
HAL Id: hal-01518541
https://hal.science/hal-01518541

Submitted on 4 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Occlusion Tiling
Dorian Gomez, Pierre Poulin, Mathias Paulin

To cite this version:
Dorian Gomez, Pierre Poulin, Mathias Paulin. Occlusion Tiling. Graphics Interface, May 2011, St.
Jonh’s, Canada. pp.71-78, �10.20380/GI2011.10�. �hal-01518541�

https://hal.science/hal-01518541
https://hal.archives-ouvertes.fr


Occlusion Tiling

Dorian Gomez 1,2 ∗ Pierre Poulin 1 � Mathias Paulin 2 •

1 LIGUM, Dept. I.R.O - Université de Montréal 2 IRIT-VORTEX - Université Paul Sabatier, Toulouse, France

Figure 1: Left : An extruded city from our 2D occluders; the layout of buildings ensures full occlusion of the field of view as long as the
observer remains below a specified height. Right : Palm trees positioned by Occlusion Tiling. Occlusions are based on an internal square at
the base of the tree. The distribution also verifies that two tree trunks are not adjacent to each other.

ABSTRACT

The creation of realistic, complex, and diversified virtual worlds is
of utmost importance for video games. Unfortunately the amount
of time required to create 3D scene contents can be extremely te-
dious to graphic artists. While procedural modeling can alleviate
this task, it has mostly been developed for specific contexts.

In this paper, we study tiling for synthetic worlds, taking into
account visibility between tiles. We propose a method, Occlusion
Tiling, that precomputes full 2D occlusion caused by tiles in order
to ensure that a limited number of tiles can be visible from any
viewpoint on the tiling. These tiles are then used as extruded 3D
scenes, thus bounding the number of polygons sent to the graphics
rendering pipeline for guaranteed throughput.

Keywords: Occlusion Culling, Tiling, Procedural Modeling, Pro-
cedural Rendering

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Visible line/surface algorithms

1 INTRODUCTION

When virtual worlds need to be tremendous, diversified, and com-
plex in order to spur a user’s sense of immersion, artists are left
with the tedious task of designing the worlds’ variability over wide
distances and scales. Procedural modeling can be used to solve this
problem by developing automatic generation techniques, but they
are often limited to specific world types, such as forests, cities, and
landscapes, and they can be difficult to control by artists.

Tiling is another commonly used solution, where well-designed
portions of a world are rearranged to give an impression of infinity.

∗e-mail : Dorian.Gomez@irit.fr
�e-mail : poulin@iro.umontreal.ca
•e-mail : Mathias.Paulin@irit.fr

Tiling has been frequently used in video games, such as in “Heroes
of Might and Magic”, “Civilization”, and “Sim City”.

However, when rendering these large worlds from potentially
any viewpoint, a standard z-buffer or ray tracing approach cannot
guarantee to treat all objects within a fixed time period. One so-
lution consists of precomputing potentially visible sets (PVS) for
bounded regions. Several techniques exist to compute PVS, but
none has been integrated in scene design with the goal to reduce
their sizes.

We present our new Occlusion Tiling technique that optimizes
occlusion of the visual field and can satisfy other scene properties,
by placing objects (therein called occluders) on each tile.

Here, a 2D square tile is regularly subdivided into a grid, and
filled (occluding) pixels define occluders. A 3D scene corresponds
to an extrusion of these grid pixels (e.g., with buildings), or to 3D
objects located over them and producing equivalent guaranteed oc-
clusion. Our content-generation method ensures occlusion of each
tile along the four canonical directions with a new ū scheme. The
generated tiles can then be independently assembled into a tiling,
potentially infinite. The tiling thus limits the number of polygons
sent to the graphics pipeline as it ensures that objects located be-
yond a known distance (expressed as a ring of n tiles) from the
view cell are not visible. Our approach can be used as a design
tool to automatically generate virtual worlds, to assist an artist in
his scene generation, or to optimize the occlusion of previously de-
signed worlds, that in the end guarantee high level rendering per-
formances.

By combining visibility computation in 2D or 3D scenes (Sec-
tion 2.1) and tiling techniques (Section 2.2), we introduce a new
Occlusion Tiling method (Section 3), and describe its features,
from occlusion computation and to its optimizations. In Section 4,
we show how the method can be used for the distribution of city
buildings and forest trees, considering constraints on the maximum
height of a viewer. Finally, we conclude and propose some research
directions that can be explored from our proposition, in Sections 5
and 6, respectively.



2 PREVIOUS WORK

2.1 Culling and Visibility Computations

Visibility determination is a broad and complex topic, that extends
beyond the scope of our work. The interested reader is referred to
the survey by Cohen-Or et al. [5] for an extensive study. Here, we
will restrict ourselves to visibility (pre)computation methods that
aim at accelerating rendering by limiting the number of polygons
sent to graphics hardware.

The two general families of methods used to efficiently display
large scenes are occlusion culling and PVS. By neglecting fully
occluded objects, they can reduce the rendering load on CPU and
GPU.

Occlusion culling consists of testing if an object is occluded
by another one, visible from the viewpoint. “Occlusion query”
and “early-z rejection” are commonly used for real-time occlusion
culling methods. Unfortunately, the occlusion tests tend to be too
conservative (i.e., they do not cull enough objects), too slow (i.e.,
they are too costly to compute relative to the cost of rendering), or
inexact (i.e., their approximations can produce popping artifacts).

The concept of PVS, introduced by Airey et al. [2], consists of
determining all the polygons that can be potentially visible from
a given convex region, called view cell. A PVS is computed for
each view cell. PVS methods take advantage of that the rendering
engine has only to test the list of polygons corresponding to the
current view cell, and to render them possibly in conjunction with
other culling methods, such as frustum culling. Nevertheless, de-
spite several optimizations [1, 6, 9, 10, 13, 14, 16, 19], the memory
required to store all PVS for all view cells can be huge for large
scenes, and scene preprocessing can be very compute-intensive.

In order to increase the efficiency of PVS, an important step con-
sists of computing the fusion of occluders and the aggregation of
regions as we consider further distances from a view cell.

Schaufler et al. [14] use an octree spatial representation to store
opaque volumetric interiors (of city buildings in their application).
By projecting conservatively the occluded regions through the oc-
tree, they efficiently classify regions as occluded for given view
cells. Durand et al. [9] also use the concept of occluder fusion and
region aggregation in general 3D scenes, but reproject them on suc-
cessive parallel planes. Both methods compute conservative PVS,
but their respective preprocessing remains very compute-intensive,
and their resulting PVS are very large.

Several methods exploit the coherencies inherent to height fields.
By limiting the speed of an observer moving in a 2D 1

2 scene based
on height maps, Koltun et al. [10] achieve interactive rendering in
such scenes, but the current PVS computed on-the-fly forces the
viewer not to switch too fast between view cells.

Wonka et al. [19] also propose a conservative approach in 2D 1
2 ,

but instead supported by raycasting. Their technique is very effi-
cient compared to other geometrical approaches because of the dis-
cretisation of the scene. It allows computing a PVS in only a few
seconds.

Lloyd et al. [12] and Downs et al. [8] propose two sytems using
real-time horizon culling to improve rendering speed respectively
for terrain and urban walkthroughs. However, computing horizon
culling at run-time may limit performances of the whole rendering
process for very complex and extended scenes as the occlusion must
be computed for each frame.

All these techniques have improved significantly the rendering
speed of scenes. Unfortunately for large worlds, occlusion culling
is not efficient enough, and PVS methods for several view cells
result in memory requirements much too large. Worst, for infinite
worlds procedurally generated on the fly, neither technique offers a
satisfactory solution.

2.2 Aperiodic Tiling and Texturing

As a space partitioning method, tiling can occupy space in an op-
timal way. Furthermore, a small set of primitives can tile an infi-
nite plane in a non repetitive way. Wang [17] proposed a formal
system, square compound with proto-tiles and simple tiling rules.
Berger [3] proved that there exist small sets of Wang tiles that can
tile the plane aperiodically. This property is a critical aspect to
avoid repetition in virtual worlds.

Tiling techniques are often used in computer graphics for tex-
ture synthesis. With an eye to produce non repetitive water surface
textures, Stam [15] uses Wang tiling, precomputing sets of textured
tiles. Cohen et al. [4] take a similar approach to synthesize textures
with non-periodic tilings.

Lagae et al. [11] and Wei et al. [18] survey several domains in
which tiling and texture synthesis are used, e.g., landscape model-
ing, non photo-realistic rendering, point or object distribution, tex-
ture mapping, and surface and ornament modeling.

In our proposal, tiling will help us to create non repetitive and
extended worlds.

3 OCCLUSION TILING

3.1 A Simple Model

Because of the simplicity of its representation, efficient storage, and
generality in multiple computer graphics applications, we consider
the square as our basic tile shape. The plane defining our world can
thus be fully tiled by identical 2D squares. A tile is subdivided into
a regular grid of n× n pixels (Figure 2a). Each tile pixel can be
completely empty or completely occupied (forming an occluder),
thereafter illustrated as a white pixel or a dark pixel, respectively.
Each tile is also considered as an independent view cell.

The occlusion due to a tile is computed by analyzing the com-
bined occlusions of all its occluding pixels. It is derived for all four
canonical directions in the plane (Figure 4a), and its computation is
described in Section 3.2.

At lower resolutions, a set of occluding tiles can be automatically
generated in a brute-force way by systematically evaluating all pos-
sible occluding pixel configurations. Tiles of any resolution can
also be generated by randomly setting occluding pixels according
to a desired occluding density threshold. However, the computation
being O(n3) for n occluding pixels, the purely random search could
prove quite inefficient. We propose a multi-resolution scheme that
improves the computations in Section 3.2.4. Finally, in order to give
more artistic control over the distribution of occluders, we describe
constraints in Section 3.3.

In Section 4 a few configurations of height distribution and
multi-tiling are investigated in order to create more variations on
the occluder heights.

3.2 Occlusion Properties

Each tile is defined by four vertices in clockwise order: A, B, C,
D. A tile oriented as in Figure 2a has its North segment [AB], East
segment [BC], South segment [CD], and West segment [DA].

We aim at limiting the visibility of an observer located on any
tile (view cell) of our tiling up to a maximum distance expressed
in tile units. If every view ray emanating from a view cell cannot
go through its first-ring neighborhood (i.e., the eight tiles adjacent
to the view cell), the field of view is completely obstructed by the
occluders located on this 8-neighborhood. We also want each tile
to be considered independently from its neighbors when creating a
tiling.

Next we study the properties that the eight tiles of the 8-
neighborhood must satisfy, without constraining excessively their
occluding pixels.



(a) A tile and its occluders as a grid
of pixels at resolution 4×4.

(b) Pairs of separating lines and as-
sociated visibility areas.

Figure 2: Visibility information from the top segment of a tile to
the bottom segment (actually, a u-shape). Occluding tile pixels are
blue, and empty pixels are white.

3.2.1 ū Occlusion Scheme

A simple occlusion scheme could consider that a tile is fully occlud-
ing if all lines between the two pairs of opposite segments (sides)
of a tile (North/South and East/West in Figure 3a) are blocked by
occluding pixels. Unfortunately, this scheme is not sufficient to
verify full occlusion for a set of tiles respecting these conditions.
Figure 3b gives a counter-example of how a diagonal line could go
through these validated configurations without being detected.

Extending the opposite segment to the other two segments of
a tile (opposite segment plus the two entire side segments) would
certainly provide sufficient conditions, but this scheme would also
force corner pixels adjacent to the incoming segment to be occlud-
ers. This would result in tiles that are too constrained, with poten-
tially visible patterns.

(a) A simple occlusion scheme with
only two pairs of segments, East/West
in red and North/South in yellow.

(b) A view line can
traverse in diagonal
these tiles, while sat-
isfying the conditions
in (a).

Figure 3: Insufficient occluding conditions.

In order to ensure full occlusion by the combined occlusion of
adjacent pairs of tiles, while allowing for more flexibility in occlud-
ers configurations, we propose the conditions shown in Figure 4a.
The base of the ū-shape is the receiving segment, augmented with
the two sides that have a height of half a tile segment. If all indi-
vidual tiles respect the ū-shape occlusion for all four directions, it
is guaranteed that any view line emanating from a view cell will
be blocked by its first-ring of tiles. We can see in Figure 4b that
any view line starting from within the view cell and going through
tiles X and Y is blocked by the North/South occlusion scheme in
X, and by the West/East or South/North occlusion schemes in Y.
These four constraints are a necessary and sufficient condition for
Occlusion Tiling for each tile. Although other occlusion schemes
may be used to ensure first-ring occlusion, we found this one quite
satisfactory. A big advantage of this scheme is that by respecting
these four conditions, each tile can be considered independently of
its neighbors when generating a tiling.

North / South East / West South / North West / East

(a) ū-shape : The four occlusion constraints (From / To)
that must be applied to all tiles of a tiling set.

(b) The occlusion of the view lines beyond the
first ring of neighborhood.

Figure 4: Occlusion scheme for each tile of a tiling set.

3.2.2 Computing Constrained Visibility

In order to test whether a tile respects the four occlusion constraints,
we use the notion of separating lines [7], which is equivalent to
separating planes in 3D. This is accomplished for all four condi-
tions by the pseudo-code in Figure 5, provided for the North/South
direction. Figure 2b shows the separating lines generated for this
configuration.

This procedure computes all separating lines between every
combination of two occluders from the tested tile, and checks if
it intersects any (third) occluder. It is adapted and executed for
each of the four directions (North/South, East/West, South/North,
and West/East).

For n occluders, the naive algorithm complexity is O(n3), as it
tests each ordered combination of occluders (o, o′, o′′). Each triplet
is tested only once.

Figure 6 shows a particular case where o, o′, and o′′ are aligned.
If o′′ is on the same side of the separating line than o′, it must be
below o to be a valid separating line. If o′′ is on the other side than
o′, it must be above o to be a valid separating line.

To keep the algorithm in Figure 5 simple, some details about
other special cases have been left out, for instance, additional visi-
bility tests between vertex A and occluders’ bottom left corners, B
and bottom right corners, MDA and top left corners, MBC and top
right corners, A and MBC, and B and MDA. Nevertheless, these tests
do not affect the complexity of the algorithm. These configurations
are easily handled if A is considered as a top right corner, B as a top
left corner, MDA as a bottom right corner, and MBC as a bottom left
corner.

Other visibility tests are needed between A and MDA, and be-
tween B and MBC. This is handled by testing if there is any oc-
cluder on the borders of the tile between A and MDA or just below
MDA, and between B and MBC or just below MBC. Figure 2b shows
a border separating line in blue.

3.2.3 Full Resolution Generation

An exhaustive computation of all occluders configurations quickly
becomes impossible with an O(n3) complexity, since even a small



MDA := middle_o f ([DA]);
MBC := middle_o f ([BC]);
Procedure is_occluded
{
for all occluder o ∈ ABCD do

for all occluder o′, o′ 6= o do
d1 = (top_left_corner(o), bottom_right_corner(o′));
d2 = (top_right_corner(o), bottom_left_corner(o′));
{// if d1 ∩o | d1 ∩o′, d1 is not treated}
if d1 intersects ū-shape then

d1_blocked = false;
for all occluder o′′, o′′ 6= o & o′′ 6= o′ do

if d1∩ o′′ then
d1_blocked = true;
break;

end if
end for
if not d1_blocked then

return false;
end if

end if
{// test d2 the same way as d1}
...

end for
end for
return true; {// the tile is occluding, cf. Figure 7a.}
}
{Note that for each occluder, only “free” corners are processed (i.e., not shared by
another occluder). If all its corners are shared with other occluders, this occluder is
skipped.
Also note that paired separating lines between two occluders (as in Figure 2b) are
computed separately, and do not result from the same (o,o′) combination. }

Figure 5: Procedure for occlusion testing for the North/South di-
rection.

(a) Separating line created:
free degree of rotation.

(b) Separating line not created:
no degree of rotation.

Figure 6: A particular construction case of separating lines: if a
separating line can be created, a hole exists and the tile is not oc-
cluding.

8× 8 resolution produces 264 tiles to test. Instead we rely on a
stochastic generation of occluders, with a probability assigned to
all pixels of a tile (leading to a density of occluders). With a ran-
dom generator covering the full sequence of binary values (empty
or occluded) associated with a configuration, we can investigate dif-
ferent and uncorrolated configurations, leading to more tiles with
more variations than with a sequential search.

Some of the results from Table 1 appear in Figure 7. Each test se-
ries has been computed in about 90 minutes on an Intel Core 2 Duo
CPU running at 2.1 GHz.

One can observe that at a given resolution for the same process-
ing time, increasing occluder density reduces the number of tested
tiles, but more occluding tiles are found. Also, for a given occluder
density, the number of tiles tested decreases rapidly as tile reso-
lution increases, but more occluding tiles are found. Setting the
desired occluder density is therefore key to finding occluding tiles:
a density too low will produce too few tiles, and a density too high
will lead to a longer time to test tiles.

Resolution Occluder density Tiles found / tested
16×16 1/4 (25%) 2,960 / 260,725
16×16 1/5 (20%) 209 / 1,064,670
16×16 1/6 (16,6%) 5 / 2,482,720
16×16 1/7 (14,3%) 0 / 4,399,280
32×32 1/4 (25%) 329 / 801
32×32 1/5 (20%) 112 / 3,710
32×32 1/6 (16,6%) 9 / 19,608
32×32 1/7 (14,3%) 0 / 62,224
64×64 1/4 (25%) 8 / 8
64×64 1/5 (20%) 10 / 10
64×64 1/6 (16,6%) 10 / 20
64×64 1/7 (14,3%) 4 / 59
64×64 1/8 (12,5%) 2 / 244
64×64 1/9 (11,1%) 0 / 909

Table 1: Occluder density and number of tiles found.

(a) 9 occluding tiles
of 16× 16 with den-
sity 1/5 (20%).

(b) 9 occluding tiles
of 32× 32 with den-
sity 1/5 (20%).

(c) 4 occluding tiles
of 64× 64 with den-
sity 1/7 (14,3%).

Figure 7: A few computed occluding tiles.

Our method gives good results for resolutions lower than 32×32
and occluder density around 20%. For tiles with large resolutions,
computing constrained visibility becomes too expensive. While an
incremental processing of occluders or a hierarchical classification
of occluders would improve the algorithm’s complexity, it would
not increase the potential for a tile to be an occluding tile.

3.2.4 Multi-resolution Generation

With the aim of reducing generation time, we propose a comple-
mentary method to guide stochastic search with a multi-resolution
approach.

The four steps to generate derived tiles are:

1. Generate a random tile of an n× n resolution that satisfies
occlusion in the four directions.

2. Double the resolution (2n× 2n) of the tile; a pixel becomes
a set of 2×2 pixels with the same definition.

3. Mutate pixels in the 2n× 2n resolution by randomly mov-
ing occluders according to a correlation coefficient (set by a
user, locally or globally). This correlation coefficient is pro-
portional to the tile size. Each new configuration is then tested
for occlusion.

4. Repeat steps 2 and 3 with the resulting mutated tiles that
passed the occlusion test until the desired resolution is
reached.

Figure 8 shows some results for this method. Here we set to 100
the maximum number of mutations to operate on a lower resolution
tile before rejecting it, thus allowing for less similar higher reso-
lution tiles. To assess the efficiency of this optimization, an 8× 8
occluding tile is found in about one second, and 100 16× 16 tiles



are derived from it in less than 36 seconds for a 20% occlusion
density, whereas the original method finds 200 occluding tiles in
90 minutes. These operations guide effectively the search of solu-
tions, approximately multiplying by 10 the number of tiles found
and dividing by 10 the search time.

Figure 8: Five 8×8 occluding tiles with derived 16×16 occluding
tiles. One 8×8 tile did not result in any valid derived tile.

3.3 Customizing Tiles

Completely randomly generated tiles might have some applications,
but this is fairly limited. In order to provide a better controlled gen-
eration usable by artists, we use a painting system to set probabili-
ties associated with pixels in specific tiles. In Figure 9a, computed
in 14 seconds, the painted image is divided in a set of 7×7 occlud-
ing tiles, each of resolution 8×8. White to black pixels are mapped
to pixel occluder probabilities linearly scaled from 20% to 100%.
The same painted image is used in Figure 9c to generate tiles of res-
olution 32×32. It is computed in 1765 seconds, with an occluding
density linearly scaled from 16,6% to 100%.

4 APPLICATION: EXTRUDED BUILDINGS IN A 3D CITY

We used our method to create a city, shown in Figure 10. Each oc-
cluding pixel in a tile is instantiated as a building (i.e., a 3D textured
box), and visibility is limited within the first ring of tiling, provided
that the camera is located below the height of the smallest building.
With our method, no PVS is needed for this scene, and all poly-
gons located beyond the first ring of tiling can simply be neglected.
Therefore, only the polygons in the current view cell (in blue) and
in the first ring of tiles (in red) need to be rendered.

In order to give a more realistic aspect to our cities, additional
constraints must be handled. Amongst those, the observer should
be able to navigate freely on tiles, and buildings should exhibit dif-
ferent heights.

4.1 Navigation

To provide navigation within and between tiles, two constraints are
added. First, we ensure that a path exists between opposite sides
of a tile, i.e., from North to South, and from West to East. Second,
we enforce that a tile cannot be added to the set if a border shared
by two tiles cannot be traversed. This is expressed as a form of
Wang tile neighborhood constraint. Other constraints or properties
for certain cities or road systems can easily be added to the above
constraints. However, if they severely limit the number of eligi-
ble tiles, these constraints should rather be integrated in the rules
themselves that generate occluding pixels for increased efficiency.

The cities extruded in 3D in Figures 1 and 10 respect these con-
straints.

4.2 Building Heights

Because occlusion is computed in 2D, building heights are not con-
sidered during the tile generation process. However, if the observer

(a) Painted source image. (b) Resulting 7× 7 occluding tiles,
each of resolution 8×8.

(c) Resulting 7×7 occluding tiles, each of resolution
32×32.

Figure 9: Customizing the distribution of occluders. Each tile pixel
is generated with a probability linearly derived from the source im-
age.

navigates at a given maximum height from the ground, variations in
building heights are possible within a defined threshold, while still
ensuring occluded polygons beyond the first ring from the view cell
remain invisible. The formulation for this threshold follows, with
the concepts illustrated in Figure 11.

Assume a tile of n×n pixels, with each pixel of diagonal length
D (the tile has thus a diagonal length of nD). Assume also that
a building fits perfectly on one pixel. An observer at maximum
height Hobs moves on a tile, i.e., the view cell. In the worst case, the
observer is located at a corner of the tile, the building of smallest
height Hmin is in the opposite corner of the tile, and we want to
place a building of height H at pixel i ∈ [0,dn/2e−1] on the most
distant tile (belonging to the first-ring neighborhood), but ensure it
would be hidden by the smallest building. Note that the limit on i
of dn/2e− 1 is due to the fact that the building maximum allowed
height is in the central pixel of the tile, and this maximum height
diminishes symmetrically until reaching the border of the tile.

Let hmin = Hmin−Hobs and h = H−Hobs. We have

hmin

(n−1)D
=

h
nD+ iD

which simplifies to

h = hmin×
(

n+ i
n−1

)
. (1)

Therefore, any building of height lower than h + Hobs will be oc-
cluded by the smallest building.



(a) Aerial view. (b) Ground view.

Figure 10: The view cell in blue is surrounded by a first-ring neighborhood of tiles in red. The second ring and further away rings, drawn
in grey, are invisible from the view cell if the observer is located between the ground and the top of the smallest building. Here, 10 × 10
occluding tiles of resolution 16 × 16 are derived from a single 8 × 8 tile with a 20% occluder density and a permutation factor of 256. The
two connexity constraints are taken into account. The tiles were computed in 36 seconds and the tiling in 1 second.

nD

2

pixelpixel

nD

nD
D

current tile further tile

Figure 11: Variations on building height are related to the ob-
server’s height and the tiles’ size, the latter expressed in number
of pixels.

4.3 Multi-tiling

Another way to provide more flexibility on the variations of heights
for the occluders is to combine tiles of different resolutions. This
consists of mixing in the same physical space different grids, while
avoiding to have occluders intersect each other.

Four tiles of resolution n×n fit in one tile of resolution 2n×2n.
Our observation is based on the fact that if we keep the same aspect
ratio (building height / pixel size), the higher resolution (smaller)
pixels provide closer full occlusion for thinner-shorter buildings,
while the lower resolution pixels provide full occlusion further
away for larger-higher buildings. This is illustrated in Figure 12, for
a city made of two different resolutions of tilings. The first level,
as in Figure 10, has its view cell in blue and its first ring of tiles
in red. The second level has its view cell in green and its first ring
in orange. Because in the special case of Figure 10, smaller build-
ings are completely enclosed by or completely outside of the larger
buildings, during rendering, buildings connected to smaller pixels
are simply not displayed if they are located in occupied larger pix-
els.

5 CONCLUSIONS

We have presented a technique to generate tiles satisfying occlusion
properties in order to respect a bound on the maximum number of
objects visible from anywhere on an associated tiling.

The tiles are simple squares subdivided into a grid of occlud-
ers. This simple representation proved very efficient for occlu-
sion testing, multi-resolution generation, storage, and multiple con-
straint satisfaction. With our ū occlusion testing scheme in the four
canonical directions, each generated tile can be used independently

(a) Aerial view. (b) Ground view.

Figure 12: Combining multi-scales in a city: The first level view
cell is in blue, the second level in green. The first ring for first level
is in red, and for the second level, in orange.

First ring tile Second ring tile

Potentially visible tiles

View cell

Occluded tiles

Figure 13: Occlusions are based on an internal square at the base
of the tree. We can then compute the maximal extent of visible
elements.

from its neighboring tiles, and a simple first ring of occluding tiles
bounds the visibility.

Although visibility is computed in 2D, it remains conservative
for extruded objects from the occluding tile pixels. We demon-
strated its potential with the generation of cities. Occlusion Tiling
can be applied to other occluder instanciations, such as tree trunks
for a forest scene. In Figure 13, we show that the maximal extent
of the visible trees for a forest can be computed if we consider as
opaque the internal region within tree trunks.

Our algorithm can be integrated in a tool so that artists can eas-
ily control tile generation. Simple painted probabilities can pro-
vide controls over the general aspects of the tiles. Our method
can also be used to optimize object locations or to suggest object
displacements in order to increase occlusion. We believe we only
scratched the surface of its potential to assist artists modeling com-
plex worlds, while ensuring their efficient rendering and represen-
tation.



6 FUTURE WORK

While our current prototype shows some potential for real games,
we still need to improve generality for practical, more diverse game
environments. Extending visibility further than the first ring of tiles
could provide more flexibility in generated worlds, at an increased
cost of larger potentially visible sets of polygons. On-demand tile
generation could also be interesting for worlds with stronger full
occlusions.

In the short term, we will improve even more on the efficiency
of generating occluding tiles satisfying multiple properties. Our
current occlusion computation is mostly brute-force, and improve-
ments are still expected.

Another direction of research will consider how our tiles could
be adapted along certain directions of more open visibility, for in-
stance, to simulate straight roads in a city, or large parks. This could
be handled by studying how visibility propagates over tile combi-
nations, similarly to horizon culling algorithms.

In our representation, tiles are defined as squares subdivided into
grid cells. This structure proved simple, efficient, and general.
However, we would like to study other tile shapes and subdivision
patterns, thus breaking away from possible grid-like artifacts.

We would also like to investigate how layers of occluding tiles,
or even 3D tiles could release some inherent limitations of our cur-
rent 2D visibility representation.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their constructive
comments. They acknowledge financial support from GRAND.

REFERENCES

[1] T. Aila and V. Miettinen. dPVS: An Occlusion Culling System for
Massive Dynamic Environments. IEEE Computer Graphics and Ap-
plications, 24(2):86–97, Mar. 2004.

[2] J. M. Airey, J. H. Rohlf, and F. P. J. Brook. Towards Image Realism
with Interactive Update Rates in Complex Virtual Building Environ-
ments. In ACM Symposium on Interactive 3D Graphics, pages 41–50,
258, 1990.

[3] R. Berger. The Undecidability of the Domino Problem. Memoirs of
the Amer. Math. Soc. (66). American Mathematical Society, 1966.

[4] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang Tiles for
Image and Texture Generation. In Proc. SIGGRAPH ’03, pages 287–
294, 2003.

[5] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand. A Survey
of Visibility for Walkthrough Applications. IEEE Trans. Visualization
and Computer Graphics, 9(3):412–431, 2003.

[6] D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Conservative
Visibility and Strong Occlusion for Viewspace Partitioning of Densely
Occluded Scenes. Computer Graphics Forum, 17(3):243–253, Aug.
1998.

[7] S. Coorg and S. Teller. Temporally Coherent Conservative Visibility.
Comput. Geom. Theory Appl., 12:105–124, Feb. 1999.

[8] L. Downs, T. Möller, and C. H. Séquin. Occlusion Horizons for Driv-
ing Through Urban Scenery. In Proc. Symposium on Interactive 3D
Graphics, I3D ’01, pages 121–124, 2001.

[9] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conservative
Visibility Preprocessing Using Extended Projections. In Proc. SIG-
GRAPH ’00, pages 239–248, 2000.

[10] V. Koltun, Y. Chrysanthou, and D. Cohen-Or. Virtual Occluders: An
Efficient Intermediate PVS Representation. In Proc. Eurographics
Workshop on Rendering, pages 59–70, 2000.

[11] A. Lagae, C. S. Kaplan, C.-W. Fu, V. Ostromoukhov, J. Kopf, and
O. Deussen. Tile-Based Methods for Interactive Applications. In ACM
SIGGRAPH 2008 Courses, 2008.

[12] B. Lloyd and P. Egbert. Horizon Occlusion Culling for Real-time
Rendering of Hierarchical Terrains. In IEEE Visualization, 2002.

[13] S. Nirenstein, E. Blake, and J. Gain. Exact From-Region Visibility
Culling. In Proc. Eurographics Workshop on Rendering, pages 191–
202, 2002.

[14] G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion. Conservative Vol-
umetric Visibility with Occluder Fusion. In Proc. SIGGRAPH ’00,
pages 229–238, 2000.

[15] J. Stam. Aperiodic Texture Mapping. Technical Report R046,
European Research Consortium for Informatics and Mathematics
(ERCIM), 1997.

[16] S. J. Teller. Visibility Computations in Densely Occluded Polyhedral
Environments. Technical Report CSD-92-708, EECS Department,
University of California, Berkeley, 1992.

[17] H. Wang. Proving theorems by pattern recognition I. Commununica-
tions of the ACM, 3:220–234, Apr. 1960.

[18] L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. State of the Art in
Example-based Texture Synthesis. In Eurographics ’09, State of the
Art Report (EG-STAR), 2009.

[19] P. Wonka, M. Wimmer, and D. Schmalstieg. Visibility Preprocessing
with Occluder Fusion for Urban Walkthroughs. In Proc. Eurographics
Workshop on Rendering, pages 71–82, 2000.


