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ABSTRACT

Rendering images using Monte-Carlo estimation is prone to bright
spots artefacts. Bright spots correspond to high intensity pixels that
appear when a very low probability sample outweighs all other sam-
ple contributions. We present an average estimator that is robust to
outliers, which detects and removes samples that are considered as
outliers, and lead to bright spots in images computed using Monte-
Carlo estimation. By progressively building a per-pixel represen-
tation of the luminance distribution, our method is able to delay
samples whose luminance is considered as an outlier with respect
to the current distribution. This distribution is continuously updated
so that delayed samples may be re-considered as viable later in the
rendering process, thus making the presented approach robust. Our
method does not suffer from blurring in high-frequency zones. It
can be easily integrated in any Monte-Carlo-based rendering sys-
tem, used in conjunction with any adaptive sampling scheme, and
it introduces a very small computational overhead, which is negli-
gible compared to the use of over-sampling.

1 INTRODUCTION

Physically-based rendering attempts to solve an integral equation
known as the light transport equation [8]. This integral links the
radiance arriving at a point x along all possible incident directions
to the radiance leaving X in a direction of interest ®,. The various
terms of this integral are highly varying into the scene, making the
integral impossible to solve analytically. Moreover, generalisations
of this equation to the so-called “path-space” transform the problem
of computing an image into the problem of solving an integral in
an infinite-dimensional space [16]. Therefore, it is impossible to
use classical deterministic numerical integration algorithms, such
as quadrature rules.

Let f be the function giving the energy brought by a direction or
a path v to the pixel p, the value (color, spectrum, etc.) of each pixel
I is:

Ip:/ﬂf(v)dv. (1)

Because of its ease of use and generality, Monte-Carlo estima-
tion is one of the most widely used technique in physically-based
rendering algorithms, such as path-tracing [8] and photon-mapping
[7]. It consists in randomly sampling N elements v; using a proba-
bility density function p, and then estimating I, as :
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Equation (2) tells that the pixel value is computed as the esti-
mated mean value of a positive quantity. This estimator is not ro-

bust to outliers, represented here by very large values of £ Ef‘; . This
means that even if a very large number of elements is used to com-

pute each pixel, the presence of only one very large value can lead

Figure 1: Examples of bright spots, which are very bright pixels sur-
rounded by pixels whose value is much nearer from the real expected
value.

to an estimation much larger than the actual pixel value. Visually,
this generates very bright pixels, denoted as bright spots (illustrated
in Figure 1) that are still present even in high-quality images. In
general, a post-processing such as filtering is thus required in order
to get slightly blurred, however bright-spot-free images.

The outliers which lead to bright spots are produced by the cre-
ation of a sample v whose probability density is low, and which
yields a large or very large contribution (a large f(v) value). If p(v)
is low, this means that few samples that can lead to bright spots
are created when computing an image. Note that this property is
true for most rendering algorithms, such as path-tracing [8], bidi-
rectional path-tracing [17, 9], or photon-mapping [7]. However,
this does not apply to Metropolis light transport [18] and similar
algorithms, as their bright spots are caused by the accumulation of
many samples at a single pixel, all the samples having exactly the
same luminance.

Our main contribution is a method which detects and delays
on the fly outlier values from a set of samples. More specifically
for Monte-Carlo-based rendering, it avoids the presence of bright
spots in the final image, without introducing blur. As our algorithm
only weakly depends on the integration method, it can be seam-
lessly applied to any Monte-Carlo-based rendering system. As
shown in Section 2, many existing methods devoted to removing
bright spots try to minimize their visual impact by filtering the final
image [1, 10, 12, 14, 20], leading to visible smears or blur. Also,
recently, a method using the joint image-color space to detect sam-
ples that can cause bright spots has been presented [3]. Similarly to
this method, our method is in essence an outlier detection method.
This kind of methods is mostly used in data-mining applications.
The methods proposed in this field assume a vast amount of data
(several million samples), whereas in our case we only have a few
tens or hundreds of samples for a given pixel. As presented in Sec-
tion 3, we approximate the probability distribution of the luminance
of the screen samples for each pixel using density estimation. We
use this distribution to temporarily discard samples that are suscep-
tible to be outliers, and definitively accept those that are surely not.
This probability distribution is updated during the rendering, mak-
ing our method progressive, and well suited to take advantage of
adaptive sampling. As storing all the samples for each pixel would
be too costly, we develop compact representations of the distribu-
tion in Section 4.2 and Section 4.4. These representations have dif-
ferent and complementary properties with respect to memory cost



and precision. As shown in Section 4.6, these two representations
can in fact be used jointly, with parameters allowing the user to con-
trol the precision/memory cost ratio. Moreover, our method has a
time cost which is independent of the scene, and which is shown to
be a small fraction of the pure rendering time. Using our method,
we obtain images in Section 5 that do not suffer from bright spots,
without neither having to use a very large number of samples, nor
having images that exhibit smears or blur.

2 PREvious WORKS

The estimator used in Monte-Carlo rendering systems to compute
the value of each pixel, which is the mean value estimator, is not
robust to outliers. Using over-sampling will not efficiently reduce
the impact of an outlier, as a bright spot will be present unless a
prohibitively large number of samples are computed for each pixel
containing a bright-spot. This explains the existence of methods
specifically developed to remove bright spots, which are based on
filtering, either at the samples level, or directly on the final image.

2.1 Image-Space Bright Spots Removal

Image-space approaches directly process the final image, using
anisotropic diffusion [10] or filtering. Xu et al. [20] recently pro-
posed a technique based on bilateral filtering [14]. Bilateral filter-
ing uses two filters to compute each pixel value. The domain filter,
function of the positions of the current pixel p; and the neighbor
pixel p;, reinforces the influence of nearby pixels. The range fil-
ter, function of the value of both pixels f(p;) and f(p»), reinforces
the influence of pixels that have nearby values, using a gaussian
filter centered at f(p;) and with a user-set standard deviation. Xu
et al.’s method, instead of directly using f(p;) in the range filter,
uses an estimate f(p;) of the true value of the current pixel, ob-
tained by filtering the neighboring pixels. This modification makes
the range kernel less sensitive to outlier pixels when reconstructing
their value. This method is highly efficient, and requires a negligi-
ble amount of memory. However, even though providing much bet-
ter results than previous approaches, bright spots caused by diffuse
interreflections — which, in general, have lower values than bright
spots involving caustics, as their f(v) value is lower — still lead
to visible smears, making high-frequency textures blurred. More-
over, for the range filter to perform correctly, its standard deviation
must be chosen carefully, taking into account the typical orders of
magnitude of the samples for the current scene, and the variance of
the underlying integration algorithm. Yet more recently, Dammertz
et al.[1] used a wavelet-based filtering to better approximate the
hemispherical integrals that are typically computed in Monte-Carlo
rendering from low-samples estimates, while avoiding the edges of
features to avoid blurring these high-frequency elements. It is very
efficient for high-frequency/low-amplitude noise on scenes where
the illumination changes slowly (typically mostly-diffuse scenes),
but it fails when many high-frequency details are present, and no
tests with bright-spots were presented. As the edge detection is
partially based on the pixel values, it is likely that the bright spots
would be considered as single-pixel objects, therefore not being fil-
tered at all.

2.2 Sample-Space Bright Spots Removal

Rushmeier et al. [12] changed the way image reconstruction is per-
formed. Instead of using a constant-width filter for all samples, they
compute a per-sample width, and use normalized filters to evaluate
the contribution of the sample to each pixel. The width is com-
puted so that all samples have comparable contributions, leading to
lower high-frequency noise. However, when used on samples caus-
ing bright spots, this tends to blur the final image, as the filter width
has to cover a very large number of pixels.

DeCoro et al. [3] recently proposed to build a tree of the sam-
ples described in a joint image-color space, and accept upcoming

samples only if the density of samples in the tree is sufficient to
assess the new sample’s correctness. This algorithm is simple,
elegant, memory-efficient, and uses most of the correlation present
when rendering an image. It works very well for well converged
zones of the image, even for a very low number of samples per
pixel. However, for parts where convergence is far from reached
— typically parts where indirect illumination dominates —, more
samples are delayed, leading to slightly darker zones. Moreover, a
k-NN query is required per Monte-Carlo rendered sample, which
can lead to an important computational overhead.

Although targeting similar final goals and using the same base
toolkit — density estimation —, our approach has major differences
with the method by DeCoro et al.. From a mathematical toolkit
point-of-view, we use kernel-based density estimation on a 1D sam-
ples set, while they use k-NN queries on a 5D joint image-color
space. From a resultant estimator point-of-view, they define a set of
biased correlated average values estimators that are robust to out-
liers, while we define a biased average estimator that is robust to
outliers, and use one such estimator per-pixel. Our estimator can
therefore be used as a direct replacement for any average estimator
— at the cost of introducing bias —, and can therefore target a wider
range of applications.

2.3 Outlier Detection

Outlier detection is a well studied approach in the statistical anal-
ysis domain. According to the survey by Hodge er al.[6], outlier
detection methods can be split into three different categories, de-
pending on the prior knowledge required on the data:

1. Methods requiring tagged data, of the form normal/abnormal,
in order to build a model and then classify candidate data [19].
It is impractical in rendering, as the user should tag enough
samples per pixel before any automatic processing can be per-
formed.

2. Methods requiring normal data tagged, and figure out abnor-
mality [2]. For the same reason as above, no manual tagging
must take place in the algorithm.

3. Methods that do not require any prior knowledge of the data
[11]. As no user tagging is required, this category is well
suited for rendering.

Methods for outlier detection in a rendering context must fit in
the third category, as we do not want to put any constraints on the
algorithms used to compute each sample’s value. Such existing
methods presented in [6] target static distributions, where all the
samples are available at once. As we want to be compatible with
adaptive sampling, the number of samples can not be fixed in ad-
vance. The methods presented in the survey could be adapted by
first building a model using a fixed number of samples, and then
classifying the other samples without updating the model. As in
rendering, each pixel is computed using very few samples (tens or
hundreds of samples, compared to millions or billions for database
applications), building a fix model can lead to a strong lack of ro-
bustness, we thus need a progressive method.

3 BRIGHT-SPOT REMOVAL USING DENSITY ESTIMATION

The insertion of our method in the Monte-Carlo rendering pipeline
only requires the addition of a single step lying between the integra-
tion and the splatting of the sample on the final image (Figure 2).
The integration method computes many radiance samples r; for a
given screen position. Ideally, outliers could be detected by estimat-
ing the probability density function (pdf) of the samples that con-
tribute to each pixel. The samples with probability density lower
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Figure 2: Our method integrates seamlessly as a supplemental stage
(in italic red) in a Monte-Carlo rendering pipeline.
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Figure 3: Left: density estimation (blue curve) based on the lumi-
nance of samples obtained by path-tracing (green crosses on the
horizontal axis). Right: density estimation based on log-luminance.
Note that the surrounded isolated values in the left image seem to
have contributed to the same light-transport mechanisms, because
they have similar orders of magnitude. They should therefore belong
to the same mode. It is the case only when using log-luminance.

than a given threshold could then be ignored, as their p(v) value is
low and can therefore lead to bright-spots. However, accurately es-
timating a pdf from a set of samples usually requires a large number
of samples, typically several thousands or even millions. As typi-
cally only tens or hundreds of samples are available per-pixel, this
solution can not be used.

Instead, we cluster the samples in groups, delaying samples
which are not part of any group. This clustering uses density es-
timation on scalar values /;, each being obtained from a radiance
sample r;. We obtain these /; values by using the underlying struc-
ture of the radiance samples. In the case of path-tracing, each of the
radiance samples is the sum of contributions from different light-
transport mechanisms: direct-lighting, first-bounce indirect light-
ing, etc.. Each combination of these mechanisms has typical values
that have different orders of magnitude. We can therefore differen-
tiate the samples with respect to their contributing mechanisms by
using the logarithm of the luminance of these samples (Figure 3).

Our algorithm detects outliers by finding the /; values that are
uncommon. To find them, we cluster the available values in groups,
that we call modes. We define a mode as the biggest log-luminance
interval [a,b] in which the estimated pdf of the distribution defined
by the /; values is strictly positive, as illustrated in Figure 4. If a
mode contains several /; values, it is likely that the associated r; are
viable. We call such a mode an extended mode. Otherwise, if a
mode contains only a single element, we can not conclude on the
viability of the associated r; sample. Such a mode is called single.
As bright spots are caused by samples with very large luminance
values, we only focus on dubious samples whose log-luminance is
greater than the upper bound of the extended mode with largest val-
ues. This extended mode is called last extended mode from now on,
illustrating that it is the last extended mode along the /; axis. From
this observation, our characterization of a dubious sample is: a sam-
ple should not be added to the final image if its associated l; value
generates a single mode greater than the last extended mode, or

density
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Figure 4: Modes are the biggest intervals of log-luminance values
where the density is strictly positive. Red dashed intervals are ex-
tended modes. Green dotted intervals are single modes. The x-axis
corresponds to the / values, the blue crosses representing the /; val-
ues of the samples. The y-axis corresponds to the value of density
obtained using kernel density estimation based on the /; values. The
blue curve is the density obtained. The last extended mode is the
right-most extended mode.

equivalently, if its /; value is greater than the upper bound of the
last extended mode, m.

Algorithm 1 presents a basic algorithm performing outlier filter-
ing using our method. Note that it adds previously rejected samples
that are finally classified as viable when the acceptance value m is
updated, making our method computationally efficient.

Algorithm 1 Basic algorithm for kernel-density-estimation-based
outlier rejection

Initialize samples log-luminance distribution S = {}
Initialize dubious list L = {}
for each rendered sample r, with log-luminance / do
add [ to S, updating or adding modes
if the last extended mode has changed then
recompute m, the upper bound of the last extended mode
for each element s of L, with log-luminance y do
if y < m then
splat s
remove s from L
end if
end for
end if
if [ < m then
splat r
else
addrto L
end if
end for

As we need to know where the estimated pdf is strictly positive,
our method requires to estimate the pdf of the distribution based on
its samples /;. The low number of samples we have is sufficient to
retrieve this information, as it does not require a very accurate pdf
estimation. Kernel density estimation [13] is very well designed to
build a pdf from sample values. From a set of samples x,...,x,,
the estimated pdf p(x) at x is computed based on a per-sample band-
width A;:

K(x—xi,h,-) 3)

)
=
=
Il

S| =

-

where K is a normalized kernel, in our case Epanechnikov ker-
nel [5].

3.1 Adaptive Bandwidth

The most difficult task in kernel density estimation is estimating
each kernel bandwidth, so that the reconstructed density is as close
as possible to the original. On the one hand, the choice of a too
low bandwidth leads to a very jaggy density, with many spikes that
are not present in the actual distribution. In terms of modes, many



modes will be single, while they should not. On the other hand, a
too large kernel bandwidth leads to a lot of smoothing, putting all
the samples in one extended mode. For a better reconstruction, it
is advised to compute a per-sample kernel bandwidth [13]. From
a reasonable base bandwidth £, an adequate reconstruction can be
obtained using an adaptive bandwidth h; for each log-luminance
sample /;:

1/2
exp{ L1, logn(l))}

(i) '

h; =nn x

(C))

where nn is the average distance to the nearest neighbor of each
sample, and p(!) is the density at a point / estimated using nn as
bandwidth for all samples (Equation (3)).

4 LOWERING MEMORY CONSUMPTION

Computing adaptive bandwidths requires us to store all the samples,
in order to be able to compute the nn value and the final bandwidth
at each sample. Although this storage can be done when computing
one pixel after another, all the samples cannot be stored in a more
generic rendering context, when using image-based adaptive sam-
pling for instance. As we also want to be able to deal with these sit-
uations, we develop a more specific method based on Algorithm 1
to limit memory consumptions.

4.1 Algorithm Overview

Figure 5 presents the general procedure used in our method for
each pixel. Two main phases are performed: a pure learning-phase,
which basically computes a base m value, and then normal process-
ing, which updates it.

The pure learning phase just consists in storing the first N r; val-
ues, N being fixed by the user. For non-black samples, the logarithm
of the luminance /; is also computed. After the N-th sample has
been stored, modes are built using a specific representation, based
on the N /; values (Sections 4.2 and 4.4). m is computed, and each
of the N samples is tested: if its /; value is below m, the associated
sample is splatted, otherwise it is put in the dubious list. Once this
is done, the algorithm switches to normal processing.

In the normal processing phase, each time a new radiance sam-
ple r; is computed, the modes representation is updated to take into
account the sample’s log-luminance value /;. This update can have
three different consequences on the representation: creation of a
new single mode, modification of an existing extended mode, or
creation of a new extended mode from an existing single mode. In
the two last cases, the maximal value m is updated if the last ex-
tended mode has been modified or replaced. If m has been updated,
all the samples in the dubious list are tested, as they may be below
the new m value. This makes our method computationally efficient,
as samples are not permanently rejected, but just delayed. After this
update phase, the new sample is accepted if its /; value is below m.
If /; is above m, r; is added to the dubious list. Note that the dubious
list size can be bounded.

4.2 Approximate Distribution Representation (ADR)

As outliers are samples that are far from the viable ones, having
an exact value for the base bandwidth nn is often not necessary. To
avoid consuming too much memory, we develop a compact approx-
imate representation of the distribution, which keeps an exact rep-
resentation of the single modes, while approximating the extended
modes with only the lower and larger samples that belong to it. This
representation allows us to compute a close approximation of nn,
while drastically reducing the memory consumption. As a matter
of fact, a large majority of the samples belonging to a pixel are in
extended modes, as these modes represent log-luminance intervals
where samples are the most probable to lie.

In an extended mode, the precise position of each sample is not
useful in order to get a correct approximate value of the nn base
bandwidth. Instead, we approximate the position of the M sam-
ples of an extended mode by M regularly spaced artificial samples.
Therefore, for each extended mode, we just need the two extrema
samples, and the number of samples in the mode.

Initial learning: It consists in storing a user-defined number N
of samples, and then building an approximate distribution from
these samples. Once the N samples have been stored, the list is
sorted by increasing log-luminance values, the bandwitdh of each
sample is computed according to Equation (4) and each sample /; is
browsed sequentially to build modes by aggregation: when the ker-
nels of two consecutive samples overlap, they belong to the same
mode. Each time a mode is detected, its extrema samples and num-
ber of samples are stored. Once the modes are built, the maximum
acceptable value m is set to the log-luminance of the maximum
sample of the last extended mode.

Incremental update: Once the base modes have been computed,
the representation is updated for each new radiance sample r, with
a log-luminance value equal to /. If [ is included in the interval of
an extended mode, this mode’s number of samples is just increased
by 1. Otherwise, a single mode centered at / is created and added
to the representation, and we compute its potential overlap with ex-
isting modes. If an overlap is found, it leads to either extending the
bounds of an existing extended mode, or creating a new extended
mode from two overlapping single modes. When / does not belong
to any mode, its kernel bandwidth is computed using the samples of
the approximated distribution, and overlap between this kernel and
the kernel of each sample of the approximated distribution. Note
that merging of modes can occur if the kernel of / overlaps both the
mode before it and the mode after it. In this case, a new extended
mode replaces the two existing modes.

4.3 ADR : Analysis

Robustness: The third row of Figure 8 shows the results obtained
when we removed bright spots using our approximate distribu-
tion representation (ADR). We have tested our method on sev-
eral scenes, using path-tracing and 50 samples for the initial learn-
ing phase. All these scenes exhibit many bright spots when ren-
dered using path-tracing, which makes them relevant to evaluate
our method. Each pixel of each image can be considered as an inde-
pendent test, as each pixel has its own independent estimator. Our
method successfully delays most of the samples leading to bright
spots without delaying the viable ones, consequently improving the
image quality.

Progressiveness is an important property of our method, as it
allows us to splat samples only when they are viable. We have
tested the effectiveness of this property on a glossy caustic. The
second column of Figure 9 presents the results obtained by ADR
when adaptive sampling is used. It shows that ADR first delays
many of the caustic samples, but finally updates its maximum value
as they are considered correct, leading to an adequat caustic. Note
that even for the very difficult case of the glossy caustic on the
glossy part of the floor, it correctly separates caustic samples from
bright spots.

Discussion: The approximation introduced in this mode rep-
resentation allows us to use our density-estimation-based method
without having to store all the samples. It is both robust and easy
to parameterize (using 50 as initial learning size has been proved
efficient on all our tests), and introduces a small rendering time
overhead. However, as illustrated by Table 1, this representation
can lead to the storage of a large number of modes, and so, a large
memory cost, even if it is drastically reduced compared to a brute-
force approach. This is due to the necessity of using all modes in
the computation of the average nearest-neighbor base bandwidth
nn, and the adaptive bandwidth.
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Figure 5: The general algorithm used in our bright spot removal method.
ring living room computer room
sing. ext. sing. ext. sing. ext.
100 | 2.3M | 40M | 1.7M | 32M | 568K | 1.2M
HQ | 3.1IM | 47M | 40M | 52M | 1.8M 1.8M

Table 1: Total number of single and extended modes for various
scenes when using ADR, for images computed with 100 samples per
pixel and high quality ones (HQ), obtained using adaptive sampling
and between 200 and 1000 samples per pixel. The ring images have
been computed at a resolution of 800 x 600, the others at a resolution
of 800 x 450 pixels.

4.4 Rule-Of-Thumb Bandwidth (ROT)

To further reduce the memory consumption of the ADR represen-
tation, we propose an alternative method to compute each kernel
bandwidth, which does not require us to store all the modes. This
method, although less robust, can still lead to very good results
when the outliers are easy to identify. In this case, our density es-
timation method performs efficiently even with very conservative
kernel bandwidths. Therefore, we choose to use a constant band-
width instead of the adaptive one used in ADR. This bandwidth
is computed using the statistical properties of the underlying dis-
tribution. Such a bandwidth called rule-of-thumb (ROT) has been
introduced by Deheuvels [4, 15]. For Epanechnikov kernels, the
ROT bandwitdh is obtained as:

Byt = (25 xn) " x o, ©)

where n is the number of samples in the distribution, and ¢ their
standard deviation. Using this bandwidth, we just need to store
the log-luminance of the largest sample of the last extended mode,
and the larger single modes. All the modes located before the last
extended mode are no longer needed, as any sample that is below
the last extended mode is automatically accepted.

Initial learning: Initial learning for this representation is very
similar to the one of the ADR method. The only essential differ-
ences are during the base modes computation: there is no adaptive
bandwidth to compute, and when a new extended mode is built, all
the modes that have lower upper bounds are released, as they are
not used anymore.

Incremental update: When a new sample is added, if it is lower
than the current maximum acceptable value, nothing has to be up-
dated. When it is larger, overlap is examined using the constant
bandwidth given by Equation (5). If merging occurs and a new ex-
tended mode is created with values larger than the last extended
mode, this new extended mode becomes the last one, and the lower
modes are released. Otherwise, a new single mode is added.

4.5 ROT : Analysis

We perform the same tests as in Section 4.3.

Robustness: the results, presented in the fourth row of Figure 8
show that this method, although a little less robust than ADR, suc-
ceeds in identifying the outliers in most cases.

Figure 6: Close-up on the glass sphere of the ring scene, where the
ADR method (left) performs better than the ROT one (right).

ring living room computer room

sing. ext. sing. ext. sing. ext.
100 | 198K | 482K | 184K | 360K | 102K | 331K
HQ | 206K | 482K | 200K | 360K | 99K | 331K

Table 2: Total number of single and extended modes for the various
scenes using ROT. Note that the number of extended modes corre-
sponds to the number of sampled pixels.

Progressiveness: the same progressiveness test as for ADR
(Section 4.3) has been performed. Figure 9 shows that similarly
to the ADR method, the ROT method correctly found that caus-
tic samples are acceptable, while still delaying samples producing
bright spots.

Discussion: the results provided by this method are not as good
as those provided by ADR (Figure 6). However, for most pixels,
results are either identical or very similar, with a tendency for ROT
to accept more samples than ADR. This comes from the constant
bandwidth computed using ROT that is more conservative than the
adaptive bandwidths computed with ADR, thus leading to larger
modes.

4.6 Switching From ADR to ROT

ADR is robust but can consume a lot of memory, while ROT works
well for most cases, with a lower memory consumption and lower
computational cost. However, it performs poorly in more intricate
cases. We therefore develop a method that allows us to use, per-
pixel, either one or the other, depending on the difficulty to differ-
entiate outliers.

Both the ROT and the ADR methods store the last single sam-
ples after their last extended mode. More precisely, as ROT is more
conservative, it is likely that the larger single modes of ROT are in-
cluded in the larger single modes of ADR. These modes can there-
fore be shared by both methods. Moreover, the computational cost
of ROT is negligible. Thus, in order to reduce memory consump-
tion, we want to use ROT whenever possible. We introduce two
user parameters, 6 and 7, which allow us to control the transition



ADR only ROT only T=16=0 |[T=1,6=05| T=2,6=0 | T=2,6=05
sing. ext. sing. ext. sing. ext. sing. ext. sing. ext. sing. ext.
100 | 2.2M | 3.8M | 190K | 433K || 710K | 1.4M | 421K | 872K | 1.8M | 32M | 1.3M | 2.3M
HQ | 6.6M | 87M | 316K | 483K || 1.3M | 1.9M | 709K | 986K | 4.8M | 6.5M | 2.6M | 3.3M

Table 3: Left: number of modes when using only ADR or only ROT on the ring scene. Right: number of modes when using our hybrid method, in

function of T and §. As expected, fewer modes are present when the parameters favor ROT over ADR.

T=1,6=05

T=26=0

T=2,6=05

Figure 7: Top: in gray, pixels for which only ROT is used on the ring
scene, after 100 samples per pixel have been computed. Bottom: the
same after the computation of 500 samples per pixel. Note that ROT
does not tend to be used everywhere, but rather in regions.

from ADR to ROT. At the beginning, both methods are maintained,
using ADR’s maximum acceptable value to test the samples. For
each sample leading to an update of the maximum acceptable value
of one of the two methods, we compute the relative distance be-
tween the maximum of ROT m,,, and the maximum of ADR m,,
defined as |myor — mygy|/Maqr- I T such successive distances are
less or equal to §, ROT becomes the only method used for a pixel,
and the data used for ADR is released.

These two parameters allow the user to specify a measure of
similarity between the results. If the two methods give sufficiently
close maximum values (&) during a sufficiently long time (7') for a
pixel, then ROT can safely be used alone, leading to a greatly re-
duced memory consumption for this pixel as the data for ADR is
no longer needed. Experimentally, requiring equal maximum val-
ues (6 = 0) during two successive steps (T = 2) proved a good
compromise between memory consumption and robustness for all
our test scenes.

Figure 7 shows where ROT is used as the only method in the
ring scene, for various values of the parameters T and 8. The use
of ROT has been observed after 100 samples per pixel have been
computed, and after uniform over-sampling has been performed.
These parameters effectively allow the user to choose between pre-
cision and memory, by defining the amount of similarity desired
between the two methods, and verifying this similarity over a small
or large time interval before using ROT only. As shown by Table 3
and as expected, the more ROT is used, the lower the memory con-
sumption. The column labeled ADR+ROT of Figure 8 presents the
results obtained when using both methods as indicated here, with
T =2 and 6 = 0. These images have been computed using the
same radiance samples as those used when testing ADR and ROT.

5 RESULTS

All the results shown below have been computed with an initial
learning set size of 50 samples.

Robustness: Figure 8 shows the results obtained using ADR,
ROT, and both at the same time with parameters T =2 and § = 0,
on three different scenes. We compare it to the image obtained
using the standard average estimator, and the one obtained by the
method from DeCoro et al.(called DBOR in the remaining). These
images have been shot after 100 samples per pixel have been com-
puted. Note that for each scene, the exact same radiance samples

scene | ADR +ROT | DBOR
ring 1.3% 4.0%
living room 1.4% 2.3%
computer room 0.5% 1.1%

Table 4: Percentage of samples delayed in average by the ADR +
ROT method and the one by DeCoro et al., after 100 samples per
pixel have been computed.

Standard ADR ROT

Figure 9: Top: images obtained with 100 samples per pixel. Bot-
tom: images obtained with 1000 samples per pixel. Note that a large
number of very visible bright spots are still visible on the brute path-
tracing image.

were used to compute each image. Each pixel of each image can
be considered as an independent test of our method, as we define
one independent estimator per-pixel. Each pixel of the images pro-
duced by DBOR can be considered as a reference, as their method
employs virtually a much larger number of samples for their clas-
sification, through the use of the joint-space: for each sample, they
potentially use all the spatially nearby samples. We can see that
results of all the estimators obtained using our method are really
close to the ones from DBOR, demonstrating the robustness of our
method, even though less samples are used for classification: for
each sample, only the samples that contribute to the same pixel
are used. Very few pixels are still bright spots, but our method
removes less samples than DBOR in dim zones (which leads to
slightly darker results for DBOR), or in large variance zones such
as caustics. This confirms that our method can be used as a drop-in
average estimator replacement even when the number of samples is
relatively low. Table 4 confirms that the average number of samples
delayed by our method is kept small, smaller than the one of DBOR
while still removing most of the bright spots.

Progressiveness: as shown by Figure 9, progressiveness has
been tested in a case where the sample distribution is hard to handle
when using path-tracing: a glossy caustic on a glossy floor. As the
glossy caustic is rarely sampled and its samples have a quite large
value, it can be mistaken for outliers. Our method first considers
these samples as outliers, but as more samples are computed, it de-
tects they are viable, while still delaying high-value samples which
are not part of the caustic.



ring living room computer room

standard

DBOR

ADR

ROT

ADR+ROT

Figure 8: Images obtained using different average estimators to compute each pixel’s final value from 100 samples obtained using path-tracing.
First row: standard average estimator. Second row: average estimator as defined by the DeCoro et al. method, which uses inter-pixel correlation.
Third, fourth and fifth rows: estimators obtained using one or both of the approximations we developed to lower the memory consumption. (See

additional material for full size pictures.)



ADR + ROT

-

Figure 10: Left: image obtained using our method. Right: image
obtained by applying the GIMP despeckle filter on the image obtained
using the standard average estimator. Top: full image, bottom: close-
up. Note the amount of blur and the deformations at the edges of the
objects added by the GIMP filter.

Performance: the representations we use induce a small over-
head in computation time (from 5 to 10 percent for the measure-
ments we have done). Note that it is independent from the scene
complexity as we only rely on the values returned by the integration
algorithm, not on the scene itself. For a bright-spot-removal appli-
cation, it is negligible compared to the time that would be required
to remove the bright spots by pure over-sampling (to avoid blur-
ring when filtering), and remains lower than the overhead caused
by DBOR, which suffers from poor parallelization efficiency when
used on a many-core architecture. As a matter of fact, the accesses
to the samples tree have to be thread-safe. Our method does not suf-
fer as much from thread-safety, as the accesses to different pixels
representation can be made in parallel.

Comparison with image-space methods: specific image-space
methods have been developped to handle bright-spots. Figure 10
shows that even if removing the bright spots, they still introduce a
lot of artefacts in the resulting images, such as blur or deformations
of objects.

6 CONCLUSION

We use kernel-density estimation to define an average estimator ro-
bust to outliers. As the direct use of this method to remove bright-
spots in Monte-Carlo-based rendering requires too much memory,
we develop two specific approximate representations, namely ADR
and ROT. Our sample level approach delays samples which are con-
sidered as outliers. Applied to bright-spot removal, it allows us to
anticipate and prevent the appearance of bright spots, without in-
troducing neither blur nor smears, which are typical artefacts intro-
duced by image-space denoising methods. Our method is based on
a proximity-based characterization — the modes — to robustly sepa-
rate viable samples from dubious ones even with a low number of
samples. This characterization is implemented using a kernel den-
sity estimation method. The base method and the representations
we develop are progressive to allow delayed samples to be finally
splatted on the final image, thus making our algorithm computa-
tionally efficient.

When using one of the two representations we develop for
bright-spot removal, our algorithm is only parameterized by the
number of samples to use during the initial learning phase. The
lower this parameter, the faster the first image obtained as learn-
ing is shorter, but results might be less accurate. Our tests, per-
formed on various scenes, show that setting this parameter to 50
leads to good results. This shows that this parameter is in fact al-

most scene-independent, meaning that our algorithm is in practice
parameter-less and can be directly applied on any new scene using
N =50. We also show how to use both representations at the same
time to further reduce memory consumption without sacrifing ro-
bustness, switching from ADR to ROT when results are sufficiently
close during a sufficient amount of time. Two parameters 7 and &
allow the user to control the robustness/memory consumption ra-
tio. We compare the results we obtain to a method that uses the
inter-pixel correlation to obtain very robusts results, and show that
our method, which can replace any average-value estimator, leads
to very close results. This allows us to test our method on a very
large number of sample sets (one per pixel), and assess its robust-
ness even when the number of samples is kept relatively low.
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