
HAL Id: hal-01518551
https://hal.science/hal-01518551

Submitted on 4 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realistic soft shadows by penumbra-wedges blending
Vincent Forest, Loic Barthe, Mathias Paulin

To cite this version:
Vincent Forest, Loic Barthe, Mathias Paulin. Realistic soft shadows by penumbra-wedges blending.
ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, Sep 2006, Vienna, Austria.
pp.39 - 46, �10.1145/1283900.1283907�. �hal-01518551�

https://hal.science/hal-01518551
https://hal.archives-ouvertes.fr


Graphics Hardware (2006)
M. Olano, P. Slusallek (Editors)

Realistic Soft Shadows by Penumbra-Wedges Blending

Vincent Forest, Loïc Barthe, Mathias Paulin

IRIT-UPS-CNRS, University of Toulouse, France
Vincent.Forest/Loic.Barthe/Mathias.Paulin@irit.fr

(a)Penumbra wedge (b) Our algorithm (c) 1024-sample shad-
ows

(d) Difference be-
tween (a) and (c)

(e) Difference be-
tween (b) and (c)

Figure 1: A cube composed of9×9 spheres. This scene illustrates the penumbra blending generated by different soft-shadow
algorithms: the penumbra-wedges, our method and a reference image.

Abstract
Recent real-time shadow generation techniques try to provide shadows with realistic penumbrae. However, most
techniques are whether non-physically based or too simplified to produce convicing results. The penumbra-wedges
algorithm is a physical approach based on the assumption that penumbrae are non-overlapping. In this paper, we
propose an algorithm that takes the advantages of the penumbra-wedges method but solves the "non-overlapping"
limitation. We first compute the light occlusion regions per fragment. Then we use this information to detect the
areas where penumbrae are overlapping and we perform a realistic penumbra blending.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

Hard shadows are now standard in real-time rendering ap-
plications. Even though hard shadows give clues on objects
relationship, they are based on the restrictive approximation
that lights are points. Real light sources are in general ex-
tended and they generate an area of penumbra on the shadow
boundaries. Recent algorithms try to enhance shadow real-
ism by producing realistic soft shadows.

In this paper we present a physically based real time soft
shadow algorithm for rectangular lights. This algorithm is
based on the penumbra-wedges method presented by Assars-

son and Akenine-Möller [AMA02]. The penumbra-wedges
algorithm computes a per-fragment coefficient that repre-
sents the light occlusion percentage. The light occlusion
computation is independent for each silhouette and hence the
result is only a very coarse approximation as soon as silhou-
ettes are overlapping. In order to minimize the approxima-
tion error, we first find which fragments can produce over-
lapping error. Then we approximate the error made by the
conventional penumbra-wedges algorithm and use it to de-
rive a physically plausible visibility coefficient.

This paper is structured as follow : after discussing pre-
vious works, we present our algorithm. Then, we describe

c© The Eurographics Association 2006.



V. Forest, L. Barthe, M. Paulin / Realistic Soft Shadows by Penumbra-Wedges Blending

(a) (b) (c) (d)

Figure 2: Penumbra blending comparison. From left to right : (a) standard penumbra-wedges algorithm [AMA02], (b) penum-
brae blending by the probabilistic approach proposed by Assarsson et al. [ADMAM03], (c) our algorithm, (d) reference image
using 1024-sample shadows

its hardware implementation and some GPU optimizations,
followed by an analysis of the results and performance. We
conclude with a discussion and our future works

2. Previous works

We present a synthetic overview of the main shadow tech-
niques. For a complete overview, see Wooet al. [WPF90]
for standard shadow algorithms and Hasentfratzet al.
[HLHS03] for real-time shadows.

The two main algorithms generating hard shadows are
shadow-volumes [Cro77] and shadow-map [Wil78]. The
shadow-map algorithm first renders the scene as seen from
the light and captures a depth image named shadow-map. To
determine whether a fragment is in shadow or not, its depth
from the light is compared to the depth stored in the shadow-
map. The shadow-map approach is image-based and hence
the quality of the shadows mainly depends on the shadow-
map resolution. In order to reduce aliasing, Fernandoet
al. [FFBG01] propose an adaptive-algorithm that increases
the shadow-map resolution only where necessary. With the
same goal, Stammingeret al. [SD02] introduce the perspec-
tive shadow-maps which are shadow-maps generated in nor-
malized device coordinate space, i.e., after perspective trans-
formation.

There are many algorithms based on shadow-map that
simulate soft shadows. Heidrichet al. [HBS00] generate
soft shadows for linear lights. They interpolate the visibil-
ity of a fragment using several shadow-maps. Brabec and
Seidel [BS02] use one sample of the light for rendering
"soft edges" of the shadow. Wyman and Hansen [WH03]
compute only outer-penumbra. They modulate the shadow-
map by a penumbra-map that stores the penumbra inten-
sity of the first visible polygon. The same idea is in Chan
and Durand’s approach [CD03]. They use geometry primi-
tives calledsmoothiesto modulate the shadow-map. Attyet
al. [AHL∗05] propose a physically based algorithm. They
sample the light and accumulate the masked area for each
sample. More recently, Guennebaudet al. [GBP06] use a

shadow map as a simple and uniform discretized represen-
tion of the scene, thus allowing them to generate realistic
soft shadows in most cases. Several algorithms also try to
simulate soft shadows by filtering hard shadow boundaries
[RSC87]. However, this is an approximation only correct in
very specific cases

Even though some algorithms reduce the shadow-
map aliasing, the shadows quality remains dependent of
the shadow-map resolution. On the other hand, shadow-
volumes [Cro77] generate very accurate shadows. This al-
gorithm builds a mask that defines which fragments are in
shadow. The first pass computes ambient lighting contribu-
tion. Then each silhouette is extruded from the light source
to build a shadow-volume quadrilateral. The collection of
these quadrilaterals represents a shadow-volume which is
rendered in the eye space to update the stencil buffer. This
update was initially done by the non-robust Z-pass algo-
rithm, less fillrate intensive than the most recent and robust
Z-fail approach [BS99] [Car00] [EK02]. The fillrate can be
reduced by applying the Z-fail algorithm only where neces-
sary. In that case, the detection is done by object or better, by
fragment [Lai05]. After this step, fragments that have non-
zero stencil value are considered in shadow. Even though
shadow-maps are more popular, shadow-volumes have the
important advantage of producing exact and accurate shad-
ows. The drawback is an increase of the fillrate due to
the creation of the shadow-volumes geometry. However, we
demonstrate in this paper that an accurate occlusion eval-
uation placed on top of an efficient shadow-volumes algo-
rithm (the penumbra-wedges algorithm) provides very real-
istic soft shadows in real time, even on complex scenes.

The penumbra-wedges algorithm [AMA02] is a phys-
ically based soft shadow-volumes algorithm which can be
summarized as follow:

1. Compute specular and diffuse lighting contribution
2. Compute a visibility buffer
3. Modulate specular-diffuse image with the visibility

buffer

c© The Eurographics Association 2006.



V. Forest, L. Barthe, M. Paulin / Realistic Soft Shadows by Penumbra-Wedges Blending

4. Add ambient lighting contribution

The visibility buffer (vBuffer) stores coefficients represent-
ing the light occlusion percentage. First, the buffer is ini-
tialized by a shadow-volumes pass. During this step, coeffi-
cients one and zero are affected respectively to shaded and
unshaded fragments. The second pass modulates the coef-
ficient for fragments in the penumbra. The silhouette edge
generated during the shadow-volumes pass is extruded into
a quadrilateral that splits the penumbra-wedge in two parts
(figure3). The inner and the outer half-wedge bound respec-
tively the inner and outer-penumbra and they are treated in-
dependently. In both cases, the silhouette edge is projected
onto the light plane to compute the light occlusion area. This
area is subtracted or added to the visibility buffer depending
if the fragment is treated as an inner or an outer-penumbra
fragment. In short, this approach performs the integration of
the light occlusion area from the center of the light (figure
4). Assarsson and Akenine-Möller [ADMAM03] [AMA02]
[AAM03] have implemented this algorithm on GPU to reach
interactive performances. More recently, Lengyel [Len05]
improves their implementation with fillrate optimizations, a
more accurate detection of the fragments in penumbra and a
more optimized fragment-program.

Even though the penumbra-wedges approach generates
non-aliased and physically plausible soft shadows, this al-
gorithm is based on the assumption that the silhouettes are
non-overlapping. This assumption is seldom verified in prac-
tice and the method often generates very approximative soft
shadows where penumbrae overlap (figure2(a)). Assarsson
minimizes the overlapping artifacts by a probabilistic ap-
proach [ADMAM03]. As illustrated in figure2(b) this im-
provement still produces unrealistic soft shadows. The ac-
curate combination of several silhouettes remains in fact a
fundamental and open problem.

Note that even though smooth imperfections in the
penumbra are seldom perceptible, the overlapping artifact
produces over-shadowed areas that attract attention (fig-
ure 1(a)). Our algorithm uses penumbra-wedges to gener-
ate non-aliased physically based soft shadows for rectangu-
lar lights. In the next section, we propose a new technique
for suppressing artifacts when penumbrae are overlapping,
at interactive frame rates.

3. Realistic soft shadows by penumbra-wedges blending

When two silhouettes are overlapping the overlapping oc-
cluded area is counted twice (figure5) resulting in an over-
shadowed region. For a realistic penumbra blending we need
to define the geometry of light occlusion per fragment. This
is done by computing a visibility buffer per silhouette (sec-
tion 3.1) and then blending it within a final visibility buffer
(section3.2).

3.1. Silhouette visibility buffer computation

The accurate blending of soft shadows requires the knowl-
edge of the geometry of the occluded light region for each

Figure 3: Illustration of a penumbra-wedge.

Figure 5: When the light occlusion area of the second oc-
cluder is added to the visibility buffer, the previous bounding
area(in red) is already stored. The overlapping causes an
over-estimation of the light occlusion.

fragment. On the other hand, on current hardware, the num-
ber of parameters that can be stored per fragment is very lim-
ited and thus the representation of the occluded light region
has to be compact. This compact representation is obtained
by dividing the light area in four parts using a radial sub-
division and by computing for each subdivision a rectangle
that bounds the occluded region. This produces a more ac-
curate occluded light region detection as shown in figure6.
The occlusion area is now integrated independently from the
center and per radial part. The following algorithm describes
the computation of the silhouette visibility buffer for a single
radial part:

Figure 6: The light area is subdivided into radial parts.
Note that this gives better determination of the occluded
light region than a non-subdivide approach

c© The Eurographics Association 2006.



V. Forest, L. Barthe, M. Paulin / Realistic Soft Shadows by Penumbra-Wedges Blending

Figure 4: Light occlusion area computation. For a fragment, each edge of the occluder is projected and clipped on the light
plane. The occluded area is added or subtracted if the edge is part of respectively the outer or the inner-penumbra.

for each silhouette-edgedo
1. Compute the occluded light percentage and, as in the
penumbra-wedges algorithm, add or substract it to the
visibility buffer
2. Compute a bounding rectangle of the occluded light
region and combine it with the bounding rectangle
computed previously

end for

The bounding rectangle gives a per-fragment approximation
of the occluded light region that allows us to detect where
occluders are overlapping.

3.2. Silhouette visibility buffer blending

The blending of a silhouette visibility buffer is done
using a per radial blending function defined as fol-
low:

for each fragmentdo
1. Accumulate the light occlusion percentage as in the
penumbra-wedges algorithm
2. Identify the overlaps in the occluded regions
3.Approximate the effective overlapping area and com-
pute its corresponding occluded light percentage
4. Substract it from the visibility coefficient computed
in the first step
5. Compute a new bounding rectangle of the occluded
light region which is the combination of the silhouette
and the final vBuffer bounding rectangle

end for

During the first step, the blending function proceeds as in the
penumbra-wedges algorithm. In the second step, we identify
where the occluded regions can overlap by computing the
bounding rectangles intersection. Since bounding rectangles
region can be partially occluded, we weight their intersection
by a coefficient of occlusion as follow:

ε =
Af

Bf
.
As

Bs
.β

with :

• ε : effective overlapped area
• β : bounding rectangles intersection area
• s, f : indices identifying respectively silhouette and final

vBuffer
• Ax : light occlusion area
• Bx : bounding rectangle area

The last step of our blending function combines the two
bounding rectangles in a new one, used as the input for the
next blending computations.

4. Hardware implementation

Our algorithm is a per-silhouette 3 passes algorithm:

1. Initialize the silhouette vBuffer by a shadow-volumes
pass

2. Compute occluded light percentage by the penumbra-
wedges pass

3. Blend the silhouette occluded light percentage with the
final vBuffer

As we can see, our approach is more GPU in-
tensive than the previous real-time implementation of
the penumbra-wedges algorithm [AMA02] [ADMAM03]
[AAM03]. Therefore, we first focused on an optimized real-
time implementation of the penumbra-wedges algorithm.

4.1. Shadow volumes

Our shadow-volumes implementation is based on the Car-
mack’s approach [Car00]. Because the silhouette edges se-
lection is CPU intensive, we use a half-edge structure both
accelerating the edge selection and providing explicitly the
connectivity of the silhouette. Hence, shadow-volumes can
be stored as triangle strips and the extrusion of the shadow-
volumes quadrilaterals can be made on the GPU (freeing the
CPU for other tasks). In the case of attenuated light sources,
the fillrate cost is reduced using a per-light scissor and depth-
bound test according to Lengyel’s presentation [Len05].

c© The Eurographics Association 2006.



V. Forest, L. Barthe, M. Paulin / Realistic Soft Shadows by Penumbra-Wedges Blending

Figure 7: Quick test defining whether a viewport space frag-
ment is outside an half-wedge or not. The rasterized frag-
ment is rejected if its corresponding real-world fragment
(bounded by the red rectangle) is outside any plane of the
half-wedge. However the real-world fragment bounded by
the blue rectangle is inside the half-wedge and thus the ras-
terized fragment is concerned by the light occlusion compu-
tation.

4.2. Optimized penumbra-wedges

The visibility buffer computation algorithm is based on the
implementation of Assarsson, Akenine-Möller and Lengyel.
First, following Lengyel, we compute the three outside
bounding planes of each half-wedge during penumbra-
wedges construction. These planes are transformed in
viewport-space by a vertex program and sent to the frag-
ment program which performs a quick test to know whether
a viewport-space fragment is outside the half-wedge or not
(figure7). In addition, according to the Lengyel’s approach,
we use a depth test to reject fragments that are on the wrong
side of the shadow-volume quadrilateral (figure8). Finally,
the silhouette edge is projected onto the light plane.

Figure 8: On the left, the positive side penumbra-wedge
and on the right, the negative side penumbra-wedge. In blue,
the inner-half-wedge rasterized fragments and in green, the
outer-half-wedge rasterized fragments.

Still following Lengyel, we clip the edge to a local "near
plane". This is necessary for silhouette edges that have a
point that does not lie between the fragment and the light
plane (figure9). Then we clip in 2D the edge to the light bor-
ders. Note that "world to light space" transformation assures

that the left and bottom borders are equal to -1 while right
and top borders are equal to 1. Earlier implementation per-
forms the clipping in 3 dimensions resulting in 36 fragment
program instructions. By clipping edges in 2 dimensions and
using a more advanced fragment program instructions set,
Lengyel limits the clipping part to 23 instructions. In our
implementation, we rather use the instructionMOV_SSAT
to clip the x and y to the [-1..1] range and we compute their
corresponding y and x coordinates using the linear equa-
tions of the edges. Thus, we obtain a 16 instructions clipping
step. Moreover, many of our instructions (such as the MOV
and MAD instructions) are "non-ALU intensive", in contrast
with the CMP instruction frequently used in previous imple-
mentations.

Figure 9: The point P1 is clipped to the local "near plane" in

P
′

1 because it cannot be projected onto the area light plane.

4.3. Light Occlusion geometry computation

At this stage, we need to compute for each radial part, the
occluded light percentage and the bounding rectangle of the
occluded light region. To do so, we first clip the edge in the
radial part (a dynamic branching is used to avoid compu-
tation when the edge does not intersect the current radial
part). For the edge clipped in the radial zone, we compute
the occluded light percentage as described in the Assarsson
and Akenine-Möller’s approach [AMA02]. Finally, we add
it (outer-half-wedges) or subtract it (inner-half-wedges) to
the silhouette visibility buffer.

Figure 11: Packed parameters representation. The bound-
ing rectangle coordinates is stored in a 32-bits scalar. The
visibility coefficient and the maximum in X and Y of the
occluding edges coordinates are packed in another 32-bits
scalar.

The bounding rectangle computation requires more at-
tention. First, we compute a rectangle that bounds the oc-
cluded light region defined by the outer-half-wedges. Then

c© The Eurographics Association 2006.



V. Forest, L. Barthe, M. Paulin / Realistic Soft Shadows by Penumbra-Wedges Blending

Figure 10: Illustration of the light occlusion area and bounding rectangle computations. Note that for the inner-half-wedges
bounding rectangle adjustment, we need the maximum in X and Y of the silhouette edges.

we rasterize the inner-half-wedges that allow us to adjust the
bounding rectangle. This adjustment requires the knowledge
of the maximum in X and Y of the occluding edges coordi-
nates as shown in figure10.

We have hard constraints on the number of parameters
we can store. Typically, a frame-buffer stores four values in
the Red, Green, Blue and Alpha channels and our algorithm
requires the storage of the following parameters for a single
radial part:

• A coefficient representing the light occlusion percentage
• Top, bottom, left and right coordinates of the bounding

rectangle
• The maximum in X and Y of the occluding edges coordi-

nates

This results in seven parameters per radial part, i.e. 7∗4= 28
parameters per fragment. With 8-bits of precision per param-
eter, we can pack top, bottom, left and right coordinates of
the bounding rectangle in a single 32-bits scalar. The max-
imum in X and Y of the occluding edges coordinates and
the occluded light percentage are stored in another 32-bits
scalar. Hence, we use two 32-bits scalars by radial part (fig-
ure11), i.e. eight 32-bits scalars per fragment. These param-
eters are stored using a Multi Render Target composed of
two RGBA full precision float buffers.

The blending of the silhouette vBuffer with the final
vBuffer consists, for one radial part, to unpack the values and
perform the blending function presented in section3.2. Dy-
namic branching is used to apply the blending function only
if the occluded light percentage of the silhouette vBuffer
fragment and the final vBuffer are not null.

In terms of memory our implementation uses two
"pseudo buffers" called silhouette and final vBuffers. Each
vBuffer requires 2 RGBA full float precision buffers, there-
fore with a 1024x768 resolution, the memory require-
ments for the visibility buffer computation is: 1024∗ 768∗
4channels∗ 4bytes∗ 4bu f f ers= 48MB (when 512MB of
available memory is now a standard on 3D-optimized graph-
ics cards). In terms of computations, our algorithm is ALU

intensive. Indeed, we think that it is the right direction for
hardware algorithm implementation since GPU ALU horse-
power increases more quickly than the bandwidth (as we can
see with recent architectures).

5. Results

5.1. Visual results

Our implementation is based on the OpenGL API. Our
shaders are written with the pseudo assembly language pro-
vided by the ARB_fragment_program extension and both
dynamic branchings and the instruction set introduced by
the NV_fragment_program2 extension are used to avoid un-
necessary computations and to increase performances. Our
render contexts are based on Frame Buffer Object and Multi
Render Target.

Figures1(a)and1(d) shows the "over-shadowed" error
in the penumbra blending when several-silhouettes are over-
lapping. As we can see in figures1(b)and1(e)our algorithm
significantly reduces the overlapping error and produces re-
alistic images (figure1(c)).

5.2. Performance

The performance was measured on a Linux workstation
composed of two opteron dual-core 2Ghz with 4GB of mem-
ory. We use for the rendering two NVidia 7800-GTX con-
figured either in the Alternate Frame Rendering SLI mode
or with no SLI. The scene is composed of a collection of
spheres as illustrated in figure1. Each sphere is discretized
by 762 triangles and the framebuffer resolution is 800x600.
The impact of the geometry complexity of the scene is eval-
uated by increasing progressively the number of spheres.

As shown in figures12(a) and 12(b), with 762 trian-
gles the penumbra-wedges algorithm runs twice as fast as
our algorithm. However, when we use more polygons the
penumbra-wedges performance decreases faster than our
approach because the penumbra-wedges are quickly CPU
limited. We can see this limitation when we compare the

c© The Eurographics Association 2006.



V. Forest, L. Barthe, M. Paulin / Realistic Soft Shadows by Penumbra-Wedges Blending

(a)Framerate comparison

(b) Cost of our algorithm compare to the penumbra-wedges

Figure 12: Comparison between the performances of the
standard penumbra-wedges and our algorithm

penumbra-wedges performances with and without SLI en-
abled. Hence, with only 3048 polygons, the SLI gain is al-
ready negligible. Our algorithm is more GPU intensive than
penumbra-wedges and thus it takes a strong advantage of a
SLI configuration (the SLI gain is between 80% and 100%).
However, when we increase the number of polygons over
17482 our algorithm becomes CPU limited and so the SLI
gain is null.

Some observations can be done on these results. Fol-
lowing recent evolution of GPUs, the SLI configuration al-
lows us to predict the performance of on the next GPU gen-
eration. On a SLI configuration, our algorithm is better bal-
anced between CPU and GPU than penumbra-wedges. This
will allow a better adaptation to the next GPU generation
with a performance diminution of only 21% in average com-
pared to standard penumbra-wedges, conterbalanced by the

significant improvement of the soft-shadows realism (fig-
ures1 and2).

6. Conclusion

We have proposed a physically plausible soft shadows al-
gorithm based on penumbra-wedges. Our technique signifi-
cantly reduces the artifacts resulting of the non-overlapping
silhouettes assumption. The result is a physically based soft
shadow algorithm generating realistic soft shadows when
penumbrae are overlapping, and this, with still an interactive
framerate.

In terms of GPU evolution, functionalities allowing to
construct both shadow-volumes and penumbra-wedges on
the GPU would significantly enhance performances. Indeed,
up to now, hardware does not permit the generation of prim-
itives on GPU and hence, both are constructed on the CPU.

There are still some possible improvements to our algo-
rithm. In some cases, the light occlusion area is concentrated
in a part of the bounding rectangle. In this case our light oc-
clusion position approximation can become insufficient for
high quality penumbra blending and some visual artifacts
can appear. A better light occlusion approximation requires
a better light occlusion position approximation. The center
of gravity of the light occlusion area could be used to weight
the bounding rectangles intersection area. A center of grav-
ity discretized into 256 positions per radial part would be
sufficient to increase the quality of the penumbra blending.
Note that in our implementation we pack in one of the two
32-bits scalars only three 8-bits values (figure11). Hence,
we could add the index of the center of gravity. In the blend-
ing function, the coordinates of the center of gravity could
then be restored by indexing a two-components 1D look-up
texture with the center of gravity index. Then, we can use
this new information to refine the light occlusion position
and so the overlapping area approximation. Finally, being
shadow-volumes based, our technique is CPU limited. How-
ever, since it takes place on the top of these algorithms, it
will benefit of their future evolutions and optimizations.

References

[AAM03] ASSARSSONU., AKENINE-MÖLLER T.: A geometry-based
soft shadow volume algorithm using graphics hardware.ACM Trans.
Graph. 22, 3 (2003), 511–520.3, 4

[ADMAM03] ASSARSSON U., DOUGHERTY M., MOUNIER M.,
AKENINE-MÖLLER T.: An optimized soft shadow volume algo-
rithm with real-time performance. InHWWS ’03: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware
(Aire-la-Ville, Switzerland, Switzerland, 2003), Eurographics Associa-
tion, pp. 33–40.2, 3, 4

[AHL ∗05] ATTY L., HOLZSCHUCH N., LAPIERRE M., HASENFRATZ

J.-M., HANSEN C., SILLION F.: Soft Shadow Maps: Efficient Sampling
of Light Source Visibility. Tech. Rep. RR-5750, INRIA, nov 2005.2

[AMA02] AKENINE-MÖLLER T., ASSARSSONU.: Approximate soft
shadows on arbitrary surfaces using penumbra wedges. InEGRW ’02:
Proceedings of the 13th Eurographics workshop on Rendering(Aire-
la-Ville, Switzerland, Switzerland, 2002), Eurographics Association,
pp. 297–306.1, 2, 3, 4, 5

c© The Eurographics Association 2006.



V. Forest, L. Barthe, M. Paulin / Realistic Soft Shadows by Penumbra-Wedges Blending

Figure 13: Our algorithm applied on a scene composed of 6662 polygons. This scene is based on the models and materials of
Half-life2. Objects and textures copyright Valve Corporation: used with permission.

[BS99] BILODEAU B., SONGY M.: Real time shadows. Creative Labs
sponsored Game developer Conference, unpublished slides, May 1999.
2

[BS02] BRABEC S., SEIDEL H.-P.: Single Sample Soft Shadows Using
Depth Maps. InProc. Graphics Interface(May 2002), pp. 219–228.2

[Car00] CARMACK J.: unpublished correspondance. Id-Software, 2000.
2, 4

[CD03] CHAN E., DURAND F.: Rendering fake soft shadows with
smoothies. InEGRW ’03: Proceedings of the 14th Eurographics work-
shop on Rendering(Aire-la-Ville, Switzerland, Switzerland, 2003), Eu-
rographics Association, pp. 208–218.2

[Cro77] CROW F. C.: Shadow algorithms for computer graphics. In
SIGGRAPH ’77: Proceedings of the 4th annual conference on Computer
graphics and interactive techniques(New York, NY, USA, 1977), ACM
Press, pp. 242–248.2

[EK02] EVERITT C., KILGARD M.: Practical and robust stenciled
shadow volumes for hardware-accelerated rendering, 2002.2

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K., GREENBERG

D. P.: Adaptive shadow maps. InSIGGRAPH ’01: Proceedings of
the 28th annual conference on Computer graphics and interactive tech-
niques(New York, NY, USA, 2001), ACM Press, pp. 387–390.2

[GBP06] GUENNEBAUD G., BARTHE L., PAULIN M.: Real-time soft
shadow mapping by backprojection. InEurographics Symposium on
Rendering, Nicosia, Cyprus(26-28 juin 2006), Eurographics, p. Ãă
paraitre. 2

[HBS00] HEIDRICH W., BRABEC S., SEIDEL H.-P.: Soft shadow maps
for linear lights. InProceedings of the Eurographics Workshop on Ren-
dering Techniques 2000(London, UK, 2000), Springer-Verlag, pp. 269–
280. 2

[HLHS03] HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUCH N.,
SILLION F.: A survey of real-time soft shadows algorithms. InEu-
rographics(2003), Eurographics Association. State-of-the-Art Report.
2

[Lai05] LAINE S.: Split-plane shadow volumes. InProceedings of
Graphics Hardware(2005), Eurographics Association, pp. 23–32.2

[Len05] LENGYEL E.: Advanced stencil shadow and penumbra wedge
rendering. Game developer Conference, unpublished slides, 2005.3, 4

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.: Rendering an-
tialiased shadows with depth maps.SIGGRAPH Comput. Graph. 21, 4
(1987), 283–291.2

[SD02] STAMMINGER M., DRETTAKIS G.: Perspective shadow maps.
In SIGGRAPH ’02: Proceedings of the 29th annual conference on Com-
puter graphics and interactive techniques(New York, NY, USA, 2002),
ACM Press, pp. 557–562.2

[WH03] WYMAN C., HANSEN C.: Penumbra maps: approximate soft
shadows in real-time. InEGRW ’03: Proceedings of the 14th Euro-
graphics workshop on Rendering(Aire-la-Ville, Switzerland, Switzer-
land, 2003), Eurographics Association, pp. 202–207.2

[Wil78] WILLIAMS L.: Casting curved shadows on curved surfaces. In
SIGGRAPH ’78: Proceedings of the 5th annual conference on Computer
graphics and interactive techniques(New York, NY, USA, 1978), ACM
Press, pp. 270–274.2

[WPF90] WOO A., POULIN P., FOURNIER A.: A survey of shadow
algorithms.IEEE Comput. Graph. Appl. 10, 6 (1990), 13–32.2

c© The Eurographics Association 2006.


