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Abstract  20 

Characterization of microbial communities in stressful conditions at a field level is 21 

rather scarce, especially when considering fungal communities from aboveground habitats. We 22 

aimed at characterizing fungal communities from different poplar habitats at a Hg-contaminated 23 

phytomanagement site by using Illumina-based sequencing, network analysis approach and 24 

direct isolation of Hg resistant fungal strains. The highest diversity estimated by the Shannon 25 

index was found for soil communities, which was negatively affected by soil Hg concentration. 26 

Among the significant correlations between soil OTUs in the co-occurrence network, 80 % 27 

were negatively correlated revealing dominance of a pattern of mutual exclusion. The fungal 28 

communities associated with Populus roots mostly consisted of OTUs from the symbiotic guild, 29 

such as members of the Thelephoraceae, thus explaining the lowest diversity found for root 30 

communities. Additionally, root communities showed the highest network connectivity index, 31 

while rarely detected OTUs from the Glomeromycetes may have a central role in the root 32 

network. Unexpectedly high richness and diversity were found for aboveground habitats, 33 

compared to the root habitat. The aboveground habitats were dominated by yeasts from the 34 

Lalaria, Davidiella and Bensingtonia genera, not detected in belowground habitats. Leaf and 35 

stem habitats were characterized by few dominant OTUs such as those from the 36 

Dothideomycete class producing mutual exclusion with other OTUs. Aureobasidium pullulans, 37 

one of the dominating OTUs, was further isolated from the leaf habitat, in addition to 38 

Nakazawaea populi species, which were found to be Hg resistant. Altogether, these findings 39 

will provide an improved point of reference for microbial research on inoculation-based 40 

programs of tailings dumps.  41 

Keywords :  Hg-enriched tailings dump, Hg resistance, internal transcribed spacer 42 

metabarcoding, poplar microbiome, Illumina MiSeq, network. 43 
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Introduction 44 

Plants in natural and agricultural settings are colonized by a wide range of microbes on both 45 

their outer and inner surfaces [1]. Nevertheless, the scientific understanding of the microbial 46 

communities of woody species is quite limited, especially for microbes associated with 47 

aboveground tissues. Many tree tissues may indeed represent distinct microbial habitats, such 48 

as the rhizosphere, the root and leaf endospheres, the episphere of the phyllosphere and fruits, 49 

flowers, leaves, buds, stems, branches or even the trunk [2, 3]. Moreover, some of the 50 

microorganisms that colonize these habitats establish strong links with their host, whose 51 

disruption may result in loss of host fitness [4]. For instance, a certain groups of mycorrhizal 52 

fungi that form symbiotic association with the root system, are of a importance for tree nutrition 53 

and health, as they play key roles in the carbon and nitrogen cycles [5]. In the phyllospheric 54 

habitat, archaea, bacteria, filamentous fungi and yeasts have been identified , although less work 55 

has been done on the two latter groups of microorganisms [6]. Studies are increasingly 56 

indicating that fungi influence the fitness of their host plants, either negatively by acting as 57 

pathogens [7], or positively by increasing the stress tolerance of the plant [8], shaping insect 58 

herbivory [9] or reducing the infection of plant tissues by pathogens [10]. 59 

 Trees, as perennials, are made of a variety of habitats that may host contrasted microbial 60 

communities, which composition and diversity may vary with season, age, species, climatic 61 

conditions. Therefore, they are relevant models for studying the structure and composition of 62 

microbial communities, but until recently, our knowledge has been limited due to the difficulty 63 

of adequately describing microbial communities with classical culture-dependent methods. The 64 

recent development of massively parallel 454 pyrosequencing [11, 12] and ion torrent 65 

sequencing [13], combined with DNA multiplexing, provides an opportunity to explore parts 66 

of the microbiome that are otherwise unreachable through culture-dependent approaches [14]. 67 

Microbiomes associated with belowground and aboveground tree habitats have been screened 68 
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at a large spatial scale using these technologies in some cases, and several studies revealed the 69 

potential of the host tree genotype and environmental conditions to induce the establishment of 70 

specific microbial communities [11, 15–17]. More recently, new high-throughput technologies, 71 

such as the Illumina sequencing platform, have become available, showing a far greater 72 

sequencing capacity, producing millions of sequences, which leads to much greater depth of 73 

coverage of microbial [18]. It is now possible to examine the full extent of the richness and 74 

diversity exhibited by microorganisms in different habitats. However, the quantity of data 75 

reaches a critical point at which previous approaches are insufficient to decipher the structure 76 

of complex microbial communities. Network analysis of significant taxon co-occurrence 77 

patterns may help to decipher the structure of complex microbial communities among various 78 

habitats. Software such as CoNet has been developed and optimized specifically to detect 79 

significant non-random patterns of co-occurrence (co-presence and mutual exclusion) using a 80 

Reboot method to determine the significance of each associations in the network [19]. Network 81 

analysis requires lot of samples replication to obtained strong statistical analysis leading to 82 

trustable correlations. This computation method combined with adapted experimental design 83 

and with the tremendous amount of metadata obtained by high throughput sequencing 84 

technologies gives us the opportunity to explore communities with a new global tool to revealed 85 

OTUs importance in the community.  86 

Within the growing environmental pollution paradigm, poplar is a keystone tree used as 87 

feedstock for biofuel production and as a biological tool for phytoremediation and revegetation 88 

[20]. The term phytoremediation refers to the use of plants and associated microorganisms to 89 

eliminate, attenuate or restrain environmental damage or threats posed by a contaminant. Hg is 90 

a contaminant classified within the quantitatively most important pollutant groups known as 91 

trace elements (TEs). It is highly persistent in the soil environment and is classified as a 92 

“priority hazardous substance” by the Agency for Toxic Substances and Disease Registry 93 
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(ATSDR) due to its toxicity, mobility, and long residence time in the atmosphere (Available 94 

online http://www.atsdr.cdc.gov/SPL/index.html). In a previous paper, we focused on 95 

characterizing the microbial communities that had naturally recolonized the sediment of a chlor-96 

alkali tailings dump after sediment deposition had ceased. We further demonstrated that most 97 

of the Hg detected in the aboveground parts of Salicaceae trees collected at that site had entered 98 

the poplar leaves through exclusively through an atmospheric pathway [21]. However, the role 99 

of aboveground and belowground microbial populations in Hg-contaminated environments 100 

remains unknown, and there is a need for a holistic ecosystem-level understanding of microbial 101 

communities associated with poplar [22].  102 

In this study, we collected soil and tree samples from the belowground and aboveground 103 

habitats of poplars grown as a short-rotation coppice (SRC) plantation at a Hg-contaminated 104 

site, and performed isolation of fungal strains. We combined fungal community analyses using 105 

Illumina-based sequencing with network analysis to investigate the composition and assembly 106 

of fungal communities in these samples. We expected that we would observe clear differences 107 

in the relative abundance and composition of fungal groups across poplar habitats that may 108 

improve our understanding of the microbial ecology of these environments. Providing key 109 

information on the fungal communities of belowground and aboveground will hopefully be of 110 

use for practitioners of bioremediation approaches who often lack of important information 111 

such as the effect of the pollutants (in this case heavy Hg) on the microbial communities that 112 

surround the flora and fauna. This knowledge may benefit efforts to mitigate the environmental 113 

impact of tailing management facilities. 114 

 115 

Materials and Methods 116 

Site description and sampling design 117 

http://www.atsdr.cdc.gov/SPL/index.html
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The location and history of the site have been fully described elsewhere [13, 23] briefly, 118 

the site investigated in the current study was exploited as a sediment storage area from the 119 

1950s to 2003. The sediments originated from effluents produced during electrolytic processes 120 

associated with a Hg cell chlor-alkali process. A poplar monoclonal plantation of the cultivar 121 

Skado (P. trichocarpa x P. maximowiczii) was implemented in 2011 as a short-rotation coppice 122 

(SRC, 2200 stems/ha). The experimental design thus guaranteed minimum host variation to 123 

focus on interactions between microorganisms in various tree habitats. Sampling was carried 124 

out in summer 2014, consisting of collecting soil, root, stem and leaf samples from six random 125 

trees, selected in three replicated plots (2 trees per plot). Soil samples composed of bulk soils 126 

from under the canopy of the trees were sieved to <4 mm. After the removal of litter, the roots 127 

were collected from the upper 20 cm layer of soil from under the canopy of the trees. They were 128 

separated from the soil via 2 ultra-pure water baths, and the smallest roots were selected and 129 

separated from larger roots by cutting them with a scalpel. Branch samples were collected from 130 

poplar branches of axe 2 (0.8 to 1.2 cm diameter) at an ca. 5 m height, corresponding to the 131 

half-crown of the poplar. Leaf samples were composed of 3 leaves collected from the above 132 

branches. All samples were obtained over a one-day period to reduce any heterogeneity 133 

imparted by climatic conditions. The samples were either freeze-dried and stored at -20°C for 134 

molecular analysis or dried at ambient temperature (24°C ± 1) for physico-chemical analyses. 135 

Thus, we considered the belowground and aboveground habitats to include both endophytic 136 

and epiphytic fungi. 137 

Molecular methods 138 

Within 2 weeks after sampling, the stored samples were freeze-dried (RP2V, Group 139 

S.G.D. France) and ground into a homogenous powder in a Mixer Mill for 3 min at 30 Hz 140 

(model MM400; Retsch Inc., Newtown, Pennsylvania, USA). Environmental DNAs were then 141 

extracted using a modified hexadecyltrimethylammonium bromide (CTAB) 142 
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chloroform/isoamyl alcohol protocol [24, 25] for root, stem and leaf samples, while 143 

environmental DNA from the soil samples was extracted with the PowerSoil DNA isolation Kit 144 

following the manufacturer’s instructions (MoBio Laboratories, Inc., Carlsbad, CA USA). A 145 

purification step was added to all samples using the Power Clean® Pro DNA Clean-Up kit 146 

(MoBio Laboratories, Inc., Carlsbad, CA USA) to improve the quality of the isolated DNA. 147 

DNA quality and quantity were assessed via agarose gel electrophoresis and with the Quant-148 

iT™ PicoGreen® dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA) using an FLX-Xenius 149 

spectrofluorometer (SAFAS, Monaco). Equimolar DNA pools were produced and adjusted to 150 

10 ng/µl. Sequencing of the fungal ITS1 region [17, 26] was performed with the Illumina MiSeq 151 

platform (Microsynth AG, Switzerland). PCR amplification of the partial ITS gene was 152 

performed using the fungi-specific primers ITS1F (CTTGGTCATTTAGAGGAAGTAA) and 153 

ITS2 (GCTGCGTTCTTCATCGATGC) [27]. These primers target a short portion of the fungal 154 

ITS region, resulting in an amplicon of small size (~ 300 bp) appropriate for Illumina 155 

sequencing.  156 

 157 

Bioinformatics and statistical analysis of diversity 158 

Sequence de-multiplexing and bioinformatics processing of the datasets were performed 159 

using the PIPITS pipeline [28]. PIPITS is an automated bioinformatics pipeline dedicated for 160 

fungal ITS sequences which incorporates ITSx to extract subregions of ITS and exploits the 161 

latest RDP Classifier to classify sequences against the curated UNITE fungal data set. Briefly, 162 

all raw read pairs were joined at the overlapping region and then quality filtered, chimera 163 

filtered, singleton filtered, contaminant filtered, merged and clustered into operational 164 

taxonomic units (OTUs), defined at 97% sequence similarity. We excluded singleton OTUs to 165 

avoid technical artifacts and overestimation of the number of species [29, 30]. The taxonomic 166 

assignment of OTUs was performed using the UNITE [31] database at a 97% similarity 167 
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threshold. The samples were rarefied to 26 671 sequences. The Shapiro test and the Bartlett test 168 

were employed to check the normality and homoscedasticity of the data, respectively. Our data 169 

were systematically verified for non-normality and homoscedasticity, and the effects of the 170 

compartment on the alpha diversity estimates for the fungal assemblage were examined using 171 

the Kruskal-Wallis test. A number of alpha diversity indices (OTU richness, Chao estimation, 172 

Shannon diversity index, inverse of the Simpson diversity index, measure of evenness based on 173 

the Shannon index and coverage) were calculated using MOTHUR [32]. 174 

The coverage calculator returns Good's coverage for an OTU definition. Coverage was 175 

calculated as: C=[1-(n/N)]*100 (%), where n is the number of OTUs, and N is the number of 176 

sequences. 177 

A 2-dimensional non-metric multi-dimensional scaling (NMDS) was calculated using 178 

the Bray–Curtis method (k=3) on the basis of standardized (Wisconsin double) and square root 179 

transformation of OTU abundance using the “metaMDS” function in the Vegan package in R. 180 

We PERformed a single Multivariate ANalysis Of the VAriance (PERMANOVA), run with 181 

1,000 permutations, using the “anosim” function in the Vegan package in R and employed 182 

ANalysis Of SIMilarities (ANOSIM) to obtain P-values (i.e., significance levels) and the R 183 

value (i.e., the strength of the factors on the samples). These results were paired with a heatmap 184 

of Spearman's correlations between the relative abundances created with “heatmap.2” from the 185 

gplots package. The numbers of OTUs that were shared between habitats were visualized using 186 

Venn diagrams implemented in Mothur with the function “venn”. We considered an OTU to be 187 

present in a compartment if that OTU was present in at least 25% of the samples from the 188 

habitats. Correlations between the diversity parameters and the measured Hg parameters were 189 

calculated based on Spearman’s product moment correlation coefficient (R²). Riverplots were 190 

created with the “riverplot” function in the riverplot R package. Rarefaction curves were 191 

generated with the “rarecurve” function of the Vegan package in R. The bioinformatic analysis 192 



9 
 

was conducted using a computer with the following specifications: Ubuntu, Intel®CoreTMi7-193 

4790 CPU @ 3.60GHz x8, 16GB RAM. 194 

 195 

Network analysis 196 

To construct a network and simplify visualization and interpretation, a separate OTU abundance 197 

table was derived using the aforementioned pipeline, but with a different OTU clustering 198 

threshold (90%) [33]. Following Weiss and collaborators [34] extremely rare OTUs were 199 

filtered out; i.e., for each habitat, all OTUs appearing in less than 25% of samples were 200 

discarded, and all OTUs showing a relative abundance of < 0.01% of the total sequences were 201 

also discarded. Network construction was performed with the plugin CoNet (v. 1.1.b) [35] in 202 

Cytoscape software (v. 3.3.0) [36] following the protocol described by Faust and collaborators 203 

[37]. Briefly, for each of the four similarity measures (Bray–Curtis and Kullback–Leibler 204 

dissimilarity, Pearson and Spearman correlation), the distribution of all pair-wise scores was 205 

computed. Given these distributions, initial thresholds were selected such that each measure 206 

contributed 1,000 positive and 1,000 negative edges to the initial network. For each measure 207 

and each edge, 1,000 renormalized permutation and bootstrap scores were computed, followed 208 

by the measure-specific P-value. Any edges exhibiting scores outside the 95% confidence 209 

interval defined by the bootstrap distribution or that were not supported by all measures were 210 

discarded as well [34]. The networks were explored and visualized with Cytoscape. Based on 211 

the results of Berry and Widder (2014)[38], we have chosen to use the degree as a keystone 212 

proxy. 213 

Hg analysis in the substrate and biomass  214 

Hg was measured in the soil and poplar samples with an AMA-254 cold vapor atomic 215 

absorption (CV-AAS) Hg analyzer (Altec Co., Czech Republic), using the standard conditions 216 
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recommended by the manufacturer (120 s drying, 150 s heating, 45 s cooling). The validity of 217 

the analytical method was checked using the certified reference material (CRM) Oriental  218 

Basma Tobacco Leaves (INCT-OBTL-5), with a certified Hg content of 20.9 ± 1.3 ng/g DM 219 

[39], and quality controls were regularly performed as described elsewhere [23]. 220 

Hg resistant yeast isolation and Hg resistance 221 

Leaves were collected from the field experimental site described above during summer 2015 222 

and 2016, and immediately brought to the laboratory. The yeast were isolated using an 223 

enrichment technique on a malt extract medium adapted from a previously described method 224 

[40]. Briefly, intact leaves were incubated for 48 hr at 25°C and 200 rpm in an enrichment 225 

medium (at pH 3.7 adjusted with lactic acid) containing 30 g/l malt, 5 g/l peptone, 5 ml/l filtered 226 

leaf extract, and increasing amounts of HgCl2 at final concentrations of 0, 2, 5, 10 or 20 µM. 227 

Hundred µl of leaf samples were then plated on malt extract agar (12 g/l malt) and PDA (Potato 228 

Dextrose Agar, sigma) media, supplemented with the corresponding HgCl2 concentrations. The 229 

number of growing yeast was expressed in colony forming units (CFU) per ml. The strains 230 

growing at 10 µM Hg were purified, and resuspended in liquid malt extract or PDA media 231 

supplemented with 35% v/v glycerol and maintained at -80°C for further analysis.  232 

Isolated strains were grown in 8 ml of growth medium for 48h at 27°C on a shaker table 233 

(200 rpm). After centrifugation, DNA was extracted from the pellet with the EZNA Bacterial 234 

DNA kit (OMEGA bio-tek, USA) in accordance with the manufacturer’s instructions. The 235 

D1/D2 domain of LSU rRNA was amplified using a PCR with the universal primers ITS-1 (59- 236 

TCCGTAGGTGAACCTGCG-39) and NL-4 (59-GGTCCGTGTTTCAAGACGG- 39) [41]. 237 

All the ITS PCR products were sequenced by pyrosequencing 454 (Genewiz Beckman Coulter 238 

Cenomics, United Kingdom). DNA sequences were edited with BioEdit software and screened 239 
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against the GenBank database using BLASTn tool of the NCBI site 240 

(http://www.ncbi.nlm.nih.gov/).  241 

 Minimal inhibitory concentrations (MIC) for Hg were determined for each isolated 242 

strains. Microtitration plates (96 wells) were prepared using two-fold dilutions of Hg in YPD 243 

liquid medium, from a starting concentration of 256 µM down to 0 µM. Growth was measured 244 

by spectrophotometry at DO595 after 24h and 48h of incubation at 25°C. 245 

 246 

Results  247 

Illumina MiSeq sequencing revealed high diversity of the leaf microbiome 248 

Following total genomic DNA extraction from soil and poplar samples, amplicons of the 249 

ITS1 region were generated, and a total of 8,345,173 paired-end reads were obtained through 250 

Illumina MiSeq sequencing (Table S1). Among the 24 samples from each habitat, those 251 

exhibiting a low sequence count were eliminated from the rest of the analysis. Thus, a total of 252 

7,519,254 filtered and non-chimeric fungal sequences constituted our final processed dataset, 253 

representing 90% of the initial post-sequencing reads, spread among 6,100 non-singleton OTUs 254 

defined by representative DNA sequences with sizes of  101 to 363 bp (mean = 181.9 bp). After 255 

subsampling, our dataset contained 26,672 reads per sample, distributed in 5,565 non-singletons 256 

OTUs. 257 

Rarefaction curve analysis, which assesses OTUs richness as a result of sampling, showed 258 

that all samples approached an asymptote, revealing that the overall fungal diversity was well 259 

represented (Fig. S1). Moreover, the measured Good’s coverage values (an estimator of 260 

completeness of sampling) were greater than 99% for each sample type (Table S1) and in every 261 

sample, highlighting good overall sampling. Coverage, richness, and diversity, estimates were 262 
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calculated for each dataset (Table 1). The Chao1 estimator of Mothur, indicated good sample 263 

OTUs richness throughout. The Shannon and Simpson diversity indices, measurements of 264 

overall diversity, indicated a diverse microbiota. More specifically, the diversity and richness 265 

estimates were always significantly higher in the soil samples, followed by the leaf, stem and 266 

root samples (Table 1).  267 

 A permutation test confirmed that the habitat (R² = 0.58) explained most of the variance 268 

in the fungal community, whereas variations between plots were negligible and not statistically 269 

significant (Table S2). The importance of the habitat factor was further corroborated through 270 

visualization in a NMDS plot (Fig. 1), and significant dissimilarity between all habitats was 271 

confirmed with the ANOSIM test (Table S3). The Bray-Curtis method indicated that the 272 

belowground and aboveground communities at the Tavaux site were well separated (Fig. 1a). 273 

Considering the global analysis, NMDS plots revealed that root samples exhibited the greatest 274 

between-sample variation (Fig. 1a). Furthermore, we showed that stem and leaf samples 275 

clustered closely together (Fig. 1a), although the NMDS plot of the belowground (Fig. 1b) or 276 

aboveground (Fig. 1c) communities alone showed a net clustering of each sample type in these 277 

two communities. The leaf data presented less scattering than the stem data (see sizes of ellipses 278 

in Fig. 1c). Overall, these data indicated higher homogeneity of the OTUs distribution in 279 

aboveground samples, while the soil and root samples were less homogeneous.  280 

In the Venn diagram analysis, the sums of the total observed fungal OTUs in the four 281 

sampled habitats of the Skado plots were 1567, 609, 918 and 948 for the soil, root, stem and 282 

leaf samples, respectively (Fig. 2). Overall, 151 OTUs (5.9%) were shared by all habitats. The 283 

OTUs that were unique represented 52% and 35% of the belowground and aboveground 284 

samples, respectively (Fig. 2). The soil samples exhibited the highest proportion of unique 285 

OTUs (36.6%), followed by the leaf (10.2%) and stem (10.4%) samples. Conversely, the root 286 

samples shared > 97% of OTUs with another habitat, mostly with the soil habitat (>84.7% of 287 
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the root OTUs were detected in soil samples). Our data also revealed that in the poplar 288 

phyllosphere, 51% of OTUs were shared by the stem and leaf samples, whereas 31% of OTUs 289 

were shared by the soil and root samples.  290 

Symbiotic fungi dominated the belowground habitats, whereas yeast-like fungi dominated 291 

the aboveground habitats 292 

The fungal communities across all four habitats were dominated by the phylum 293 

Ascomycota (54.6% of total relative abundance on average), while Basidiomycota represented 294 

a smaller portion of the communities (23.5%) (Fig. 3). However, the 295 

Ascomycota/Basidiomycota ratios were significantly higher in the aboveground samples than 296 

the belowground samples (Kruskal-Wallis Χ2 = 36.7; P < 1.4 × 10-9). The largest proportion of 297 

Basidiomycota was found in the root samples (Kruskal-Wallis Χ2= 56.1; P < 4.0 × 10-12). These 298 

ratios are very similar to those identified with 454 sequencing technology in fungal 299 

communities associated with broadleaf trees [42]. Few members of the known arbuscular 300 

mycorrhizal fungi (AMF) phylum Glomeromycota were detected in the soil (0.25%, 92 OTUs 301 

from the Entrophospora and Rhizophagus genera) and root (1.30%, 90 OTUs from the 302 

Entrophospora and Rhizophagus genera) samples collected under poplars. OTUs assigned to 303 

mycorrhizal species were virtually absent from all aboveground samples. Members of the 304 

Zygomycota phylum were almost exclusively found in soil samples (5.2%, for 65 OTUs), 305 

mostly associated to Mortierella species. 306 

Across all samples, we detected a total of 21 distinct fungal classes, which were 307 

unequally distributed, suggesting substantial differences between sampled habitats (Fig. 4). The 308 

belowground habitats were enriched with Agaricomycetes (Kruskal-Wallis Χ2= 69.8; P < 2.2 × 309 

10-16), Pezizomycetes (Kruskal-Wallis Χ2= 69.5; P < 2.2 × 10-16) and Sordariomycetes (Kruskal-310 

Wallis Χ2= 67.9; P< × 2.2 10-16). Moreover, the root samples contained significantly more 311 

Agaricomycetes (Kruskal-Wallis Χ2= 16.3; P < × 5.4 10-5), Pezizomycetes (Kruskal-Wallis Χ2= 312 
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25.4; P < × 4.6 10-7) and Glomeromycetes (Kruskal-Wallis Χ2= 17.6; P < × 2.8 10-5) but 313 

significantly less Sordariomycetes and Zygomycetes than the soil samples. The aboveground 314 

habitats were enriched in Dothideomycetes (Kruskal-Wallis Χ2= 65.7; P < 5.4 × 10-16) and 315 

Taphrinomycetes (Kruskal-Wallis Χ2= 69.8; P < 2.2 × 10-16) from the Ascomycota phylum. 316 

While some Dothideomycetes members were detected in root and soil samples, 317 

Taphrinomycetes were virtually absent from all belowground samples. Although stem and leaf 318 

sample habitats contained members of Basidiomycota classes, belonging to 319 

Agaricostillbomycetes (Kruskal-Wallis Χ2= 69.8; P < 2.2 × 10-16), Exobasidiomycetes (Kruskal-320 

Wallis Χ2= 69.8; P < 2.2 × 10-16), Microbotryomycetes (Kruskal-Wallis Χ2= 69.7; P < 2.2 × 10-321 

16) and Tremellomycetes (Kruskal-Wallis Χ2= 69.0; P < 2.2 × 10-16), these classes were virtually 322 

absent from all belowground samples. The high proportion of classes of unassigned fungi in the 323 

stem habitat (63.5%) highlights the need for additional investigations of the diversity of the 324 

fungi living in this particular habitat.  325 

The assignment tools revealed that root and soil habitats were dominated by OTUs 326 

identified as Hymenogaster griseus, Thelephoraceae and Hebeloma hiemale, all of which 327 

belong to Agaricomycetes from the Basidiomycota phylum (Figs. 3 and 5). However, Hebeloma 328 

(Kruskal-Wallis Χ2= 8.7; P < × 10-100.003) and Thelephoraceae (Kruskal-Wallis Χ2= 48.5; P < 329 

1.7 × 10-10) OTUs dominated the root samples (Figs. 3 and 5), whereas Hymenogaster OTUs 330 

(Kruskal-Wallis Χ2= 4.3; P < 0.04-10) were the most abundant in soil samples (Fig. 3 and Fig. 331 

5). By contrast, the aboveground samples were dominated by Ascomycota OTUs, mostly 332 

belonging to 9 genera (Alternaria, Aureobasidium, Bensigtonia, Lalaria, Davidiella, 333 

Sphaerulina, Rhodotorula, Cryptococcus, Taphrina). The Lalaria (Kruskal-Wallis Χ2= 29; P < 334 

1.7 × 10-8) and Davidiella (Kruskal-Wallis Χ2= 33; P < 9.2 × 10-9) genera were most abundantly 335 

found in leaves while a Pleosporale OTU was the most abundant in stems (Kruskal-Wallis 336 
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Χ2=3.5; P < 0.05) (Fig. 3). The Basidiomycota OTUs in aboveground samples were mostly 337 

assigned to the species Bensigtonia yuccicola (Figs. 3 and 5). 338 

Each fungal OTU was further assigned to functional or morphological groups of fungi 339 

using FUNguild (http://www.stbates.org/guilds/app.php) [43] (Fig. 6). For every assignment, 340 

the FUNguild tool provides a confidence ranking, while referring to previously peer reviewed 341 

data (Table S4). To examine the distribution of OTUs within the functional categories, the 342 

abundance of the various OTU groups was set to 100%, and the OTUs were classified into 343 

guilds (Fig. 6A) and morphological categories (Fig. 6B). The investigation of trophic status in 344 

the belowground habitats revealed dominance of symbiotrophs in the root habitat (70.5%), 345 

while the soil community was composed of saprotrophs (45%), symbiotrophs (40%) and 346 

biotrophs (14%). In the aboveground habitats, saprotrophic fungi appeared to be dominant 347 

(stem, 53%; leaf, 65%) (Fig. 6a). The symbiotrophic fungi identified in the aboveground 348 

habitats belong mostly to the lichenized genus Sphaerulina, whereas symbiotrophs from the 349 

belowground habitats were identified as ectomycorrhizal fungi from the Hymenogaster genus. 350 

Another dichotomy was clearly revealed between the belowground and aboveground habitats 351 

through the analysis of growth form morphology (Fig. 6b). Indeed, as the soil and root habitats 352 

were dominated by gasteroid (soil: 67%; root: 48%) and agaricoid (soil: 21%; root: 45%) fungi, 353 

the fungal communities from the stem and leaf habitats were essentially dominated by yeasts 354 

(stem: 4%; leaf: 11%), dimorphic yeasts (stem: 62%; leaf: 38%), thallus fungi (stem: 27%; leaf: 355 

1%) or rot fungi (stem: 11%; leaf: 37%). The presence of basidiomycetous or ascomycetous 356 

yeast in the phyllosphere has previously been observed in plants from temperate, tropical and 357 

Mediterranean climates [44, 45], in agreement with our results. 358 

Interactions with Hg 359 
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 The analysis of Hg in the various matrices revealed that the belowground habitats 360 

contained 100 times more Hg compared with the aboveground habitats (Fig. S2). In detail, the 361 

average values of Hg were 42.5 ng/g DM in poplar leaves and 3.6 ng/g DM in poplar stems, 362 

which are within the range of previously published data [21]. The root samples exhibited Hg 363 

concentrations of approximately 2.4 µg/g of DM. The soils exhibited an average Hg 364 

concentration of 5.6 µg/g DM, in agreement with our previous data [13], but ranged from 2.92 365 

to 9.08 µg/g DM within the various harvested soil samples. Given the large variations in Hg 366 

concentrations in each habitat, we analyzed the correlations with Hg concentrations in the 367 

various matrices and found that only soil samples showed significant correlations between the 368 

Hg concentration and the diversity or richness indices. Specifically, we found a significant 369 

negative correlation between the soil Hg content and fungal richness indices (Observed 370 

richness: Spearman correlation coefficient of r2 = -0.68 and p < 0.001; Chao1 index: Spearman 371 

correlation coefficient of r2 = -0.42, and p < 0.05). The abundance of the two fungal classes, 372 

Eurotiomycetes (r2 = 0.63, and p < 0.001) and Sordariomycetes (r2 = 0.41, p < 0.05), were 373 

correlated with soil Hg concentrations, as well as the abundance of the two following OTUs, 374 

corresponding to a Thelephoraceae (r2 = 0.44, and p < 0.05) and a Trichoderma (r2 = 0.48, and 375 

p < 0.05) species. Conversely, the abundance of an OTU identified as Hymenogaster griseus 376 

was significantly negatively correlated with Hg (r2 = -0.46, and p < 0.05). None of the diversity, 377 

richness or abundance indices were significantly correlated in root, leaf or stem with the Hg 378 

concentrations (data not shown).  379 

The number of yeast cells isolated from the phyllosphere was 2.5.107 UFC/ml without 380 

Hg but decreased to 1.9.107 UFC/ml, 1.2.106 UFC/ml, 1.106 UFC/ml and 2.105 UFC/ml on 381 

media enriched with 2, 5, 10 or 20 µM of HgCl2, respectively. At 10 µM HgCl2, only 2 species 382 

were isolated, namely Nakazawaea populi formely known as Candida populi, and 383 

Aureobasidium pullulans, which was one of the most abundant OTU (2.5 % of detected 384 
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sequences) of the metabarcoding dataset obtained from the leaf habitat. The MIC values for Hg 385 

of the isolated strains were 32 µM for Nakazawaea populi and 16 µM for Aureobasidium 386 

pullulans (Table 2). 387 

The co-occurrence network revealed rare fungal OTUs with a high level of interaction in the 388 

community 389 

We built co-occurrence networks to further assess the links within the fungal 390 

communities of the four habitats (Fig. 8 and Table 3). After network calculations, some 391 

topological properties that are commonly used in network analysis were completed to reveal 392 

complex patterns [46]. The root and soil habitats harbored the highest network connectivity, as 393 

exemplified by the highest number of edges and nodes (Fig. 8, Table 3). The co-presence and 394 

mutual exclusion of OTUs in the whole dataset were equally well distributed in the leaf, stem 395 

and root, habitats, whereas soil showing the highest mutual exclusion percentage (Table 3).  396 

The network indices allowed us to define the 10 dominant keystone OTUs for each 397 

habitat (Table S5), which were defined as being important to maintain the function and structure 398 

of the microbial community and were arbitrarily identified here based on the number of 399 

connections established with the rest of the network [47]. Some taxa can be less abundant but 400 

highly connected with other taxa (as shown by the number of degrees within the node). These 401 

keystone OTUs can be divided in two groups: those generating positive connections (co-402 

presence) and those generating negative connections (mutual exclusion). Both (+ and -) groups 403 

were evident in this subset of keystone OTUs in the leaf, stem and root habitats, whereas the 404 

soil contained mostly OTUs exhibiting negative connections, as observed for the whole soil 405 

dataset. The tendency of OTUs to cluster is revealed by the clustering coefficient, which was 406 

two-fold higher for the root habitat. In the leaf habitat, OTUs from the genus Myrothecium and 407 

from the class Dothideomycetes (unassigned genus) produced the highest number of negative 408 
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connections. The genus Myrothecium, previously detected in mulberry, has been identified as 409 

a foliar pathogen producing mycotoxins [48]. Our work revealed that OTUs from this genus 410 

found on poplar leaves had an overall negative impact on other microbes from the leaf 411 

community. In the stem habitat, an OTU from the Exobasidiomycetes class showed only 412 

negative connections with all other fungal OTUs. The other keystone OTUs from the stem 413 

belonged to the Dothideomycetes class and exhibited mostly negative connections. Similarly, 414 

in the root habitat, two keystone OTUs belonging to Glomeromycetes exhibited mostly negative 415 

connections with other OTUs. In contrast to the leaf and stem habitats, other keystone OTUs 416 

presented mostly positive connections, constituting a cluster highlighted in Figure 8. 417 

Rhodotorula and Lalaria OTUs from this cluster were rather rare in the root habitat but were 418 

frequently encountered in the leaf habitat (Fig. 3). The soil habitat was characterized by 419 

keystone OTUs exhibiting mostly negative connections. The Peziza OTU (ITS-75-68665) 420 

displayed the greatest number of connections among all keystone OTUs by far (Table S5).  421 

 422 

Discussion 423 

We used the Illumina MiSeq sequencing platform to characterize fungal communities 424 

from a poplar plantation at a Hg-contaminated site. It is important to bear in mind that we were 425 

unable to distinguish between endophytes and epiphytes in each of the three plant habitats (root, 426 

stem and leaf) and instead considered the fungal communities in these habitats in their entirety. 427 

Although we did not set out to study seasonal dynamics of the belowground and aboveground 428 

fungal communities, we should bear in mind that differing seasonal patterns between 429 

belowground [49] and aboveground [50, 51] fungal taxa have been described previously. It was 430 

concluded that the variation of foliar chemistry across growing seasons should not be 431 

considered a major driver of the observed fungal dynamics. 432 
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Rarefaction analyses and richness estimators indicate that much of the total diversity 433 

detectable with the Illumina-based sequencing was obtained. The finding of higher richness and 434 

diversity in aboveground habitats compared with the root habitat was poorly predictable, as 435 

there are considerably fewer available studies on aboveground communities, compared with 436 

belowground communities. A previous study revealed a low percentage of fungal OTUs shared 437 

by leaf and root samples in Fagus sylvatica trees [42], while another study showed that a 438 

majority of aboveground OTUs were also present in the belowground compartment of agave 439 

plants [3]. Our dataset unequivocally revealed that i) less than 6% of the OTUs were detected 440 

in all four habitats, and ii) the aboveground fungal communities from poplar leaves were 441 

extremely diverse, although they were represented by only a few abundant taxa and numerous 442 

rare taxa [15, 52]. Overall, our results strongly indicate that belowground habitats host fungal 443 

communities almost completely isolated from from the aboveground habitats communities in 444 

terms of taxonomy, growth morphology, and relationship with trees or microbial interactions. 445 

Considering previous studies, the finding of lower richness and diversity in the root compared 446 

with the soil habitat was expected [3, 11, 53]. Clear separation of microbiomes has been 447 

reported for soil and root samples from mature poplars [54] and 2-year-old poplars [11]. In our 448 

study, we showed that 87% of the detectable OTUs of the roots habitat were also found in the 449 

soil habitat but few taxa were strongly associated to root. Thus, the root fungal communities 450 

also displayed lower homogeneity of the species distribution compared with soil communities.  451 

We demonstrated that the fungal communities associated with Populus roots mostly 452 

consisted of ectomycorrhizal fungi, which are known to develop mutually beneficial 453 

interactions with their hosts. These plant-microorganism interactions in the root compartment 454 

are probably one of the factors explaining the reasonable adaptation of Populus skado to this 455 

particular soil. The Thelephorales OTUs in the root samples accounted for the main 456 

contribution to the dominance of symbiotrophs in roots, as most members of this order are 457 
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known to be ectomycorrhizal and to live in symbiosis with various host plants across Northern 458 

America and Europe. Thelephoraceae are indeed abundant colonizers of Salix caprea or 459 

Populus tremula roots in TE-contaminated soils [55–57]. Additionally, OTUs corresponding to 460 

the Hebeloma, Cortinarius and Geopora genera were also detected in our root and soil samples, 461 

in agreement with previous studies [55, 56]. Members of the Hebeloma mycorrhizal genus 462 

(notably H. mesophaeum) are frequently found within unvegetated soils [55, 56] and have been 463 

shown to promote the growth of host trees in soils contaminated with metals [58]. At the family 464 

level, both this and a previous study by our group [13] identified Agaricomycetes and 465 

Pezizomycetes as the most frequent fungal families in the belowground compartment. Similarly, 466 

five of the 6 most common genera (Hebeloma, Mortierella, Tuber, Geopora and Cortinarius, 467 

but not Hymenogaster) identified in this study were among the top five detected previously. 468 

The analysis of growth morphology clearly resulted in clustering of the belowground 469 

and aboveground habitats. The soil and root habitats were dominated by agaricoid and gasteroid 470 

fungi, as highlighted by the presence of Hebeloma and Hymenogaster species, respectively. 471 

The fungi from stem and leaf communities were essentially identified as yeasts or facultative 472 

yeast morphotypes (Fig. 6b), as exemplified by Lalaria OTUs [59]. Abundance of Lalaria 473 

OTUs in the phyllosphere has previously been reported on the leaves of Fagus sylvatica [60] 474 

and in the Quercus phyllosphere [15]. Davidiella tassiana, also known as Mycosphaerella 475 

tassiana or Cladosporium herbarum, is a leaf pathogenic fungus from the Helotiales order that 476 

is commonly encountered in the phyllosphere of trees [61]. Reader should keep in mind that 477 

many fungi have several names, which can lead to mistakes and thus have always to be taken 478 

in consideration when using dated data. Standardization at a global scale of fungal names should 479 

only profit to fungal ecology. The stem tissues were enriched in Pleosporales sp. and 480 

Sphaerulina pseudovirgaureae OTUs. Previous studies have shown that phyllosphere 481 
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endophytic fungi can play an important role in enhancing plant health [20], acting as biocontrol 482 

agents against other plants, insects and pathogens.  483 

Hg is known to be a toxic element, but only few studies have explored the impact of Hg on 484 

fungal communities in field trials. Müller (2001) showed that the soil fungal biomass was not 485 

affected by the Hg along a Hg gradient ranging from 7-522 mg THg/kg of soil. Over a narrow 486 

gradient in terms of the Hg concentration, only a negative correlation between arbuscular 487 

mycorrhizal fungi and Hg was observed in the literature, while no correlation was found 488 

between ectomycorrhizal (ECM) fungi and Hg [63]. Therefore, this study is the first to 489 

describe a significant negative effect of Hg on soil fungal richness and diversity under long-490 

term, natural Hg exposure. In contrast, Hg exposure was not a major driver of the root, stem 491 

and leaf communities, probably due to the limited variations and the limited impact these 492 

variations may have on cellular processes. Nevertheless, we were able to isolate some Hg 493 

resistant yeast strains from the leaf habitat. Resistance here refer to the fact that these strains 494 

were isolated on Hg-enriched growth media, and to the MIC measured for these strains, which 495 

are comparable to previously published data [64]. As most of the Hg detected in poplar leaves 496 

entered through the atmospheric pathway [21], we indeed focused on the isolation of Hg 497 

resistant fungi from this habitat. We thus isolated Aureobasidium pullulans Hg resistant 498 

strains, also highly represented in the leaf metabarcoding dataset (Fig. 3). This species is 499 

recognized as an active phylloplane colonizer [65], which showed some capacity to bind 500 

metals to the cell surfaces [66]. Other, authors previously revealed that melanized fungi such 501 

as Aureobasidium pullulans, Cladosporium spp. and Alternaria alternate have been isolated 502 

from soil samples treated with toxic industrial wastes containing high concentrations of 503 

copper and mercury and may also be dominant members of the mycobiota of metal-504 

contaminated phylloplanes [67]. We also isolated Nakazawaea populi Hg resistant strains, 505 

that were not detected in our metabarcoding dataset, probably due to an uncomplete 506 
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assignment, and that may be part of the unassigned Ascomycota cluster (Fig. 3). This strain 507 

has been recently assigned to the Nakazawaea genus, and was previously known as a member 508 

of the Candida genus [68]. C. populi was indeed isolated from poplar sap exudate [69]. These 509 

strains will be further used in inoculation experiments, to better understand the role of leaf 510 

yeast communities on the overall Hg cycle between soil, atmospheric and leaf compartments. 511 

This study is the first to explore the organization of the fungal communities of soil, 512 

roots, stems and leaves using a co-occurrence approach at the scale of a clonal tree stand. 513 

Indeed, previous studies have focused on species abundance and diversity, but not on the 514 

interactions among species, which could be more important to ecosystem functioning [70]. Co-515 

occurrence networks represent individual microbes (operational taxonomic units (OTUs)) as 516 

nodes and feature–feature pairs as edges, where an edge may imply a biologically or 517 

biochemically meaningful relationship between features, and are based on correlations [34]. 518 

For instance, one may expect that mutualistic microbes, or those that benefit each other, will 519 

co-occur across samples. In contrast, antagonistic relationships between microbes, such as 520 

competition for the same niche, result in a mutual exclusion. It has been observed that 521 

phylogenetically related microbes have a tendency to positively co-occur [71]. In practice, 522 

microbes may exhibit positive or negative correlations for indirect reasons, based on their 523 

environmental preferences. The overall dataset revealed that non-abundant OTUs might play a 524 

significant role in the network of interactions. Co-occurrence network analysis of the fungal 525 

communities from the four habitats established a clear dichotomy between soil and the three 526 

other habitats, where the soil community was dominated by negative edges, known as mutual 527 

exclusion. It should be noted that sequencing depth impacts the percentage of positive edges in 528 

the network, with a low depth resulting in spurious positive correlations [37]. Thus, the large 529 

number of negative correlations found in our study can be correlated with our extremely high 530 

sequencing depth. This dominance of negative degrees found in the soil (80%), but not in the 531 
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roots nor in the aboveground habitats, could reflect a high degree of competition between fungi 532 

in the soil due to a lack of nutrient availability in the absence of tree exudates. It is also possible 533 

that the soil microorganisms under the canopy were in competition with the plants for nutrients 534 

such as nitrogen, exacerbating the nutrient competition between microorganisms [72]. The 535 

network obtained from the fungal sequencing data also revealed that the root compartment 536 

present the highest number of interactions between fungi and the highest clustering coefficient, 537 

with predominance of Glomeromycetes, showing a great number of interactions with other 538 

fungi. Arbuscular mycorrhizas (AM) formed by Glomeromycetes are widespread in living 539 

plants, supporting the ancestral origin of the plant–Glomeromycetes symbiosis, as fully 540 

supported by the literature [73]. We noted that the class Glomeromycetes produced many 541 

degrees of mutual exclusion with other classes and between the most interactive 542 

Glomeromycetes themselves. The hub in the root compartment network typical of the leaf 543 

compartment could correspond to the transfer of microorganisms during leaf fall in the root 544 

area, but the real explanation is still unclear.  545 

We may conclude that each habitat that we studied represents a unique niche for the 546 

fungal communities in a monoclonal plantation of the cultivar Skado (P. trichocarpa x P. 547 

maximowiczii) implemented in 2011 as a short-rotation coppice (SRC, 2200 stems/ha). 548 

Aboveground and belowground poplar habitats host completely different fungal communities, 549 

as highlighted by the core microbiome of the four habitats that represent only reduced to 5.9% 550 

of the total OTUs. We will further explore the role of fungal organisms in the Hg cycle, which 551 

deserves attention. We believe that our findings will be instructive for the design of future 552 

ecological restoration practices. 553 
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Figure legends 774 

 775 

Figure 1. Non-parametric multidimensional scaling (NMDS) plot of fungal communities associated 776 

with the four poplar habitats, using the Bray-Curtis dissimilarity measure. Each point represents the 777 

fungal community of a given sample. Each color represents one of the 6 trees sampled. Confidence area 778 

of ellipses = 0.95. (a) All habitats, (b) belowground habitats, and (c) aboveground habitats. 779 

Figure 2. Venn diagram showing the overlap of the fungal communities from the four poplar habitats, 780 

based on OTUs. OTU delineation was based on a threshold of < 97% sequence similarity  781 

Figure 3. Proportion and taxonomic assignment of abundant and rare (< 0.5% relative abundance) 782 

operational taxonomic units (OTUs) from the various poplar habitats. The assignments are given at the 783 

lowest taxonomic level possible, with relative proportions presented in parentheses. The abundance of 784 

the major phyla and the total number of reads are provided on the left side of each graph, color coded 785 

as follows: Ascomycota (red), Basidiomycota (blue), Zygomycota (yellow), Chytridiomycota (brown), 786 

Glomeromycota (green) and unassigned fungi (grey). 787 

 Figure 4. Composition of the fungal communities from the various poplar habitats at the class level. 788 

The data were derived from MiSeq sequencing of the ITS1 region.  789 

Figure 5. Heat map and hierarchical cluster analysis of the relative abundance of fungal OTUs from the 790 

various poplar habitats. Letters indicate significantly different abundances at p < 0.05 (Kruskal-Wallis 791 

comparison test), n=23 (root and leaf) or n=24 (soil and stem). The dendrogram represents linkage 792 

clustering using Euclidean distance measures. OTU delineation was based on a threshold of < 97% 793 

sequence similarity. The number associated with the OTU corresponds to the relative abundance rank 794 

of that OTU in the total dataset. Assignments between brackets show the lowest taxonomic level 795 

associated with the OTU using the UNITE database, k: kingdom, p: phylum, o: order, c: class, f: family, 796 

s: genus_species. 797 
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Figure 6. Relative proportions of fungal sequences from the various poplar habitats assigned to major 798 

fungal guilds (a) and morphological groups (b).  799 

Figure 7. Box plots of the Hg concentration (ng/mg DM) in (a) belowground habitats, and (b) 800 

aboveground habitats. Letters indicate significant differences between habitats (p-value < 0.05).  801 

Figure 8. Co-occurrence network of microbial taxa detected in the four habitats via a high-throughput 802 

DNA sequencing (Illumina MiSeq). Nodes represent fungal OTUs, whereas edges represent 803 

significant positive correlations between pairs of OTUs. The node size corresponds to the number of 804 

connections, and taxa with many correlations are within densely connected areas of the network. 805 

Green edges between nodes represent co-presence, while red edges represent mutual exclusion.  806 

 807 

 808 


