
HAL Id: hal-01518546
https://hal.science/hal-01518546

Submitted on 4 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BVH for efficient raytracing of dynamic metaballs on
GPU

Olivier Gourmel, Anthony Pajot, Loic Barthe, Mathias Paulin, Pierre Poulin

To cite this version:
Olivier Gourmel, Anthony Pajot, Loic Barthe, Mathias Paulin, Pierre Poulin. BVH for efficient
raytracing of dynamic metaballs on GPU. SIGGRAPH, ACM SIGGRAPH, Aug 2009, New Orleans,
United States. pp.51, �10.1145/1597990.1598041�. �hal-01518546�

https://hal.science/hal-01518546
https://hal.archives-ouvertes.fr


BVH for Efficient Raytracing of Dynamic Metaballs on GPU

Olivier Gourmel, Anthony Pajot, Loı̈c Barthe, Mathias Paulin∗

IRIT, University of Toulouse, France
Pierre Poulin†

Université de Montréal

(a) Raytracing of metaballs, with shadows and 3 levels of mirror reflections: (left) 1000 metaballs at 13 fps
at a 640× 480 resolution without multi-sampling; (center) 200K metaballs at 0.3 fps at 1600× 1200 with
4 rays per pixel; (right) 3000 metaballs at 1.1 fps at 1600× 1200 with 4 rays per pixel.

(b) BVH with partial MCS in red and full
MCS outlined in red and dotted orange.

1 Introduction
Metaballs [Bloomenthal 1997] are effective to represent fluids and
similar complex and deformable geometries, but their implicit na-
ture makes difficult their visualization in real time. A common
strategy is to tessellate the resulting isosurface and to render it on
GPU, but it scales poorly as the number of metaballs increases.
Kanamori et al. [2008] efficiently raycast thousands of metaballs
without intermediate representations. Their method assumes that
rays are shot from a single viewpoint, thus preventing secondary
effects (no shadows, reflections, etc.), and is limited to polyno-
mial density functions. We propose to exploit the culling capacity
of dynamic bounding volume hierarchies (BVH) [Wald 2007], the
secant method for ray-surface intersection, and CPU-GPU paral-
lelism to alleviate the restrictions of their method. This results in a
general raytracing method, allowing arbitrary ray intersection (vis-
ibility, shadow, reflection, refraction, etc.) with metaballs of any
finite-support at interactive performances.

2 Raytracing Metaballs on GPU
Definitions: A set of metaballs creating a connected surface is
defined as a metaball connected set (MCS). A dynamic scene can
consist of a varying number of MCSs, with completely changing
configurations at each frame.

BVHs for Metaballs: While a BVH can be efficiently built [Wald
2007], it does not scale well with large MCSs, as the BVH would
contain only a few leaves, each encompassing a large MCS com-
posed of many metaballs. Moreover at any given point, the ma-
jority of the metaballs do not contribute to their MCS, because of
their finite support. Each metaball has a bounding box defined by
its support, and will be included in one leaf node in the BVH. Dur-
ing construction of the BVH, all metaballs potentially contributing
to the MCS of one metaball belonging to a BVH node, are effi-
ciently duplicated in this node. Once a leaf node is reached, other
conservative tests (sphere-sphere and maximum combined spheres)
are performed to remove some non-contributing metaballs. As the
number of duplicated metaballs cannot be predicted, dynamic al-
location is needed, hence the BVH is constructed on the CPU. In
Figure 1(b), the leftmost leaf node of the BVH contains two meta-
balls (the green one being duplicated), the uppermost leaf node has
three metaballs, etc. For leaf nodes A and B, the red curves indicate
the shape of the partial MCS, in their respective leaf nodes, that will
be tested for intersection.

Ray-Metaball Intersection: Our method runs in two steps. First

∗email: {gourmel, pajot, lbarthe, paulin}@irit.fr
†email: poulin@iro.umontreal.ca

we traverse the BVH and search for a point Pi along the ray and
inside the first leaf node intersected by the ray. The projections
on the ray of the center of each (non-duplicated) metaball in this
leaf node are good candidates for intersection. We then check the
value of the density function at these projected points and keep the
nearest among those inside the leaf partial MCS. To compute the in-
tersection point, we need a point Po outside the MCS, for instance
the origin of the ray. The intersection point is found by using the
secant method with the interval [Po, Pi] as an initial guess. The se-
cant method has some advantages over other iterative methods: it is
very robust and quickly converges (in about 10 iterations, implying
10 evaluations of the density function). Kanamori et al. [2008] use
Bezier clipping, which in some cases needs slightly fewer evalua-
tions, but the number of evaluations increases with the degree of the
polynomial density function.
CUDA Implementation: We store the metaballs and BVH nodes
in textures to benefit from texture cache during random memory
access due to BVH traversal. Animation of the metaballs and ren-
dering are done on GPU, while BVH construction is done on CPU.
This implies memory transfers, but also an inherent CPU-GPU par-
allelism that is exploited by using streams and asynchronous exe-
cution and transfers. The GTX-280 GPU allows transfer and com-
putation simultaneously on GPU and CPU. By using buffers and
forward computation of up to two frames, the animation is com-
puted and downloaded to the CPU while the BVH begins to build,
and rendering is performed while the BVH is completed and copied
on the GPU.

3 Results
We introduced techniques to robustly and efficiently raytrace large
numbers of metaballs at interactive framerates, while still capturing
secondary effects such as shadows and mirror reflections (Fig. 1(a)).
Due to the finite support of a metaball, metaball density increases
will directly affect performances. Moreover, BVH construction can
become a limiting factor when the number of metaballs grows over
200K in our tests. Future work will focus on those issues.

References

BLOOMENTHAL, J. 1997. Introduction to Implicit Surfaces. Mor-
gan Kaufmann, August.

KANAMORI, Y., SZEGO, Z., AND NISHITA, T. 2008. GPU-based
fast ray casting for a large number of metaballs. In Eurographics.

WALD, I. 2007. On fast construction of SAH based bounding
volume hierarchies. In Symposium on Interactive Ray Tracing.


