σ(t 1 ) = { u if σ ′ (x) = v, u 1 otherwise. σ(u 1 ) = { ℓ if σ ′ (x) = v, t 1 otherwise. σ(ℓ) = { u 1 if σ ′ (x) = v, u otherwise. σ(u i ) i>1 = u i σ(v) = σ ′ (v) if v ∈ V (G ′ )
This permutation remains good as (k + 1) cycles of lengths 1 or 2 and (k + 3) vertices have been added to σ ′ et G ′ respectively.

If k = k ′ = 2, we first consider the case where x = t (i.e., T is a bistar).

Consider the graph G ′ = G -{u 1 , t 1 , ℓ} and proceed by induction as above. Since ut is an edge of T , we have σ ′ (u) ̸ = σ ′ (t) and u and t cannot be fixed points simultaneously. Therefore, at least u 1 or t 1 can be set as a fixed point in σ and the two remaining vertices in {u 1 , t 1 , ℓ} can be images of each other (thus implying that σ is good).

In the case where x ̸ = t, consider the graph G ′ = G -{u, u 1 , u 2 , t 1 , t 2 , ℓ}, and proceed as previously with the following permutation:

σ(u) =      t 1 if σ ′ (t) = t, t 1 if σ ′ (t) ̸ = t and σ ′ (x) = v, ℓ otherwise. σ(t 1 ) =      u if σ ′ (t) = t, u if σ ′ (t) ̸ = t and σ ′ (x) = v, t 1 otherwise. σ(t 2 ) =      ℓ if σ ′ (t) = t, t 2 if σ ′ (t) ̸ = t and σ ′ (x) = v, t 2 otherwise. σ(ℓ) =      t 2 if σ ′ (t) = t, ℓ if σ ′ (t) ̸ = t and σ ′ (x) = v, u otherwise. σ(u i ) i=1,2 = u i σ(v) = σ ′ (v) if v ∈ V (G ′ )
One can easily check that σ remains good since 6 vertices and at least 4 cycles have been added to σ ′ .

Case 2: |V (T )| ≥ 3 and H = K 1 .

Subcase 2.1:

There exists a leaf-parent, say x, of degree at least 3. Let ℓ be one of its leaves, and y be the unique vertex of H. Now consider the graph

G ′ = G -{x, ℓ, y}, which satisfies |E(G ′ )| ≤ |V (G ′ )| -2.
Hence it admits a good permutation σ ′ by induction hypothesis. A good permutation σ of G can thus be extended from G ′ by setting σ(x) = y, σ(y) = x and σ(ℓ) = ℓ.

Subcase 2.2: All the vertices of T which are adjacent to leaves are of degree 2.

Let x 0 be such a vertex (it exists since |V (T )| ≥ 3), let ℓ 1 be its adjacent leaf, and x 1 its second neighbor. Now let ℓ 2 be a distinct leaf from ℓ 1 in T , and x 2 be its neighbor. If

x 1 ̸ = ℓ 2 and x 1 ̸ = x 2 , then consider G ′ = G -{x 0 , ℓ 1 , ℓ 2 }, which
admits a good permutation σ ′ by induction hypothesis. Then set σ G ′ = σ ′ and

• If σ ′ (x 1 ) = x 1 : σ(x 0 ) = ℓ 2 , σ(ℓ 2 ) = x 0 , and σ(ℓ 1 ) = ℓ 1 . • If σ ′ (x 1 ) ̸ = x 1 : σ(x 0 ) = x 0 , σ(ℓ 2 ) = ℓ 1 , and σ(ℓ 1 ) = ℓ 2 .
One can now easily check that σ is good for Such a vertex exists since n ≥ 6. Consider the graph G ′ = G -{x 0 , x 1 , y}. By induction hypothesis, there exists a good permutation for G ′ , say σ ′ . We set

G. If x 1 = ℓ 2 or x 1 = x 2 ,
σ(x 0 ) = y, σ(y) = x 0 , σ(x 1 ) = x 1 and for every vertex v ∈ V (G ′ ), σ(v) = σ ′ (v),
which defines a good permutation for G. (c) G is the sum of C m (for some m ≥ 4) and two isolated vertices. If m < 8, then Figure 5 shows labeled embeddings corresponding to good permutations. x 2 , σ(x 6 ) = z, and σ(z) = x 6 . For the same reasons as in case (4.2.b), this permutation is good for G.

σ(x 1 ) =      x 1 if σ ′ (x) ̸ = x and σ ′ (y) ̸ = y, x 4 if σ ′ (x) = x, z otherwise. σ(x 2 ) = { x 4 if σ ′ (x) ̸ = x and σ ′ (y) ̸ = y, x 2 otherwise. σ(x 3 ) =      x 3 if σ ′ (x) ̸ = x and σ ′ (y) ̸ = y, z if σ ′ (x) = x, x 4 otherwise. σ(x 4 ) =      x 2 if σ ′ (x) ̸ = x and σ ′ (y) ̸ = y, x 1 if σ ′ (x) = x, x 3 otherwise. σ(z) =      z if σ ′ (x) ̸ = x and σ ′ (y) ̸ = y, x 3 if σ ′ (x) = x, x 1 otherwise. 4 C 4 ∪ 2K 1

Conclusion

Theorem 5 gives a first lower bound about the labeled embedding number of (n, n -2)-graphs. Yet, the computation of the exact value remains an open question, as this bound is not exact for many families of (n, n -2)-graphs. As an example, consider a cycle C n without two edges. Its labeled packing number is at least the one of C n , (i.e., ⌊3n/4⌋). Yet, for any large value of n, we can find an (n, n -2)-graph for which the bound is tight. Indeed, consider G as an union of k disjoint triangles with K 2 ∪ K 1 . The size of a maximum independent set for this graph equals k+2. According to Lemma 1, we have that λ 2 (G) = 2k+2 = ⌊2n/3⌋.

In addition, we mention that this result can be used to study the labeled embedding of (n, n -1)-graphs. One can show for example that the same bound is valid for the union of cycles with a single tree.
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 1 Figure 1. Good permutation for 3C 3

Figure 2 .Theorem 5 . 3 ⌋

 253 Figure 2. Good permutation for 2C 3 ∪ 2K 1For k = 3, consider the permutation σ corresponding to the labeled embedding of Figure1, and extend it to G by setting σ(u) = u and σ(t) = t. Then σ remains good for G. For k > 3, we can now conclude to the existence of a good permutation for G by pairing good permutations of 3C 3 with a good permutation of rC 3 ∪ 2K 1 where r is in {1, 2, 3}.

Case 1 :

 1 at least two of its connected components are trees. Denote by T and H two trees of G of highest orders such that |V (T )| ≥ |V (H)|. In what follows, we choose to consider T and H as rooted trees. We consider the following four cases: |V (T )| ≥ 3 and |V (H)| ≥ 3. Two subcases are considered as follows: Subcase 1.1:

Case 3 :

 3 then T is either a P 3 or a P 4 . Since n ≥ 6, it implies that G admits at least another connected component which is an (n, n -1) or an (n, n) connected graph with n ≥ 2 (since |E(G)| ≥ 4, there exists at least one edge in G -T ). In other words, this component is either a tree T ′ , or a tree with an edge T ′ ∪ {e}. Let ℓ 3 be a leaf in T ′ . Note that we do not care whether ℓ 3 is adjacent to e or not. By considering G ′ = G -{x 0 , ℓ 1 , ℓ 3 } together with the above permutation where ℓ 2 is replaced by ℓ 3 , we find a good permutation for G. |V (T )| = 2. Let T = (x 0 , x 1 ) and let y be a vertex of degree 2 of G.

Case 4 :Subcase 4 . 2 :

 442 |V (T )| = 1. In this case, G contains isolated vertices (at least two) and non-tree connected components. Two subcases are considered as follows: Subcase 4.1: G has a vertex, say x, of degree at least 3. Let y and z be two isolated vertices of G. Consider the graph G ′ = G -{x, y, z}. The induction hypothesis guarantees the existence of a good permutation σ ′ for G ′ . By puttingσ(x) = y, σ(y) = x, σ(z) = z and for every vertex v ∈ V (G ′ ), σ(v) = σ ′ (v), weget a good permutation for G. The complementary subcase to (4.1), i.e., G is the sum of two isolated vertices and an union of cycles. This case is solved as follows:(a) G = kC 3 ∪ 2K 1 for some k ≥ 1. Lemma 4 allows us to conclude.(b) G has at least one cycle, say H, of order at least 4, and one cycle, say Q, of order at least 3: let (x 1 , x 2 , x 3 ) be an induced path of H, let x 4 be a vertex of Q and z, t be the two isolated vertices of G. Denote by x (resp. y) the neighbor of x 1 (resp. x 3 ) different from x 2 . Note that we may have x = y in the case H = C 4 . See Figure4for a graphical depiction of these notations.
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 4 Figure 4. Case (4.2.b)

Figure 5 .

 5 Figure 5. Case C m ∪ 2K 1 for m = 4, . . . , 7