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1. Introduction

In recent years, a considerable amount of research has been de-
voted to the development and testing of noise reduction tech-
niques by passive damping treatments. Many approaches have
been proposed in the literature, in particular to model the absorb-
ing material. These approaches are generally based on poroelastic
material modeling [1–4]. In this work, we focuse on the formula-
tion of structural–acoustic problems with interface damping using
a local wall impedance approach. In this context, let us mention
the paper of Kehr-Candille and Ohayon [5], where a frequency-
dependent impedance is introduced to describe the absorbing
material at the fluid–structure interface, and where a substructur-
ing method is used to solve the dissipative structural–acoustic sys-
tem. In that work, the fluid is described by a scalar unknown field
(pressure or fluid displacement potential) and the problem is
numerically solved in frequency domain by the finite element
method. Using the same kind of approach, Bermúdez and Rodrí-
guez present in [6] a finite element method to compute the dy-
namic response of an elastoacoustic system with dissipative
interface subject to an external harmonic excitation. In their paper,
a displacement formulation is used for both media, requiring a par-
ticular attention to the discretization of the admissible class of
irrotational motions of the fluid. More recently, an original formu-
lation for internal acoustic dissipative problems, based on the
1

introduction of the normal fluid displacement field at the absorb-
ing walls, has been proposed by the authors [7].

In the present paper, the approach developed by the authors for
acoustic problems is extended to structural–acoustic interior prob-
lems with interface damping following the preliminary results pre-
sented in [8]. The coupled system consists of an elastic structure
(described by a displacement field u) containing an inviscid, com-
pressible and barotropic fluid (described by a pressure field p),
gravity effects being neglected. In order to take the effect of a thin
layer of absorbing material at the fluid–structure interface into ac-
count, an additional scalar unknown field, namely the normal fluid
displacement field g, is introduced. With this new scalar unknown,
various interface damping models can be introduced in the varia-
tional formulation. Moreover, the associated finite element matrix
system can be solved in frequency and time domains. Here, a vis-
coelastic Kelvin–Voigt constitutive equation is used to take into ac-
count the dissipation at the fluid–structure interface. For a given
material, the damping parameters can be found from acoustic
impedance measurements in a particular frequency range [5,9] or
from a refined poroelactic approaches based on Biot–Allard theory
[1].

The outline of the paper is the following: first, a non-symmetric
finite element formulation in terms of ðu;g; pÞ is proposed for har-
monic vibrations and transient responses of structural–acoustic
problems with interface damping. It is shown that this formulation
degenerates into a classical fluid–structure one in terms of ðu; pÞ
for perfect contact. Then, the formulation is written in a symmetric
form through the introduction of an intermediate unknown field,



namely the displacement potential of the fluid u [10,11]. Finally,
numerical examples are presented in order (i) to validate the
new formulation by comparison with modal results given in liter-
ature, and (ii) to evaluate the influence of the damping model on
the dynamic responses of the structural–acoustic system. In this
last case, a direct time integration method and a modal reduction
approach are used to compute the transient response of the cou-
pled system.

2. Finite element formulation for the elastoacoustic problem
with interface damping

Let us consider an elastic structure completely filled with an
acoustic fluid and subject to external forces. We propose to inves-
tigate the effect of introducing a thin layer of absorbing material
(for example porous insulated material) at the fluid–structure
interface in order to damp the elastoacoustic energy (see Fig. 1).
In the present analysis, we suppose that this physical interface
can be modeled by a ‘‘smeared-mass” geometric surface. Therefore,
this interface will be described by a particular constitutive law
through the introduction of a dissipative wall acoustic impedance
ZðxÞ [12].

Following the numerical results presented in Refs. [5,6,13] for
particular geometries, ZðxÞ can be approximated by a viscoelastic
Kelvin–Voigt model (see Fig. 2), i.e. by the sum of a constant real
part and an imaginary part depending on the frequency:
ZðxÞ ¼ dI � iðmIx� kI

=xÞ. The parameters mI , kI and dI are associ-
ated respectively to the mass, elastic and viscous contributions of
the absorbing layer.

We establish here (i) the variational formulation of the struc-
tural–acoustic problem with damping interface using a Kelvin–
Voigt smeared-mass model and (ii) the corresponding matrix
equations resulting for instance from a finite element discretiza-
tion. It is shown that this formulation degenerates into a classical
one in the case of perfect interface.

2.1. Dynamic equations of the structure

Let us consider an elastic structure occupying the domain XS at
equilibrium. The interior fluid domain is denoted by XF and the
n
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Fig. 1. Fluid–structure problem with interface damping.
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Fig. 2. Fluid–structure dissipative interface.
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fluid–structure interface, which is firstly considered as a tridimen-
sional domain, is denoted by R (see Fig. 1).

The chosen unknown field in the structure domain is the dis-
placement field uS and the associated linearized strain and stress
tensors are denoted by eðuSÞ and rðuSÞ, respectively. Moreover,
we denote by qS the mass density of the structure and by nS the
unit normal vector, external to XS.

The local equations describing the response of the structure,
fixed on a part of the external boundary Cu, and subject to a given
force density Fd on Ct , are

divrðuSÞ � qS
o2uS

ot2 ¼ 0 in XS; ð1aÞ

rðuSÞnS ¼ Fd on Ct; ð1bÞ
uS ¼ 0 on Cu: ð1cÞ

Moreover, the continuity conditions between the structure and the
interface are given by:

rðuSÞnS þ rInþ ¼ 0 on Rþ; ð2aÞ
ðuS � uþÞ � nþ ¼ 0 on Rþ; ð2bÞ

where Rþ is the interface boundary seen from the structure, rI is
the unidimensional stress in the interface domain, nþ is the unit
normal vector pointing into XS, and uþ is the interface displacement
field on Rþ.

2.2. Compressible fluid motion

Since the compressible fluid is assumed to be inviscid, instead
of describing its motion by a fluid displacement vector field uF,
which requires an appropriate discretization of the fluid irrotation-
ality constraint curluF ¼ 0, we use the pressure scalar field p,
which satisfies the classical Helmholtz equation:

Dp� 1
c2

o2p
ot2 ¼ 0 in XF; ð3Þ

where c is the constant sound speed in the fluid.
The continuity conditions between the fluid and the interface

are

� pnF þ rIn� ¼ 0 on R�; ð4aÞ
ðuF � u�Þ � n� ¼ 0 on R�; ð4bÞ

where R� is the interface boundary seen from the fluid, nF the unit
normal vectors external to XF, n� is the unit normal vector pointing
into XF, and u� is the interface displacement field on R�.

Moreover, the linearized Euler equation on the wall R� gives the
following relation:

rp � nF ¼ �qF
o2uF

ot2 � n
F on R�; ð5Þ

where qF is the constant mass density of the fluid at rest.

2.3. Damping behavior of the fluid–structure interface

Between the fluid and the structure, we now consider that the
interface domain, of mass mI , is without thickness (R ¼ Rþ ¼ R�

and n ¼ nþ ¼ �n� ¼ nF) (see Fig. 1).
For the Kelvin–Voigt model used in this work, the stress within

the interface is defined by:

rI ¼ kI
sut � nþ dI

s
ou
ot

t � nþmIs
o2u
ot2 t � n; ð6Þ

where kI , dI and mI are parameters of the damping model and
s � t ¼ ð�Þþ � ð�Þ�. As can be seen, the first term is proportional to
the normal component of the displacement and accounts the elastic



behavior of the interface material, the second one is proportional to
the normal velocity and models the viscous damping, and the third
one is proportional to the normal acceleration and models the
smeared-mass effect of the interface.

2.4. Boundary value problem in terms of ðu;g; pÞ

In order to rewrite all the previous equations in a more compact
form, we introduce the fluid normal displacement field at the
absorbing interface R denoted by g ¼ uF � n. Moreover, to simplify
the notations, we replace uS by u in the following. With these nota-
tions, the dynamic equations of the coupled fluid–structure prob-
lem with interface damping can be written as

� Structure

divrðuÞ ¼ qS
o2u
ot2 in XS; ð7aÞ

rðuÞnS ¼ Fd on Ct ; ð7bÞ

u ¼ 0 on Cu; ð7cÞ

rðuÞnS ¼ � kIðu � n� gÞ þ dI ou
ot
� n� og

ot

� ��

þmI o2u
ot2 � n�

o2g
ot2

!#
n on R: ð7dÞ

� Fluid

Dp� 1
c2

o2p
ot2 ¼ 0 in XF; ð8aÞ

rp � n ¼ �qF
o2g
ot2 on R: ð8bÞ

� Interface damping

�p ¼ kIðu � n� gÞ þ dI ou
ot
� n� og

ot

� �

þmI o2u
ot2 � n�

o2g
ot2

!
on R: ð9Þ
2.5. Variational formulation in ðu;g; pÞ

In this subsection, the variational formulation of the problem is
obtained using the test-function method. For this purpose, we
introduce the spaces Cu, Cg and Cp of sufficiently smooth functions
associated to the field variables u, g and p, respectively.

� Let du be the time-independent test function, associated to u,
belonging to the admissible space C�u ¼ fdu 2 Cujdu ¼ 0 on Cug.
Multiplying Eq. (7a) by du 2 C�u, applying a Green’s formula,
and taking Eqs. (7b) and (7d) into account, we have:Z

XS

tr½rðuÞeðduÞ�dx� kI
Z

R
gn � dudrþ kI

Z
R
ðu � nÞn � dudr

� dI
Z

R

og
ot

n � dudrþ dI
Z

R
ðou
ot
� nÞn � dudr

�mI
Z

R

o2g
ot2 n � dudrþmI

Z
R

o2u
ot2 � n

 !
n � dudr

þ
Z

XS

qS
o2u
ot2 � dudx ¼

Z
Ct

Fd � dudr:

ð10Þ
3

� Similarly, let dp be the time-independent test function, associ-
ated to p, belonging to the admissible space Cp. Multiplying
Eq. (8a) by dp 2 Cp, applying a Green’s formula, and taking Eq.
(8b) into account, we obtain:

1
qF

Z
XF

rp � rdpdxþ 1
qFc2

Z
XF

o2p
ot2 dpdx

þ
Z

R

o2g
ot2 dpdr ¼ 0: ð11Þ

� Finally, let dg be the time-independent test function, associated
to g, belonging to the admissible space Cg. Multiplying Eq. (9) by
dg 2 Cg, we have:

kI
Z

R
gdgdr� kI

Z
R

u � ndgdrþ dI
Z

R

og
ot

dgdr� dI
Z

R

ou
ot
� ndgdr

þmI
Z

R

o2g
ot2 dgdr�mI

Z
R

o2u
ot2 � n

 !
dgdr�

Z
R

pdgdr ¼ 0:

ð12Þ

Thus, the variational unsymmetric formulation of the elastoacou-
stic problem with interface damping consists, for given appropriate
initial conditions, in finding ðu;g; pÞ 2 ðC�u;Cg;CpÞ such that,
8ðdu; dg; dpÞ 2 ðC�u;Cg;CpÞ, Eqs. (10)–(12) are satisfied.
2.6. Finite element formulation

After discretizing by the finite element method the bilinear
forms in Eqs. (10)–(12), we obtain the following matrix equation
of the coupled system:

Mu þmIDu �mICug 0

�mICT
ug mIDg 0

0 CT
gp Mp

0
BBB@

1
CCCA

€U

€H

€P

0
BBB@

1
CCCA

þ

dIDu �dICug 0

�dICT
ug dIDg 0

0 0 0

0
BBB@

1
CCCA

_U

_H

_P

0
BBB@

1
CCCA

þ

Ku þ kIDu �kICug 0

�kICT
ug kIDg �Cgp

0 0 Kp

0
BBB@

1
CCCA

U

H

P

0
BB@

1
CCA ¼

F

0

0

0
BB@

1
CCA; ð13Þ

where U, H and P are the vectors of nodal values of u, g and p,
respectively; F is the vector of external forces defined byR
Ct

Fd � dudr) dUTF; and the submatrices of Eq. (13) are given by
the set of Eq. (14) defined as follows:

Z
XS

tr½rðuÞeðduÞ�dx) dUTKuU;
Z

XS

qS
o2u
ot2 � dudx) dUTMu

€U;

1
qF

Z
XF

rp � rdpdx) dPTKpP;
1

qFc2

Z
XF

o2p
ot2 dpdx) dPTMp

€P;

Z
R

pdgdr) dHTCgpP;
Z

R

o2g
ot2 dpdr) dPTCT

gp
€H;Z

R
ðu � nÞn � dudr) dUTDuU;

Z
R
gdgdr) dHTDgH;Z

R
gn � dudr) dUTCugH;

Z
R

u � ndgdr) dHTCT
ugU: ð14Þ



2.7. Spectral fluid–structure problem with interface damping in
ðu;g; pÞ

In order to compute the natural vibration modes of the coupled
system with interface damping, we consider harmonic solutions
for the structure displacement u, normal fluid displacement at
the interface g, and fluid pressure p. In other terms, we assume
the following form for u, g and p:

uðx; tÞ ¼ uðxÞ expð�ixtÞ for x 2 XS; t P 0;
gðx; tÞ ¼ gðxÞ expð�ixtÞ for x 2 R; t P 0;
pðx; tÞ ¼ pðxÞ expð�ixtÞ for x 2 XF; t P 0;

where x is the angular frequency.
Substituting these expressions in Eqs. (10)–(12), the variational

formulation of the elastoacoustic spectral problem with interface
damping consists in finding x 2 C and ðu;g; pÞ 2 ðC�u;Cg;CpÞ, such
that 8ðdu; dg; dpÞ 2 ðC�u;Cg;CpÞ:Z

XS

tr½rðuÞeðduÞ�dxþ ðkI � ixdI �x2mIÞ
Z

R
ðu � nÞn � dudr�

Z
R
gn � dudr

� �
�x2

Z
XS

qSu � dudx ¼ 0;

ð15Þ

1
qF

Z
XF

rp � rdpdx� x2

qFc2

Z
XF

pdpdx�x2
Z

R
gdpdr ¼ 0; ð16Þ

ðkI � ixdI �x2mIÞ
Z

R
gdgdr�

Z
R

u � ndgdr
� �

�
Z

R
pdgdr ¼ 0:

ð17Þ

In principle, one should use complex test-functions and sesquilinear
products involving ðdu; dp; dgÞ complex conjugate quantities of
ðdu; dp; dgÞ. As we are concerned by finite element discretization,
real test-functions have been introduced instead.

In discretized form, the previous variational formulation can be
written as

Ku þ kIDu �kICug 0

�kICT
ug kIDg �Cgp

0 0 Kp

0
BB@

1
CCA� ix

dIDu �dICug 0

�dICT
ug dIDg 0

0 0 0

0
BB@

1
CCA

2
664

�x2

Mu þmIDu �mICug 0

�mICT
ug mIDg 0

0 CT
gp Mp

0
BB@

1
CCA
3
775

U

H

P

0
B@

1
CA ¼

0

0

0

0
B@

1
CA ð18Þ

or, in condensed form:

ðK� ixD�x2MÞX ¼ 0: ð19Þ

It is important to note that this matrix system is not symmetric. The
symmetrization, which will be detailed in Section 3, can be carried
out by using an additional scalar variable to describe the fluid.

In order to solve the complex eigenvalue problem (19), let us
transform it into a real problem of double size by complementing
it with the equality kMX� kMX ¼ 0 where k ¼ �ix. The extended
spectral equation takes the canonical form:

ðAþ kBÞY ¼ 0 ð20Þ

with the matrices:

A ¼
K 0
0 �M

� �
B ¼

D M

M 0

� �
ð21Þ

and the state vector:
4

Y ¼
X
kX

� �
ð22Þ

Remarks

� Classical fluid–structure problem without damping
The natural vibration modes of the fluid–structure problem
without interface damping is obtained by taking mI ¼ dI ¼ 0 in
Eq. (18). In this case, H can be expressed in terms of U and P
from the second line of Eq. (18):

H ¼ D�1
g CT

ugUþ 1

kI D�1
g CgpP: ð23Þ

Replacing this expression into the first and third lines of Eq. (18), we
obtain the following matrix system in terms of U and P:

; ð24Þ

where Cup ¼ CugD�1
g Cgp.

Eq. (24) represents the matrix equation of a fluid–structure problem
with a spring at the interface. Moreover, it can be noted that
Du ¼ CugD�1

g CT
ug. Therefore, if kI tends to infinity, the matrix equa-

tion of the coupled system can be written in the following form:

Ku �Cup

0 Kp

� �
�x2

Mu 0
CT

up Mp

!" #
U
P

� �
¼

0
0

� �
; ð25Þ

which corresponds to the standard unsymmetric system associated
to the undamped structural–acoustic problem (see, e.g., [11]).
� Spectral fluid–structure problem with interface damping in ðu; pÞ

and ZðxÞ
Identifying the wall acoustic impedance ZðxÞ ¼ dI � iðxmI�
kI
=xÞ in Eq. (18), leads to the following matrix equation:

Ku 0 0

0 0 �Cgp

0 0 Kp

0
BB@

1
CCA� ixZðxÞ

Du �Cug 0

�CT
ug Dg 0

0 0 0

0
BB@

1
CCA

2
664

�x2

Mu 0 0

0 0 0

0 CT
gp Mp

0
BB@

1
CCA
3
775

U

H

P

0
BB@

1
CCA ¼

0

0

0

0
BB@

1
CCA: ð26Þ

From the second line of Eq. (26), H can be expressed in terms of U
and P:

H ¼ �1
ixZðxÞD

�1
g CgpPþ D�1

g CT
ugU: ð27Þ

Replacing this expression into the first and third lines of Eq. (26)
and taking into account the relation Du ¼ CugD�1

g CT
ug, we obtain

the following matrix system in terms of U and P:

Ku �Cup

0 Kp

� �
� ix

ZðxÞ
0 0
0 Dp

� �
�x2

Mu 0
CT

up Mp

!" #
U
P

� �
¼

0
0

� �
;

ð28Þ

where Dp ¼ CT
gpD�1

g Cgp.
Note that this eigenvalue problem is non-quadratic in terms of x
due to the rational fraction ix=ZðxÞ.



3. Symmetric formulation for the spectral problem with
interface damping

In Section 2.7, an unsymmetric quadratic eigenvalue system
has been obtained. The aim of this section is to establish a sym-
metric formulation of the structural–acoustic problem with
interface damping in view of a direct treatment by finite
elements.

Before describing the procedure, we will discuss the interest of
introducing symmetric matrix system for this damped structural
acoustic problem. As shown at the end of Section 4 (Eq. (46)), this
coupled problem based on a scalar field description for the fluid, is
of the type ðK� ixD�x2MÞX ¼ 0 (or ¼ F for prescribed forces)
with real symmetric and frequency independent matrices where
K P 0 and M > 0. It should be noted that this problem corre-
sponds to a classical structural dynamic problem in the time
domain.

The aim is to build reduced order models using a basis projec-
tion on the associated conservative problem ðK�x2MÞX ¼ 0,
leading to a system of the type ðKred � ixDred �x2MredÞXred ¼ 0
(or ¼ Fred for prescribed forces).

The eigenvalue problem ðK�x2MÞX ¼ 0 can be dealt with
classical eigenvalue solvers. It can be also solved, for a huge num-
ber of degrees-of-freedom, using a dynamic substructuring type
method adapted to fluid–structure interaction problem as done
in [11] (Chapter 9).

The reduced order system, because the number of degrees-of-
freedom is not anymore prohibitive, can be solved (i) either by
inverting the matrix frequency by frequency for x 2 R in the
forced response case, (ii) or using a quadratic eigenvalue solver
to obtain an appropriate basis constituted of complex eigenvectors
(see e.g. [14,15]).

In the present paper, we have only checked the methodology on
small sized systems using the Matlab quadratic eigensolver polyeig
[15]. Of course, in practice, the interest of symmetrization lies in
the construction of symmetric reduced order models, which is
the subject of current investigations by the authors.

3.1. Spectral boundary value problem in terms of ðu;g;u; pÞ

The symmetrization is obtained through the introduction of an
intermediate unknown field [11], namely the fluid displacement
potential field u. Let us recall that this variable is defined up to
an additive constant, such that uF ¼ ru.

Considering the redundant description of the fluid by using
both pressure and displacement potential, the local equations of
the spectral problem can be written in the form:

� Structure

divrðuÞ þx2qSu ¼ 0 in XS; ð29aÞ
rðuÞnS ¼ 0 on Ct ; ð29bÞ
u ¼ 0 on Cu; ð29cÞ
rðuÞnS ¼ �ðkI � ixdI �x2mIÞðu � n� gÞn on R: ð29dÞ

� Fluid

qFDuþ p
c2 ¼ 0 in XF; ð30aÞ

ou
on
¼ g on R; ð30bÞ

p
qFc2 ¼

x2

c2 u in XF: ð30cÞ

� Interface

�x2qFu ¼ ðk
I � ixdI �x2mIÞðu � n� gÞ on R: ð31Þ
5

3.2. Variational formulation in ðu;g;u; pÞ

As in the unsymmetric case, we proceed in this subsection to
the variational formulation of the problem by the test-function
method:

� Multiplying Eq. (29a) by du 2 C�u, integrating by parts (using
Green’s formula) and taking the boundary conditions (Eqs.
(29b) and (29d)) into account, we have:Z

XS

tr½rðuÞeðduÞ�dxþ ðkI � ixdI �x2mIÞ
Z

R
ðu � nÞn � dudr�

Z
R
gn � dudr

� �
�x2

Z
XS

qSu � dudx ¼ 0:

ð32Þ

� Similarly, we consider the space Cu of sufficiently regular func-
tion u defined on XF. Multiplying Eq. (30a) by an arbitrary test
function du 2 Cu and taking Eq. (30b) into account, we obtain:

�qF

Z
XF

ru � rdudxþ qF

Z
R
gdudrþ 1

c2

Z
XF

pdudx ¼ 0: ð33Þ

� Then, multiplying Eq. (30c) by a test function dp 2 Cp, we have:

1
qFc2

Z
XF

pdpdx�x2

c2

Z
XF

udpdx ¼ 0: ð34Þ

� Finally, multiplying Eq. (31) by a test function dg 2 Cg, we
obtain:

ðkI � ixdI �x2mIÞ
Z

R
gdgdr�

Z
R

u � ndgdr
� �

�x2qF

Z
R
udgdr ¼ 0: ð35Þ

Thus, the symmetric variational formulation of the elastoacou-
stic problem with interface damping consists in finding x 2 C and
ðu;u;g; pÞ 2 ðC�u;Cu;Cg;CpÞ such that 8ðdu; du; dg; dpÞ 2 ðC�u;Cu;

Cg;CpÞ, Eqs. (32)–(35) are satisfied.

3.3. Finite element formulation

In the following, the symmetric problem, defined by Eqs. (32)–
(35), is discretized in order to obtain the corresponding matrix
equations. Let us consider meshes in XF and XS with coinciding
nodes at the interface. By using a proper finite element approxima-
tion of the variables, we obtain:

Ku þ kIDu �kICug 0 0

�kICT
ug kIDg 0 0

0 0 Mp 0

0 0 0 0

0
BBBBBB@

1
CCCCCCA
� ix

dIDu �dICug 0 0

�dICT
ug dIDg 0 0

0 0 0 0

0 0 0 0

0
BBBBBB@

1
CCCCCCA

2
6666664

�x2

Mu þmIDu �mICug 0 0

�mICT
ug mIDg 0 A

0 0 0 B

0 AT BT �Ku

0
BBBBB@

1
CCCCCA

3
777775

U

H

P

U

0
BBBBB@

1
CCCCCA ¼

0

0

0

0

0
BBBBB@

1
CCCCCA; ð36Þ
where U, H, P and U are the vectors of nodal values of u, g, p and u
respectively, and where the not yet defined submatrices of Eq. (36)
are given by the set of Eq. (37) defined as follows:



qF

Z
XF

ru � rdudx) dUTKuU;

qF

Z
R
udgdr) dHTAU;

1
c2

Z
R
udpdr) dPTBU: ð37Þ

It should be noted that we have used the matrix notation A and B
instead of the more natural ones Cgu and Cpu into the previous
equations for sake of compactness in the sequel of the paper.

The fourth equation of the matrix system (36) allows us to elim-
inate the degrees-of-freedom associated with u following the rig-
orous condensation procedure described in [11]. This procedure
consists of an a posteriori elimination of u in order to obtain an
eigenvalue problem only in terms of ðu;g; pÞ. This procedure will
be detailed in the next section.

4. Symmetric matrix system resulting from the elimination of
fluid variable

In this section, we propose to eliminate the fluid displacement
potential in the symmetric formulation (Eq. (36)) using the proce-
dure described by Morand and Ohayon for undamped elastoacou-
stic problems [11].

Note that a special procedure, which will be detailed below,
must be carried out because in general case, the matrix Ku is
singular.

In a first step, let us define a partitioning of U by letting
UT ¼ U1 UT

2

� �
where U1 denotes a particular component of U

(here, the first), which induces the following partitioning of the
matrices A, B and Ku in Eq. (36):

Ku þ kIDu �kICug 0 0 0

�kICug kIDg 0 0 0

0 0 Mp 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

U

H

P

U1

U2

0
BBBBBBB@

1
CCCCCCCA

� ix

dIDu �dICug 0 0 0

�dICT
ug dIDg 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

U

H

P

U1

U2

0
BBBBBBB@

1
CCCCCCCA

�x2

Mu þmIDu �mICug 0 0 0

�mICug mIDg 0 A1 A2

0 0 0 B1 B2

0 AT
1 BT

1 �Ku11 �Ku12

0 AT
2 BT

2 �Ku21 �Ku22

0
BBBBBBB@

1
CCCCCCCA

U

H

P

U1

U2

0
BBBBBBB@

1
CCCCCCCA

¼

0

0

0

0

0

0
BBBBBBB@

1
CCCCCCCA
: ð38Þ

In a second step, as Ku22 is nonsingular, U2 can be expressed in
terms of P, H and U1 using the fifth line of Eq. (38):

U2 ¼ �K�1
u22Ku21U1 þ K�1

u22AT
2Hþ K�1

u22BT
2P: ð39Þ

Substituting this relation for the remaining, the fourth line of Eq.
(38) becomes:
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ðAT
1 � Ku12K�1

u22AT
2ÞHþ ðB

T
1 � Ku12K�1

u22BT
2ÞP

¼ ðKu11 � Ku12K�1
u22Ku21ÞU1: ð40Þ

It can be shown that [11]:

Ku11 � Ku12K�1
u22KT

u12 ¼ 0: ð41Þ

Thus, Eq. (40) can be written as

aTHþ bTP ¼ 0; ð42Þ

where matrices a and b are defined by:

aT ¼ AT
1 � Ku12K�1

u22AT
2; ð43aÞ

bT ¼ BT
1 � Ku12K�1

u22BT
2: ð43bÞ

Finally, replacing U2 by its expression (Eq. (39)) in the three first
lines of Eq. (38) and using Eq. (42), the following matrix system is
obtained:

Ku þ kIDu �kICug 0 0

�kICT
ug kIDg 0 0

0 0 Mp 0

0 0 0 0

0
BBBBB@

1
CCCCCA

U

H

P

U1

0
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1
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� ix
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u22BT
2 a

0 B2K�1
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u22BT

2 b

0 aT bT 0

0
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1
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U

H

P

U1

0
BBBB@

1
CCCCA

¼

0

0

0

0

0
BBBB@

1
CCCCA: ð44Þ

The last equation of (44) can be written as

�x2ðaTHþ bTPÞ ¼ 0; ð45Þ

which leads, for x–0, to: aTHþ bTP ¼ 0. Therefore, Eq. (44) can be
viewed as the following matrix system, valid for x ¼ 0:

Ku þ kIDu �kICug 0

�kICT
ug kIDg 0

0 0 Mp

0
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1
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P

0
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1
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� ix
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�dICT
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0
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1
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P

0
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1
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�x2
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2
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2

0
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1
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U

H

P

0
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1
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¼
0

0

0

0
B@

1
CA ð46Þ

in which H and P must satisfy the constraint aTHþ bTP ¼ 0.
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Fig. 3. Plate/acoustic cavity system: geometrical data and acoustic impedance.

Table 1
Frequencies (Hz) of a 3D rigid acoustic cavity with an absorbing wall

Undamped Damped

4096 d.o.f. Exact 1452 d.o.f. 4352 d.o.f. Exact [13]

283.85 f100 ¼ 283:33 275.98–0.15i 275.35–0.15i 274.85–0.15i
340.62 f010 ¼ 340:00 330.81–0.23i 330.06–0.23i 329.46–0.23i
425.78 f001 ¼ 425:00 403.32–0.55i 402.59–0.54i 402.00–0.54i
443.39 f110 ¼ 442:58 429.45–0.46i 428.48–0.46i 427.71–0.46i
Remarks

� In the last matrix system, of the form ðK� ixD�x2MÞX ¼ 0, it
can be shown that the matrices are real symmetric with K P 0
and M > 0 (see Ref. [11]).

� The previous reduction is not an approximation but a rigorous
condensation procedure.

� The constraint aTHþ bTP ¼ 0 corresponds to the discretization
of the variational property (33), for du constant ðdu ¼ 1Þ. It
results from the conservation of the total mass of fluid contained
on XF. It should also be noted that, in Eq. (44), U1 plays the role
of a Lagrange multiplier.

5. Numerical examples

We present in this section some finite element results, obtained
with the previous formulations, for the analysis of interior damped
structural–acoustic systems. Firstly, a 3D free vibration elastoacou-
stic problem with damping interface is analyzed. Then, a compar-
ison between the proposed approach and a full 3D modelling of the
dissipative layer using Biot–Allard theory is presented. These two
first examples are computed using the unsymmetric formulation
proposed in Eq. (18). The resulting eigenvalue problem is solved
using Matlab’s polyeig function which is based on the algorithm de-
scribed on page 267 of [15]. Finally, the third example concerns the
vibration and transient analysis of a 2D rectangular tank com-
pletely filled with air. In this last case, the symmetric formulation
(44) in the frequency domain and the unsymmetric formulation
(13) in the time domain are employed. Note that even if it is sym-
metric, the quadratic eigenvalue problem (44) has been solved
using the same algorithm as in the previous examples.

5.1. Free vibration analysis of a 3D plate/acoustic cavity system with
damping interface

We consider in this first example the spectral problem of a 3D
rectangular acoustic cavity of size A ¼ 0:6 m; B ¼ 0:5 m and C ¼
0:4 m (see Fig. 3a) completely filled with air ðqF ¼ 1 kg=m3; c ¼
340 m=sÞ. One wall of the cavity is a flexible plate of thickness
6 mm clamped by its whole boundary and covered with a thin
Fig. 4. First four acoustic modes fo
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layer of absorbing material. The other walls are considered per-
fectly rigid. The mechanical parameters of the plate are: density
qS ¼ 7700 kg=m3, Young’s modulus E ¼ 1:44� 1011 Pa and Poisson
ratio m ¼ 0:35. The absorbing material, which is considered mass-
less in this example, has two parameters: kI ¼ 5� 106 Pa=m and
dI ¼ 50 Pa:s=m. These parameters are average impedance coeffi-
cients corresponding to a typical acoustic insulating fabric (a Johns
Manville glass wool of thickness 1 inch) in the frequency range
(50–500 Hz) (see Fig. 3b).

Firstly, we present the results obtained for the 3D acoustic cav-
ity with and without damping interface. Table 1 gives the first four
eigenfrequencies (in Hz) with uniform meshes (hexagonal ele-
ment) and with increasing number of degrees of freedom. The first
and second columns present, respectively the frequencies of the ri-
gid cavity computed from a pressure formulation and those ob-
tained with the following exact solution:

fmnk ¼
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

A2 þ
n2

B2 þ
k2

C2

s
: ð47Þ

The three other columns correspond to the complex frequencies of
the damping cavity computed from the proposed formulation and
compared to exact solution (last column) given in [13]. A good
agreement between exact and computed values can be observed
even for the coarse mesh. In this example, the imaginary part of
the frequencies comes from dashpot dissipation. Moreover, the dif-
ference between the real part (damped case) and the real value (un-
damped case) of the frequencies is due to the spring effect. Figs. 4
and 5 show the pressure field in the acoustic cavity for the damped
and undamped cases.
r the 3D acoustic rigid cavity.



Fig. 5. First four acoustic modes for the 3D acoustic cavity with an absorbing wall.

Table 2
Computed frequencies (Hz) of the structural–acoustic coupled system

Mode Undamped Damped

F (i) S (ii) FSI (iii) FSI [13] FSI (iv) FSI [13]

4096 d.o.f. 980 d.o.f. 5076 d.o.f. 5332 d.o.f.

A – 158.13 158.18 156.61 158.18–0.00i 156.91–0.00i
B 283.85 – 281.91 280.90 275.30–0.18i 273.43–0.13i
C – 290.24 291.95 294.37 291.75–0.00i 294.07–0.01i
D 340.62 – 339.93 338.01 330.43–0.22i 326.64–0.31i
E – 362.83 363.19 375.80 375.80–0.01i 375.97–0.01i
F 425.78 – 425.89 422.97 403.49–0.55i 394.04–1.30i
G 443.39 – 443.07 441.91 429.21–0.46i 417.79–1.72i

x=0

x=-L

Normal incidence
plane wave (x=-L)

Rigid wall 

Fig. 7. Geometry of the single poroelastic layer surface impedance problem.
Secondly, we consider the plate/acoustic-cavity system. Table 2
gives the eigenfrequencies in four cases: (i) 3D rigid acoustic cav-
ity; (ii) clamped plate; (iii) plate/acoustic cavity coupled system
without damping interface; and (iv) plate/acoustic cavity coupled
system with damping interface. In the third and forth cases, our re-
sults are compared to those given in [13]. It should be noted that
we have used, for the structural part, a four-node membrane-
shear-bending plate element (based on the first-order shear
deformation theory) with five degrees-of-freedom per node and a
selective reduced integration on the transverse shear.

The present results are in good agreement with those obtained
in [13] with a displacement formulation for both domains (fluid
and structure). As shown in this table, modes A, C and E correspond
to the first three vibration modes of the structure (lower than
400 Hz) and the four others (B, D, F and G) are the first four acous-
tic modes. In the damped case, notice that although the real parts
of the frequencies corresponding to the structure modes remain
practically unchanged, those associated with the fluid modes de-
crease between 2% and 10%. The imaginary parts of the frequencies
are almost zero for the structure modes, which means that they are
only very slightly damped. As expected, the imaginary parts of the
fluid modes are higher. Thus, the damping is stronger for the
acoustic modes. For illustration purposes, Fig. 6 shows the de-
formed plate and the pressure field for the first four vibration
modes in the coupled case.

5.2. Acoustic cavity with poroelastic treatment: comparison between
the proposed approach and a full 3D modelling of the dissipative layer
using Biot–Allard theory

In this example, we propose to compare the Kelvin–Voigt
impedance approach with a full 3D modelling of the dissipative
Fig. 6. First four modes without damping interface: fl
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layer using Biot–Allard theory. Firstly, the Kelvin–Voigt impedance
parameters (kI and dI) are determined from the surface impedance
of laterally infinite poroelastic material computed using Biot–Al-
lard theory. The approach developed in this work is then employed
to compute the response of an acoustic cavity damped by a partial
poroelastic treatment. In this case, comparisons with Biot–Allard
3D finite element calculations are given.

5.2.1. Surface impedance for a single poroelastic layer
The surface impedance of laterally infinite poroelastic material

is investigated in this section. The configuration under study is de-
picted in Fig. 7. The porous layer, of thickness L ¼ 7:62 cm and
whose mechanical properties are given in [16], is bonded onto a ri-
gid wall at x ¼ 0 and excited by a normal incidence plane wave of
unit amplitude at x ¼ �L. The poroelastic material used in this
example has the properties of a typical foam.
uid pressure level and plate total displacement.
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Fig. 8. Real and imaginary parts of the impedance: (a) normal incidence impedance computed from Biot–Allard theory; (b) identification of normal impedance parameters kI

and dI in frequency range [25–250 Hz].
Note that the Biot–Allard model, whose detailed description can
be found for example in [16], is defined by (i) five geometrical
parameters (the porosity, the flow resistivity, the tortuosity, the
viscous characteristic length, and the thermal characteristic
length), (ii) the mechanical properties of the skeleton; and (iii)
the saturating fluid properties.

The normal incidence impedance (Fig. 8) is calculated using the
displacement of fluid ðufÞ and solid ðusÞ phases in the porous med-
ium at the input surface ðx ¼ �LÞ for the unit acoustic pressure
excitation by the following equation:

ZðxÞ ¼ 1
ix½/uf ð�LÞ þ ð1� /Þusð�LÞ� ; ð48Þ

where / denotes the porosity of the material. In this equation, the
displacement of fluid and solid phases are calculated from Biot–Al-
lard theory using either analytical or finite element solutions (see,
e.g., [3]).

In frequency range [25–250 Hz], the normal incidence imped-
ance can be approached by a Kelvin–Voigt model, i.e. sum of a con-
stant real part and an imaginary part inversely proportional to the
frequency:

ZðxÞ ¼ dI þ ikI
=x: ð49Þ

The parameters kI and dI (kI � 1:4� 106 Pa=m and dI � 885 Pa s=m),
characterizing, respectively the elastic and the viscous aspect of the
absorbing layer, are deduced from the acoustic surface impedance
by a least squares method (Fig. 8b).

5.2.2. 3D enclosed cavity with porous absorbing material
We consider now a 3D cubic enclosed cavity of 1 m3 filled with

air (density q0 ¼ 1 kg m�3, speed of sound c0 ¼ 340 m s�1). The
previously defined poroelastic material (see paragraph (5.2.1)) of
size 0:6� 0:6� 0:0762 m3 is embedded to one wall of the cavity.
1 m

1 m

1 m

0.6 m

0.6 m

0.0762 m

Acoustic
  cavity

 Porous 
material

Fig. 9. Geometry of the 3D rigid cavity problem with porous absorbing material.
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The cavity is excited by a volume velocity source placed in one cor-
ner ðx; y; zÞ ¼ ð0;0;0Þ (see Fig. 9). This example has been originally
proposed by Panneton and Atalla [16].

The cavity is discretized using 10� 10� 10 hexahedric ele-
ments with one degree-of-freedom per node corresponding to
the acoustic pressure. In absence of the foam, this mesh is found
to be fine enough for the frequency range of interest (see the
comparison between numerically computed and exact eigenfre-
quencies given in Table 3). Moreover, using a 3D finite element
Biot–Allard approach for the poroelastic domain, a 6� 6� 6 mesh
is employed.

The mean quadratic pressure in the closure is used as the indi-
cator for this example:

hp2i ¼ 1
2Na

XNa

i¼1

p2
i ; ð50Þ

where Na is the number of nodes in the discretized acoustic domain
and pi is the pressure in node i. In decibel (dB), the associated pres-
sure level is defined by

Lp ¼ 10 log
hp2i
p2

0

� �
; ð51Þ

where p0 ¼ 20 lPa is the reference sound pressure.
The results obtained with: (i) Biot–Allard finite element formu-

lation, and (ii) the proposed Kelvin–Voigt localized impedance are
analyzed and compared.

Fig. 10a presents the pressure level in the acoustic cavity with
and without poroelastic treatment. The peaks observed correspond
to the frequencies of the rigid acoustic cavity (see Table 3). This fig-
ure clearly shows that there is a substantial reduction in pressure
level due to the addition of the poroelastic material.

The results obtained with the Biot–Allard 3D finite element for-
mulation for the poroelastic treatment are compared to those ob-
tained from the simplified Kelvin–Voigt impedance in Fig. 10b.
An excellent agreement between the two methods is observed.
This test validates the proposed approximations of the poroelastic
medium by Kelvin–Voigt localized normal incidence impedance in
low frequency range. It is worth noting that, in comparison with
the Biot–Allard finite element formulation, the acoustic impedance
approach is more efficient in terms of computational time and
complexity. Indeed, with the Kelvin–Voigt approach, the porous
Table 3
Comparison between analytical and finite element frequencies of the acoustic rigid
cavity

Exact (Hz) 170.07 240.52 294.58 340.15 380.30 416.60 481.05
F.E. (Hz) 170.78 241.51 295.79 345.77 385.64 421.76 488.99
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Fig. 10. Mean quadratic pressure level in the acoustic cavity with poroelastic treatment: (a) acoustic cavity with and without poroelastic treatment; (b) comparison between
Biot–Allard and Kelvin–Voigt localized impedance finite element formulations.
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Fig. 11. Two-dimensional fluid-filled rectangular tank.

Table 4
Material parameters for the structure and the fluid

Parameter Value

Structure Density qSðkg=m3Þ 7700
Young modulus E (GPa) 144
Poisson ratio m 0.35

Fluid Density qFðkg=m3Þ 1
Speed of sound c (m/s) 340

Table 5
Computed frequencies (Hz) of the structural–acoustic coupled system

Mode Undamped

F (i) S (ii) FSI (iii)

A – 105.049 105.040
B 170.132 – 170.132
C 226.989 – 226.940
D 283.671 – 283.637
E – 305.690 305.665
F 341.058 – 340.991
G 409.689 – 409.600

Fig. 12. Structure displacement for the first five eigen

10
treatment is modeled by interface elements and the problem can
be solved directly in the time domain. However, if the poroelastic
material is linked to a flexible wall, the performance of our simpli-
fied approach has to be confirmed. This point will be the subject of
further investigations.

5.3. Modal and transient analysis of a two-dimensional fluid-filled
rectangular tank

This third example concerns modal and transient analysis of a
closed two-dimensional rectangular tank completely filled with
air and covered by a thin layer of damping material whose param-
eters are the same as in the first example (Section 5.1). This exam-
ple was initially proposed in [6].

The geometrical and physical data for the structure and the fluid
are given in Fig. 11 and Table 4, respectively. Concerning the finite
element discretization, linear quadrangular elements are used for
the fluid and the structure with a compatible mesh at the fluid–
structure interface.

Table 5 presents the eigenfrequencies in four cases: (i) rigid
acoustic cavity; (ii) structure in vacuo; (iii) fluid–structure coupled
system without damping interface; and (iv) fluid–structure cou-
Damped

FSI [6] FSI (iv) FSI [6]

– 105.042–0.000i –
169.930 158.128–0.109i 158.431–0.060i
226.445 209.278–0.212i 210.637–0.137i
283.662 256.195–0.394i 258.301–0.337i
– 305.605–0.003i –
339.252 316.346–0.454i 314.189–0.561i
408.990 369.690–0.829i 362.014–1.594i

modes of the coupled system without damping.



Fig. 13. Pressure level for the first five eigenmodes of the coupled system without damping.

Table 6
Computed frequencies (Hz) of the structural–acoustic coupled system: comparison between mesh densities with 3 elements and 6 elements in the thickness of the structure

Mode Undamped Damped

S (3 elt) S (6 elt) FSI (3 elt) FSI (6 elt) FSI (3 elt) FSI (6 elt)

A 105.049 101.172 105.040 101.162 105.042–0.000i 101.164–0.000i
B – – 170.132 170.043 158.128–0.109i 158.049–0.109i
C – – 226.940 226.731 209.278–0.212i 209.108–0.211i
D – – 283.637 283.418 256.195–0.394i 255.994–0.393i
E 305.690 295.863 305.665 295.846 305.605–0.003i 295.815–0.001i
F – – 340.991 340.279 316.346–0.454i 315.675–0.454i
G – – 409.600 408.896 369.690–0.829i 368.997–0.828i

-10

0

pled system with damping interface. Note that in the third and
forth cases, our results are compared to those given in [6].

The same kind of comments as those of the first example can be
made here (see Section 5.1). For illustration purpose, Figs. 12 and
13 present the structure and fluid mode shapes in the undamped
case.

Table 6 presents a comparison of our results for two mesh den-
sities in the thickness of the structure: 3 and 6 finite elements. The
frequencies for the structure in vacuo are compared with those gi-
ven by the finite elements code Nastran using 20 Quad4 elements
in the thickness. The results obtained with Nastran are 99.18 Hz for
mode A and 291.47 Hz for mode E. Thus, the error between our re-
sults with a fine mesh (6 elements) and those given by Nastran is
lower than 2%. With only three elements, our results are not en-
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Fig. 14. Structural–acoustic system submitted to an harmonic excitation.
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between direct time integration and mode superposition.
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ough accurate due to the fact that the structural bending is not
properly computed. Thus, it is necessary to use a sufficiently fine
mesh in the thickness of the structure. However, the acoustic
modes of the coupled problem (modes B, C, D, F and G) remain
practically unchanged because these first modes are less depen-
dent on mesh refinement.

The structure is now excited at its left edge, of height H, by a
sinusoidal force which depends on the y-coordinate Fd ¼
F0 sinðxtÞy=H with F0 ¼ 1000 N and x ¼ 2p� 380 rad=s (see
Fig. 14).
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Fig. 16. Frequency response at point P in the structure: comparison between
responses of the coupled systems with and without damping interface.
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Fig. 18. Frequency response at point Q in the fluid: comparison between responses
of the coupled systems with and without damping interface.
For the resolution, we use a direct time integration method
and a modal superposition technique. In the first case, the New-
mark scheme is used for the time integration of the global unsym-
metric system obtained via the ðu;g; pÞ formulation. In such a
case, the resolution becomes very expensive when the study time
increases. In order to reduce the size of the problem, a modal
superposition technique is employed. In this case, the symmetric
formulation described in Section 3 is used in order to avoid a spe-
cific unsymmetric eigenvalue solver and the calculation of the left
and right eigenvectors. This approach consists of projecting the
system on a truncated basis using only some of the first modes.
The reduced system can then be integrated in time in order to
compute the transient response of the coupled fluid–structure
system.

Fig. 15 presents the response of the coupled system with damp-
ing interface at point P (1.25 m, 1.00 m) of the structure. As can be
seen, the response given by a modal superposition technique using
only the first fifteen modes is similar to that one given by the inte-
gration of the global system using the Newmark scheme. Let us re-
call that the unsymmetric formulation in ðu;g; pÞ is used for direct
time integration method, and the symmetric formulation (after
elimination of /Þ is used for the modal reduction.

Fig. 16 shows the frequency response of the coupled system at
point P, with and without damping interface. As can be seen, the
two curves are superposed in a frequency range from 0 to
500 Hz. This means that the absorbing material do not affect the
structural behavior of the vibroacoustic system. Moreover, three
peaks can be observed in this graph. The first two peaks correspond
to the first two vibration modes of the structure, and the third one
corresponds to the excitation frequency.

Fig. 17 shows the time response of the coupled system with
damping interface at point Q (0.25 m, 0.75 m) in the fluid. Here,
we can observe the attenuation of the acoustic vibration ampli-
tudes due to the damping effect.

Fig. 18 gives the frequency response of the coupled system at
point Q in the fluid, with and without damping interface. As can
be seen, the frequencies of the acoustic modes are affected by
the absorbing interface. It can be noted that all peaks correspond
to the real part of the computed frequencies, except that one at
380 Hz, which corresponds to the excitation frequency.

6. Conclusion

In this paper, a new finite element formulation for structural–
acoustic systems with interface damping has been proposed. The
coupled system consists of an elastic structure (described by its
displacement field) containing an acoustic fluid (described by its
pressure field). To take into account the effect of adding a thin layer
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of damping material at the fluid–structure, an additional unknown
variable has been introduced, namely the normal fluid displace-
ment field at the interface. With this new scalar unknown, various
interface damping models can be introduced in the variational for-
mulation and the associated finite element matrix system can be
solved in frequency and time domains. In this paper, a simple Kel-
vin–Voigt model has been used to represent the interface damping.
Then, the formulation has been written in a symmetric form
through the introduction of an intermediate unknown field,
namely the displacement potential of the fluid. Finally, numerical
examples have been presented validating the new formulation
and showing the influence of the damping model on the transient
dynamic responses of structural–acoustic systems. Further analy-
sis concerning hybrid passive/active treatments, which will
coupled piezoelectric modeling [17,18] and the dissipative model-
ing presented in this paper, are the subject of current
investigations.
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