
HAL Id: hal-01518587
https://hal.science/hal-01518587v1

Submitted on 5 May 2017 (v1), last revised 5 May 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KIFF: un algorithme de construction de graphe KNN
générique, rapide et évolutif

Antoine Boutet, Anne-Marie Kermarrec, Nupur Mittal, François Taïani

To cite this version:
Antoine Boutet, Anne-Marie Kermarrec, Nupur Mittal, François Taïani. KIFF: un algorithme de
construction de graphe KNN générique, rapide et évolutif. ALGOTEL 2017 - 19èmes Rencontres
Francophones sur les Aspects Algorithmiques des Télécommunications, May 2017, Quiberon, France.
�hal-01518587v1�

https://hal.science/hal-01518587v1
https://hal.archives-ouvertes.fr

KIFF: un algorithme de construction de graphe
KNN générique, rapide et évolutif

Antoine Boutet1 et Anne-Marie Kermarrec2 et Nupur Mittal2 et Francois
Taiani3

1University of Lyon, LIRIS, CNRS, INSA-Lyon, UMR5205, F-69621, France
2INRIA, Rennes, France
3University of Rennes 1, Rennes, France

Les algorithmes de construction du graphe des plus proches voisins (K-Nearest-Neighbor,KNN) sont apparus comme
des éléments fondamentaux de nombreux services en ligne tels que la recommandation, la recherche de similarité et
de classification. La construction d’un tel graphe de manière précise reste cependant une tâche très coûteuse. Avec
l’augmentation des volumes de données, le temps nécessaire à la construction d’un graphe KNN et son évolution
sont devenus des facteurs critiques. Dans cette contribution, nous proposons un algorithme de construction de graphe
KNN générique, rapide et évolutif. Cet algorithme exploite la nature bipartite de la plupart des ensembles de données
auxquels les algorithmes KNN sont appliqués. Plus précisément, un pré-traitement est effectué permettant d’identifier
les candidats les plus pertinents auxquels chaque noeud peut se comparer. Cette stratégie permet ainsi de limiter de
manière drastique le coût de calcul nécessaire à la convergence vers un graphe KNN précis, en particulier pour les
ensembles de données de faible densité. Basé sur plusieurs jeux de données, nous montrons de manière expérimentale
que notre solution calcule rapidement une approximation proche du KNN idéal tout en réduisant le coût de calcul par
rapport aux approches de l’état de l’art (en moyenne 14 fois plus rapide tout en améliorant la qualité du KNN de 18%).
Cet article reprend en grande partie des résultats publiés à la conférence ICDE en 2016 [BKMT16].

Mots-clefs : graphe des plus proches voisins, graphe biparti, jeux de données éparses

1 Introduction
K-Nearest-Neighbor (KNN) graphs play a fundamental role in many web-based applications e.g., search,
recommendation and classification. A KNN graph is a directed graph of entities (e.g., users, products,
services, documents etc.), in which each entity (or node) is connected to its k most similar counterparts or
neighbors, according to a given similarity metric. In a large number of applications, this similarity metric
is computed from a second set of entities (termed items) associated with each node in a bipartite graph
(possibly extended with weights, such as ratings or frequencies). For instance, in a movie rating database,
nodes are users, and each user is associated with the movies (items) she has already rated.

As data volumes continue to grow, constructing a KNN graph efficiently remains an ongoing and open
challenge. Greedy KNN-graph approaches have been shown to offer a promising alternative to more tra-
ditional KNN-graph construction techniques, for instance based on Locality-Sensitive Hashing (LSH) or
Recursive Lanczos Bisection (RLB) [DML11]. Greedy approaches incrementally improve an approxima-
tion of the KNN graph, and thus avoid an exhaustive O(n2) search among potential KNN edges. They
perform well for two main reasons: they are inherently parallel, and show a strong memory locality. These
approaches tend, however, to induce a substantial number of similarity computations, which directly impact
their computing time. This point is illustrated in Figure 1 for two characteristic greedy KNN-graph algo-
rithms, NNDescent [DML11], and HyRec [BFG+14]. The figure shows the breakdown, in seconds, of the
computing time of both algorithms on a small Wikipedia dataset. using the standard cosine similarity met-
ric. On average, both approaches spend more than 90% of their total execution time repeatedly computing
the similarities values (large checkered bars in the figure).

Antoine Boutet et Anne-Marie Kermarrec et Nupur Mittal et Francois Taiani

������

����������

�� �� �� �� �� �� �� �� �� �� ��� ��� ��� ��� ���

�������������������

�������������������

����������������������

��������

�
�

�

Fig. 1: State-of-the art greedy KNN-graph approaches spend over 90% of their computation time computing similarity
values (Wikipedia dataset).

In this contribution, we propose to reduce this substantial cost by exploiting two observations that apply
to most item-based similarity metrics: first, two nodes must usually share some items to be KNN neighbors;
second, the more items two nodes have in common, the more likely they are to appear in each other’s KNN
neighborhood. Based on these observations, our solution, KIFF (K-nearest neighbor Impressively Fast and
eFficient) first uses the node-item bipartite graph to compute a coarse but very cheap approximation of the
similarity between two users. KIFF then uses this rough approximation to orient and to prune the search for
a good KNN approximation using a greedy procedure, rather than starting from a random graph as many
greedy solutions do [VvS13].

The result is a novel, fast and scalable KNN graph construction algorithm that produces a very close
approximation of the real KNN. More precisely, we show that KIFF reduces the computational time by a
speed-up factor of 14 on average, while improving the quality of the KNN approximation on average by
18% compared to recent state-of-the art solutions [DML11, BFG+14], regardless of the value of k. We also
assess the impact of graph density on KIFF’s performance, and show that KIFF’s performance is strongly
correlated to a dataset’s density.

2 KIFF: intuition and overview
The idea behind KIFF is to reduce substantially the time to build a KNN graph by limiting the number of
similarity values a greedy approach needs to compute. Our intuition is based on two simple observations:
(i) almost all similarity metrics used to construct KNN graphs (cosine, Jaccard’s coefficient, Adamic-Adar’s
coefficient) return zero when two users† do not share any items ; and (ii) these metrics usually contain a
term that grows with the number of items two users have in common.

Counting common items is typically much cheaper computationally than computing full blown similarity
metrics. This is because (i) common items are usually a first step of more advanced similarity metrics ; and
(ii) most similarity metrics use floating point operations (divisions, square roots, logarithms) that are much
more expensive than the simple integer arithmetic involved in counting items. Our approach, therefore,
employs a simple but powerful strategy: we use common item counts as a first coarse approximation of
the similarity between two users to prune the pairs of users who have no items in common. We then refine
this approximation by iterating over potential KNN neighbors in reverse order of this item count (i.e., in
decreasing order). Directly comparing every pair of users to count common items would, however, scale
poorly. We, therefore, use an indirect method: we exploit the bipartite nature of the user-item graph (users
are linked to items, and items to users) as an efficient structure to construct lists of users sharing items.

As shown in Algorithm 1, our approach (called KIFF) works in two phases, called the counting and
the refinement phase. In the counting phase, KIFF preprocesses the user-item bipartite graph and builds a
Ranked Candidate Set (RCS) for each user (line 3-4). Ranked candidate sets are ordered weighted sets that
bring together users who share items, while counting how many items these users have in common. Ranked
candidate sets are used in the refinement phase to initiate, and then iteratively refine the KNN approximation
of each user. In the refinement phase, the size of the ranked candidate sets decreases strictly until the sets
possibly become empty. This behavior guarantees that the number of similarity computations is limited
by the sizes of the ranked candidate sets. In addition, parameters γ and β control how aggressively KIFF

† For ease of exposition, we assume that nodes are users who have rated items. Our approach can, however, be applied to any type of
nodes, as long as node similarity is computed from items associated with these nodes.

KIFF: un algorithme de construction de graphe KNN générique, rapide et évolutif

Tab. 1: Dataset description
Dataset #Users |U | #Items |I| #Ratings |E| Density Avg. |UPu| Avg. |IPi|
Wikipedia 6,110 2,381 103,689 0.7127% 16.9 43.5
Arxiv 18,772 18,772 396,160 0.1124% 21.1 21.1
Gowalla 107,092 1,280,969 3,981,334 0.0029% 37.1 3.1
DBLP 715,610 1,401,494 11,755,605 0.0011% 16.4 8.3

approximates an optimal KNN graph. The former parameter bounds the computational cost paid at each
iteration while the latter defines the termination threshold in term of total number of neighbors changes
during an iteration.

3 Experiment
We extensively evaluate KIFF on four representative datasets. These datasets are representative of a wide
range of domains and applications, including bibliographic collections (Arxiv and DBLP), voting systems
(Wikipedia) and on-line social networks with geo-location information (Gowalla). Properties of these four
datasets are presented in Table 1 including the density computed as |E|÷ (|U |× |I|).

Table 2 shows the recall (i.e., the quality of the KNN computed as the ratio of exact KNN neighbors in
the KNN approximation), the wall-time, the scan rate (i.e., the number of similarity evaluations required to
produce the final approximated KNN graph expressed as a percentage of all possible KNN edge) and the
number of iterations of NN-Descent, HyRec ‡ and KIFF on the four datasets using the cosine similarity
metric and k = 20 (except for DBLP where we use k = 50). These gains, averaged over all datasets, are
summarized in Table 3.

These results show that KIFF consistently outperforms NN-Descent and HyRec in terms of recall and
wall-time across all datasets. The higher recall values obtained by KIFF validate the use of ranked candidate
‡ For HyRec, by default, we consider no random nodes in the candidate set (r = 0).

Antoine Boutet et Anne-Marie Kermarrec et Nupur Mittal et Francois Taiani

sets which provide KIFF with a clear advantage in terms of KNN quality over the initial random graph used
by HyRec and NN-Descent.

The results show that the scan rate (number of similarity computations required to converge) for KIFF is
7 and 6 times lower than that of NN-Descent and HyRec respectively. As KIFF requires lesser similarity
computations, it is also faster than its competitors. The wall-time values of KIFF confirm our intuition that
the counting phase of KIFF, by preprocessing the bipartite graph of the dataset, results in relatively faster
convergence to an approximate knn graph. The speed-up achieved can be substantial: for instance, KIFF is
17 times faster than Hyrec and NN-Descent on the DBLP dataset, and 14 faster on average (Table 3).

The reason why KIFF outperforms its competitors in terms of wall-time is visible in Figure 2, which
charts the breakdown of the computation time of KIFF, NN-Descent, and HyRec into the three types of
activities: (1) preprocessing (which includes KIFF’s counting phase); (2) candidate selection; and (3) sim-
ilarity computations. The figure shows that the counting phase of KNN indeed introduces some overhead
(ranging from 10.01% to 14.74% of KIFF’s overall computation time), but that this overhead is largely
compensated by a much faster convergence, with fewer similarity computations, and lesser time spent on
candidate selection.

 0

 10

 20

 30

 40

 50

KIFF NNDesc HyRec

T
im

e
 (

s
)

Preprocessing
Similarity computation

Candidate selection

(a) Arxiv

 0

 5

 10

 15

KIFF NNDesc HyRec

T
im

e
 (

s
)

Preprocessing
Similarity computation

Candidate selection

(b) Wikipedia

 0

 50

 100

 150

 200

 250

 300

KIFF NNDesc HyRec

T
im

e
 (

s
)

Preprocessing
Similarity computation

Candidate selection

(c) Gowalla

 0

 2000

 4000

 6000

 8000

 10000

 12000

KIFF NNDesc HyRec

T
im

e
 (

s
)

Preprocessing
Similarity computation

Candidate selection

(d) DBLP

Fig. 2: Although KIFF must pay higher preprocessing costs to constructs its Ranked Candidate Sets, this overhead is
largely balanced out by a smaller number of similarity computations due to a much faster convergence compared to
Hyrec and NN-Descent.

4 Conclusion
We have presented KIFF, a novel, generic, scalable, and efficient algorithm to construct KNN graphs.
KIFF leverages the bipartite node-item graph found in many datasets to build ranked candidate sets. These
ranked sets, in turn, drastically reduce the number of similarity computations performed, and hence the
convergence time. Our evaluation demonstrates that the proposed solution achieves a substantial speed-up
in comparison to the state-of-the art approaches while improving the quality of the KNN graph. Moreover,
in the results published at ICDE [BKMT16], we have also assessed the sensitivity of KIFF and showed that
its performance is independent of the value of k. We have also clearly showed that KIFF outperforms its
competitors even more on sparse datasets.

References
[BFG+14] A. Boutet, D. Frey, R. Guerraoui, A.-M. Kermarrec, and R. Patra. HyRec: Leveraging

Browsers for Scalable Recommenders. In Middleware, pages 85–96, 2014.

[BKMT16] A. Boutet, A. M. Kermarrec, N. Mittal, and F. Taiani. Being prepared in a sparse world: The
case of knn graph construction. In ICDE, pages 241–252, 2016.

[DML11] W. Dong, C. Moses, and K. Li. Efficient k-nearest neighbor graph construction for generic
similarity measures. In WWW, pages 577–586, 2011.

[VvS13] S. Voulgaris and M. van Steen. Vicinity: A pinch of randomness brings out the structure. In
Middleware, pages 21–40, 2013.

