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Abstract. The use of augmented Lagrangian algorithm for optimal transport problems goes
back to Benamou & Brenier [5, Numer. Math., 2000] in the case where the cost corresponds
to the square of the Euclidean distance. It was recently extended in Benamou & Carlier [6, J.
Optim. Theory Appl., 2015] to the optimal transport with the Euclidean distance and Mean-
Field Games theory and in Benamou et al. [8, ESAIM Math. Model. Numer. Anal., 2016] to
the optimal transportation with Finsler distances. Our aim here is to show how one can use
this method to study the optimal partial transport problem with Finsler distance costs. To this
aim, we introduce a suitable dual formulation of the optimal partial transport which contains
all the information on the active regions and the associated flow. Then, we use a finite element
discretization with the FreeFem++ software to provide numerical simulations for the optimal
partial transportation. A convergence study for the potential together with the flux and the
active regions is given to validate the approach.

1. Introduction

The theory of optimal transportation deals with the problem to find the optimal way to
move materials from a given source to a desired target in such a way to minimize the work.
The problem was first proposed and studied by G. Monge in 1781 and then L. Kantorovich
made fundamental contributions to the problem in the 1940s by relaxing the problem into a
linear one. Since the late 80s, this subject has been investigated under various points of view
with many applications in image processing, geometry, probability theory, economics, partial
differential equations (PDEs) and other areas. For more informations on the optimal mass
transport problem, we refer the reader to the pedagogical books [26], [27], [2] and [25].

The standard optimal transport problem requires that the total mass of the source is equal
to the total mass of the target (balance condition of mass) and that all the materials of the
source must be transported. Here, we are interested in the optimal partial transportation.
That is the case where the balance condition of mass is excluded and the aim is to transport
effectively a prescribed amount of mass from the source to the target. In other words, the
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optimal partial transport problem aims to study the practical situation where only a part of
the commodity (respectively, consumer demand) of a prescribed total mass m needs to be
transported (respectively, fulfilled).

This generalized problem brings out additional variables. The problem was first studied
theoretically in [9] (see also [16]) in the case where the work is proportional to the square of the
Euclidean distance. Recently in [22], we give a complete theoretical study of the problem in the
case where the work is proportional to a Finsler distance dF (covering by the way the case of
the Euclidean distance), where dF is given as follows (see Section 2)

dF (x, y) := inf
ξ∈Lip([0,1];Ω)


1∫

0

F (ξ(t), ξ̇(t))dt : ξ(0) = x, ξ(1) = y

 .

Concerning numerical approximations for the optimal partial transport, Barrett & Prigozhin
[3] studied the case of the Euclidean distance by using an approximation based on nonlinear
approximated PDEs and Raviart–Thomas finite elements. Benamou et al. [7] and Chizat et
al. [10] introduced general numerical frameworks to approximate solutions to linear programs
related to the optimal transport (including the optimal partial transport). Their idea is based
on an entropic regularization of the initial linear programs. This is a static approach to optimal
transport-type problems and needs to use (approximated) values of dF (x, y).

In this article, we use a different approach (based mainly on [5], [6] and [22]) to compute the
solution of the optimal partial transport problem. We first show how one can directly reformulate
the unknown quantities (variables) of the optimal partial transport into an infinite-dimensional
minimization problem of the form:

min
φ∈V
F(φ) + G(Λφ),

where F ,G are l.s.c., convex functionals and Λ ∈ L(V,Z) is a continuous linear operator between
two Banach spaces. Thanks to peculiar properties of F and G in our situation, an augmented
Lagrangian method is applied effectively in the same spirit of [6] and [8]. We show that, for
the computation, we just need to solve linear equations (with a symmetric positive definite
coefficient matrix) or to update explicit formulations. It is worth to note that this method uses
only elementary operations without evaluating dF .

The article is organized as follows: In the next section, we introduce the optimal partial
transport problem and its equivalent formulations with a particular attention to the Kantorovich
dual formulation. In Section 3, we give a finite-dimensional approximation of the problem and
show that primal-dual solutions of the discretized problems converge to the ones of original
continuous problems. The details of the ALG2 algorithm is given in Section 4. Some numerical
examples are presented in Section 5. We terminate the article by an appendix where we give
proofs of some facts we need in the article.

2. Partial transport and its equivalent formulations

Let Ω be a connected bounded Lipschitz domain and F be a continuous Finsler metric on
Ω, i.e. F : Ω × RN −→ [0,+∞) is continuous and F (x, .) is convex, positively homogeneous of
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degree 1 in the sense

F (x, tv) = tF (x, v) ∀t > 0, v ∈ RN .

We assume moreover that F is nondegenerate in the sense that there exist positive constants
M1,M2 such that

M1|v| ≤ F (x, v) ≤M2|v| ∀x ∈ Ω, v ∈ RN .

Let µ, ν ∈ M+
b (Ω) be two Radon measures on Ω and mmax := min{µ(Ω), ν(Ω)}. Given a

total mass m ∈ [0,mmax], the optimal partial transport problem (or partial Monge–Kantorovich
problem, PMK for short) aims to transport effectively the total mass m from a supply subregion
of the source µ into a subregion of the target ν. The set of subregions of mass m is given by

Subm(µ, ν) :=
{

(ρ0, ρ1) ∈M+
b (Ω)×M+

b (Ω) : ρ0 ≤ µ, ρ1 ≤ ν, ρ0(Ω) = ρ1(Ω) = m
}
.

An element (ρ0, ρ1) ∈ Subm(µ, ν) is called a couple of active regions.
As for the optimal transport, one can work with different kinds of cost functions for the optimal
partial transport, i.e., in the formulation (2.1) below, dF (x, y) can be replaced by a general
measurable cost function c(x, y). However, in this article, we focus on the case where the cost
c = dF . So let us state the problem directly for dF . The PMK problem ([9], [16], [3], [22]) aims
to minimize the following problem

min

K(γ) :=

∫
Ω×Ω

dF (x, y)dγ : γ ∈ πm(µ, ν)

 , (2.1)

where

• dF is the Finsler distance on Ω associated with F , i.e.

dF (x, y) := inf


1∫

0

F (ξ(t), ξ̇(t))dt : ξ(0) = x, ξ(1) = y, ξ ∈ Lip([0, 1]; Ω)

 ;

• πm(µ, ν) is the set of transport plans of mass m, i.e.

πm(µ, ν) :=
{
γ ∈M+

b (Ω× Ω) : (πx#γ, πy#γ) ∈ Subm(µ, ν)
}
.

Here, πx#γ and πy#γ are the first and second marginals of γ. An optimal γ∗ is called an
optimal plan and (πx#γ∗, πy#γ

∗) is called a couple of optimal active regions.

Following [22], to study the PMK problem we use its dual problem that we call the dual partial
Monge–Kantorovich (DPMK) problem . To this aim, we consider LipdF the set of 1−Lipschitz
continuous functions w.r.t. dF given by

LipdF := {u : Ω −→ R | u(y)− u(x) ≤ dF (x, y) ∀x, y ∈ Ω}.

Then, the connection between the PMK problem and DPMK problem is summarized in the
following theorem.
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Theorem 2.1. Let µ, ν ∈ M+
b (Ω) be Radon measures and m ∈ [0,mmax]. The partial Monge–

Kantorovich problem has a solution σ∗ ∈ πm(µ, ν) and

K(σ∗) = max

D(λ, u) :=

∫
Ω

ud(ν − µ) + λ(m− ν(Ω)) : λ ≥ 0 and u ∈ LλdF

 , (2.2)

where

LλdF :=
{
u ∈ LipdF : 0 ≤ u(x) ≤ λ for any x ∈ Ω

}
.

Moreover, σ ∈ πm(µ, ν) and (λ, u) ∈ R+ × LλdF are solutions, respectively if and only if

u(x) = 0 for (µ− πx#σ)-a.e. x ∈ Ω, u(x) = λ for (ν − πy#σ)-a.e. x ∈ Ω

and u(y)− u(x) = dF (x, y) for σ-a.e. (x, y) ∈ Ω× Ω.

Proof. The proof follows in the same way of Theorem 2.4 in [22], where the authors study the

case Ω = RN . �

The DPMK problem (2.2) contains all the information concerning the optimal partial mass
transportation. However, for the numerical approximation of the optimal partial transportation
and to use the augmented Lagrangian method, we need to rewrite the problem into the form

inf
φ∈V
F(φ) + G(Λφ).

To do that, we consider the polar function F ∗ of F , which is defined by

F ∗(x, p) := sup {〈v, p〉 : F (x, v) ≤ 1} for x ∈ Ω, p ∈ RN .
Note that F ∗(x, .) is not the Legendre–Fenchel transform. It is easy to see that F ∗ is also a
continuous, nondegenerate Finsler metric on Ω and

〈v, p〉 ≤ F ∗(x, p)F (x, v) ∀x ∈ Ω, v, p ∈ RN .

Remark 2.2. Using the polar function F ∗, we can characterize the set LipdF as (see the ap-
pendix if necessary)

LipdF =
{
u : Ω −→ R |u is Lipschitz continuous and F ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω

}
.

Thanks to this remark, the DPMK problem (2.2) can be written as

max {D(λ, u) : 0 ≤ u(x) ≤ λ, u is Lipschitz continuous, F ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω} .
Moreover, we have

Theorem 2.3. Under the assumptions of Theorem 2.1, setting V := R × C1(Ω) and Z :=

C(Ω)N × C(Ω)× C(Ω), we have

K(σ∗) = − inf
{
F(λ, u) + G(Λ(λ, u)) : (λ, u) ∈ V

}
, (2.3)

where Λ ∈ L(V,Z) is given by

Λ(λ, u) := (∇u,−u, u− λ) ∀(λ, u) ∈ V,
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and F : V −→ (−∞,+∞], G : Z −→ (−∞,+∞] are the l.s.c. convex functions given by

F(λ, u) := −
∫

Ω
ud(ν − µ)− λ(m− ν(Ω)) ∀(λ, u) ∈ V ;

G(q, z, w) :=

{
0 if z(x) ≤ 0, w(x) ≤ 0, F ∗(x, q(x)) ≤ 1 ∀x ∈ Ω

+∞ otherwise
for (q, z, w) ∈ Z.

To prove this theorem we need the following lemma.

Lemma 2.1. Let λ ≥ 0 be fixed. For any u ∈ LλdF , there exists a sequence of smooth functions

uε ∈ C∞c (RN )
⋂
LλdF such that uε ⇒ u uniformly on Ω.

The result of the lemma is more or less known in some cases (see [23] for the case where the
function u is null on the boundary). The proof in the general case is quite technical and will be
given in the appendix.

Proof of Theorem 2.3. Thanks to Remark 2.2 and Lemma 2.1, we have

− inf
(λ,u)∈V

F(λ, u) + G(Λ(λ, u)) = sup


∫
Ω

ud(ν − µ) + λ(m− ν(Ω)) : λ ≥ 0, u ∈ C1(Ω) ∩ LλdF


= max

{
D(λ, u) : λ ≥ 0 and u ∈ LλdF

}
.

Using the duality (2.2), the proof is completed. �

To end up this section, we prove the following result that will be useful for the proof of the
convergence of our discretization.

Theorem 2.4. Under the assumptions of Theorem 2.1, we have

− inf
(λ,u)∈V

F(λ, u) + G(Λ(λ, u)) = min
{∫

Ω

F (x,
Φ

|Φ|
(x))d|Φ| : (Φ, θ0, θ1) ∈ Ψm(µ, ν)

}
, (2.4)

where

Ψm(µ, ν) :=
{

(Φ, θ0, θ1) ∈ Z∗ =Mb(Ω)N×Mb(Ω)×Mb(Ω) : θ0 ≥ 0, θ1 ≥ 0, θ1(Ω) = ν(Ω)−m

and −∇ · Φ = ν − θ1 − (µ− θ0) with Φ.n = 0 on ∂Ω
}
.

Actually, the minimal flow-type formulation

min
{∫

Ω

F (x,
Φ

|Φ|
(x))d|Φ| : (Φ, θ0, θ1) ∈ Ψm(µ, ν)

}
(2.5)
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introduces the Beckmann problem (see [4]) for the optimal partial transport with Finsler distance
costs. See here that in the balanced case, i.e., m = µ(Ω) = ν(Ω), the formulation (2.5) becomes

min
{∫

Ω

F (x,
Φ

|Φ|
(x))d|Φ| : Φ ∈Mb(Ω)N ,−∇ · Φ = ν − µ with Φ.n = 0 on ∂Ω

}
. (2.6)

An optimal solution Φ of the problem (2.6) is called an optimal flow of transporting µ onto
ν. As known from the optimal transport theory, the optimal flow gives a way to visualize the
transportation.

To prove Theorem 2.4, we will use the well-known duality arguments. For convenience, let us
recall here the Fenchel–Rockafellar duality. Let us consider the problem

inf
φ∈V
F(φ) + G(Λφ) (2.7)

where F : V −→ (−∞,+∞] and G : Z −→ (−∞,+∞] are convex, l.s.c. and Λ ∈ L(V,Z)
the space of linear continuous functions from V to Z. Using F∗ and G∗ the conjugate functions
(given by the Legendre–Fenchel transformation) of F and G, respectively, and Λ∗ is the adjoint
operator of Λ, it is not difficult to see that

sup
σ∈Z∗

(−F∗(−Λ∗σ)− G∗(σ)) ≤ inf
φ∈V
F(φ) + G(Λφ),

where Z∗ is the topological dual space associated with Z. This is the so called weak duality.
For the strong duality, which corresponds to equality we have the following well-known result.

Proposition 2.5 (cf. [14]). In addition, assume that there exists φ0 such that F(φ0) < +∞,
G(Λφ0) < +∞, G being continuous at Λφ0. Then the Fenchel–Rockafellar dual problem

sup
σ∈Z∗

(−F∗(−Λ∗σ)− G∗(σ)) (2.8)

has at least a solution σ ∈ Z∗ and inf (2.7) = max (2.8). Moreover, in this case, φ is a solution
to the primal problem (2.7) if and only if

−Λ∗σ ∈ ∂F(φ) and σ ∈ ∂G(Λφ). (2.9)

Proof of Theorem 2.4. We work with the uniform convergence for the spaces C(Ω)N , C(Ω) and
the norm ‖u‖C1 := max{‖u‖∞, ‖∇u‖∞} for C1(Ω). It is not difficult to see that the hypotheses
of Proposition 2.5 are satisfied. Now, let us compute the Fenchel–Rockafellar dual problem of
(2.3). Since F is linear, F∗(−Λ∗(Φ, θ0, θ1)) is finite (and always equals to 0) if and only if

−Λ∗(Φ, θ0, θ1) = −(m− ν(Ω), ν − µ) in V ∗

i.e.

〈Φ,∇u〉 − 〈θ0, u〉+ 〈θ1, u− λ〉 = λ(m− ν(Ω)) + 〈ν − µ, u〉 ∀(λ, u) ∈ V.
This implies that∫

Ω

∇udΦ =

∫
Ω

ud(ν − θ1)−
∫
Ω

ud(µ− θ0) for all u ∈ C1(Ω)
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and

−λ
∫
Ω

dθ1 = λ(m− ν(Ω)) ∀λ ∈ R.

These mean that
−∇ · Φ = ν − θ1 − (µ− θ0) with Φ.n = 0 on ∂Ω

and
θ1(Ω) = ν(Ω)−m.

We also have

G∗(Φ, θ0, θ1) =


∫
Ω

F (x,
Φ

|Φ|
(x))d|Φ| if θ0 ≥ 0, θ1 ≥ 0

+∞ otherwise

for any (Φ, θ0, θ1) ∈ Z∗.

Then the proof follows by Proposition 2.5. �

Remark 2.6. The optimality relations (2.9) reads

−∇ · Φ = ν − θ1 − (µ− θ0) and Φ · n = 0 on ∂Ω

θ1(Ω) = ν(Ω)−m

〈Φ,∇u〉 ≥ 〈Φ, q〉 ∀q ∈ C(Ω), F ∗(x, q(x)) ≤ 1 ∀x ∈ Ω

λ ∈ R+, u ∈ C1(Ω)
⋂
LλdF

u = 0, θ0-a.e. in Ω

u = λ, θ1-a.e. in Ω.

In fact, the optimality condition −Λ∗σ ∈ ∂F(φ) gives the first two equations and σ ∈ ∂G(Λφ)

gives the last four equations. Moreover, if Φ ∈ L1(Ω)N then the condition

〈Φ,∇u〉 ≥ 〈Φ, q〉, ∀q ∈ C(Ω), F ∗(x, q(x)) ≤ 1 ∀x ∈ Ω

can be replaced by
F (x,Φ(x)) = 〈∇u(x),Φ(x)〉 a.e. x ∈ Ω. (2.10)

However, it is not clear in general that Φ belongs to L1(Ω)N . In the case where Ω is convex
and F (x, v) := |v| the Euclidean norm (or some other uniformly convex and smooth norms), the
Lp regularity results are known under suitable assumptions on µ and ν (see e.g. [15], [11], [12],
and [24]). To our knowledge, the case of general Finsler metrics is still an open question.

In the case where Φ is a vector-valued measure, the condition (2.10) should be adapted to
the tangential gradient. Rigorous formulations using the tangential gradient with respect to a
measure as well as rigorous proofs in the general case can be found in the article [22] with

Ω = RN .

It is expected that θ0 ≤ µ and θ1 ≤ ν for optimal solutions (Φ, θ0, θ1) of the minimal flow
formulation (2.5). This is the case whenever m ∈ [(µ∧ν)(Ω),mmax], where µ∧ν is the common
mass measure of µ and ν, i.e. if µ, ν ∈ L1(Ω), then µ ∧ ν ∈ L1(Ω) and

(µ ∧ ν)(x) = min{µ(x), ν(x)} for a.e. x ∈ Ω.
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In general, the measure µ ∧ ν is defined by (see [1])

µ ∧ ν(A) = inf{µ(A1) + ν(A2) : disjoint Borel setsA1, A2, such that A1 ∪A2 = A}.

Proposition 2.7. Let m ∈ [(µ ∧ ν)(Ω),mmax] and (Φ, θ0, θ1) ∈ Z∗ be an optimal solution of
(2.5). Then θ0 ≤ µ and θ1 ≤ ν. Moreover, (µ− θ0, ν − θ1) is a couple of optimal active regions
and Φ is an optimal flow of transporting µ− θ0 onto ν − θ1.

Proof. The proof follows in the same way as Theorem 5.21 and Corollary 5.20 in [22]. �

Our next work is to compute an approximation of Φ (in fact, approximations of Φ, u, λ, θ0, θ1).
To do that, we will apply an augmented Lagrangian method to the DPMK problem (2.2).

3. Discretization and convergence

Coming back to the DPMK problem (2.2), our aim now is to give, by using a finite element
approximation, the discretized problem associated with (2.2). To begin with, let us consider
regular triangulations Th of Ω. For a fixed integer k ≥ 1, Pk is the set of polynomials of degree
less or equal k. Let Eh ⊂ H1(Ω) be the space of continuous functions on Ω and belonging to
Pk on each triangle of Th. We denote by Yh the space of vectorial functions such that their
restrictions belong to (Pk−1)N on each triangle of Th. Let f = ν−µ and fh ∈ Eh such that {fh}
converges weakly* to f in Mb(Ω).

Considering the finite-dimensional spaces

Vh = R× Eh, Zh = Yh × Eh × Eh,

we set

Λh(λ, u) := (∇u,−u, u− λ) ∈ Zh for (λ, u) ∈ Vh,

Fh(λ, u) := −〈u, fh〉 − λ(m− ν(Ω)) ∀(λ, u) ∈ Vh,
and

Gh(q, z, w) :=

{
0 if z ≤ 0, w ≤ 0, F ∗(x, q(x)) ≤ 1 a.e. x ∈ Ω

+∞ otherwise
for (q, z, w) ∈ Zh.

Then the finite-dimensional approximation of (2.2) reads

inf
(λ,u)∈Vh

Fh(λ, u) + Gh(Λh(λ, u)). (3.11)

The following result shows that this is a suitable approximation of (2.2).

Theorem 3.8. Assume that m < ν(Ω). Let (λh, uh) ∈ Vh be an optimal solution to the ap-
proximated problem (3.11) and (Φh, θ

0
h, θ

1
h) be an optimal dual solution to (3.11). Then, up to a

subsequence, (λh, uh) converges in R×C(Ω) to (λ, u) an optimal solution of the DPMK problem

(2.2) and (Φh, θ
0
h, θ

1
h) converges weakly* in Mb(Ω)N ×Mb(Ω)×Mb(Ω) to (Φ, θ0, θ1) an optimal

solution of (2.5).
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Proof. Since m < ν(Ω), {λh} is bounded in R and {uh} is bounded in (C(Ω), ‖.‖∞). From the
nondegeneracy of F and the definitions of Fh,Gh,Λh, we have that {uh} is equi-Lipschitz and

uh(y)− uh(x) ≤ dF (x, y), ∀x, y ∈ Ω.

Using the Ascoli–Arzela Theorem, up to a subsequence, uh ⇒ u uniformly on Ω and λh → λ.
Obviously, λ ≥ 0 and u ∈ LλdF . Now, by the optimality of (λh, uh) and of (Φh, θ

0
h, θ

1
h), we have

−Λ∗h(Φh, θ
0
h, θ

1
h) = −(m− ν(Ω), fh) in V ∗h

and
Fh(λh, uh) + Gh(Λh(λh, uh)) = −F∗h(−Λ∗h(Φh, θ

0
h, θ

1
h))− G∗h(Φh, θ

0
h, θ

1
h).

More concretely,

〈Φh,∇v〉 − 〈θ0
h, v〉+ 〈θ1

h, v − s〉 = s(m− ν(Ω)) + 〈fh, v〉 ∀(s, v) ∈ Vh, (3.12)

θ0
h ≥ 0, θ1

h ≥ 0, θ1
h(Ω) = ν(Ω)−m (3.13)

and

〈uh, fh〉+ λh(m− ν(Ω)) = sup {〈q,Φh〉 : q ∈ Yh, F ∗(x, q(x)) ≤ 1 a.e. x ∈ Ω} . (3.14)

In (3.12), taking v = 0 and s = 1 (respectively, v = s = 1), we see that {θ1
h} (respectively, {θ0

h})
is bounded in Mb(Ω). Moreover, using (3.14) and the boundedness of (λh, uh) we deduce that

{Φh} is bounded in Mb(Ω)N . So, up to a subsequence,

(Φh, θ
0
h, θ

1
h) ⇀ (Φ, θ0, θ1) in Mb(Ω)N ×Mb(Ω)×Mb(Ω)− w∗.

Using (3.12) and (3.13), it is clear that (Φ, θ0, θ1) satisfies

〈Φ,∇v〉 − 〈θ0, v〉+ 〈θ1, v − s〉 = s(m− ν(Ω)) + 〈f, v〉 ∀(s, v) ∈ V
and

θ0 ≥ 0, θ1 ≥ 0, θ1(Ω) = ν(Ω)−m,

i.e., (Φ, θ0, θ1) is feasible for the minimal flow problem (2.5).
Next, let us show the optimality of (λ, u) and of (Φ, θ0, θ1), i.e.,∫

Ω

F (x,
Φ

|Φ|
(x))d|Φ| = 〈u, ν − µ〉+ λ(m− ν(Ω)). (3.15)

We fix q ∈ C(Ω)N such that F ∗(x, q(x)) ≤ 1 ∀x ∈ Ω, and we consider qh ∈ Yh such that
‖qh − q‖L∞(Ω) → 0 as h→ 0. We see that

F ∗(x, qh(x)) = F ∗(x, q(x)) + F ∗(x, qh(x))− F ∗(x, q(x)) ≤ 1 +O(h) a.e. x ∈ Ω.

By taking
qh

1 +O(h)
, we can assume that qh ∈ Yh, F

∗(x, qh(x)) ≤ 1 a.e. x ∈ Ω and ‖qh −

q‖L∞(Ω) → 0 as h→ 0. Using (3.14), we have

〈q,Φ〉 = 〈qh,Φh〉+ 〈q,Φ− Φh〉+ 〈q − qh,Φh〉

≤ sup {〈qh,Φh〉 : qh ∈ Yh, F ∗(x, qh(x)) ≤ 1, a.e. x ∈ Ω}+O(h)

= 〈uh, fh〉+ λh(m− ν(Ω)) +O(h).
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Letting h→ 0, we get

〈q,Φ〉 ≤ 〈u, ν − µ〉+ λ(m− ν(Ω)) for any q ∈ C(Ω)N , F ∗(x, q(x)) ≤ 1 ∀x ∈ Ω.

Taking supremum in q, we obtain∫
Ω

F (x,
Φ

|Φ|
(x))d|Φ| ≤ 〈u, ν − µ〉+ λ(m− ν(Ω)).

At last, thanks to the duality equality (2.4), this implies (3.15), the optimality of (λ, u) and of
(Φ, θ0, θ1). �

Remark 3.9. In the case m = mmax (called the unbalanced transport), the DPMK problem
has a simpler formulation. So for the purpose of implementation, we distinguish the two cases:
the partial transport and the unbalanced transport. In the unbalanced case, let us assume that
m = mmax = ν(Ω) (i.e., µ(Ω) ≥ ν(Ω)), the DPMK problem (2.2) can be written as

max
u∈LipdF ,u≥0

∫
Ω

ud(ν − µ). (3.16)

By using Vh = Eh, Zh = Yh × Eh,Λhu = (∇u,−u) and

Gh(q, z) =

{
0 if z ≤ 0, F ∗(x, q(x)) ≤ 1 a.e. x ∈ Ω

+∞ otherwise,

a finite-dimensional approximation can be given by

inf
u∈Vh

−〈u, fh〉+ Gh(Λhu). (3.17)

As in Theorem 3.8, we can prove the convergence of this finite-dimensional approximation to
the original one (3.16). More precisely, we have

Proposition 3.10. Assume that m = ν(Ω). Let uh ∈ Vh be an optimal solution to the ap-
proximated problem (3.17) and (Φh, θ

0
h) be an optimal dual solution to (3.17). Then, up to a

subsequence and translation by constant, uh converges to u an optimal solution of the DPMK
problem (3.16) and (Φh, θ

0
h) converges to (Φ, θ0) an optimal solution of (2.5) with θ1 = 0.

The proof of this proposition is similar to the proof of Theorem 3.8.

4. Solving the discretized problems

Our task now is to solve the finite-dimensional problems (3.11) and (3.17). First, let us recall
the augmented Lagrangian method we are dealing with.

4.1. ALG2 method. Assume that V and Z are two Hilbert spaces. Let us consider the problem

inf
φ∈V
F(φ) + G(Λφ) (4.18)

where F : V −→ (−∞,+∞] and G : Z −→ (−∞,+∞] are convex, l.s.c. and Λ ∈ L(V,Z).
We introduce a new variable q ∈ Z to the primal problem (4.18) and we rewrite it in the form

inf
(φ,q)∈V×Z : Λφ=q

F(φ) + G(q).
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The augmented Lagrangian is given by

L(φ, q;σ) := F(φ) + G(q) + 〈σ,Λφ− q〉+
r

2
|Λφ− q|2, r > 0.

The so called ALG2 algorithm is given as follows: For given q0, σ0 ∈ Z, we construct the
sequences {φi}, {qi} and {σi}, i = 1, 2, ..., by

• Step 1: Minimizing inf
φ
L(φ, qi;σi), i.e.,

φi+1 ∈ arg min
φ∈V

{
F(φ) + 〈σi,Λφ〉+

r

2
|Λφ− qi|2

}
.

• Step 2: Minimizing inf
q∈Z

L(φi+1, q;σi), i.e.,

qi+1 ∈ arg min
q∈Z

{
G(q)− 〈σi, q〉+

r

2
|Λφi+1 − q|2

}
.

• Step 3: Update the multiplier σ,

σi+1 = σi + r(Λφi+1 − qi+1).

For the theory of this method and its interpretation, we refer the reader to [13], [19], [20], [17],
[18]. Here, we recall the convergence result of this method which is enough for our discretized
problems.

Theorem 4.11 (cf. [13], Theorem 8). Fixed r > 0, assuming that V = Rn, Z = Rm and that
Λ has full column rank. If there exists a solution to the optimality relations (2.9) then {φi}
converges to a solution of the primal problem (2.7) and {σi} converges to a solution of the dual
problem (2.8). Moreover, {qi} converges to Λφ∗, where φ∗ is the limit of {φi}.

The proof of this result in the case of finite-dimensional spaces V and Z can be found in [13].
The result holds true in infinite-dimensional Hilbert spaces under additional assumptions. One
can see [20] and [17] for more details in this direction.

Next, we use the ALG2 method for the discretized problems. To simplify the notations, let us
drop out the subscript h in (λh, uh) and (Φh, θ

0
h, θ

1
h). Thanks to Remark 3.9, we treat separately

the case where m = ν(Ω) and the case where m < ν(Ω).

4.2. Partial transport (m < ν(Ω)): Given (qi, zi, wi), (Φi, θ
0
i , θ

1
i ) at the iteration i, we com-

pute

• Step 1:

(λi+1, ui+1) ∈ arg min
(λ,u)∈Vh

Fh(λ, u) + 〈(Φi, θ
0
i , θ

1
i ),Λh(λ, u)〉+

r

2
|Λh(λ, u)− (qi, zi, wi)|2

= arg min
(λ,u)∈Vh

−〈u, fh〉 − λ(m− ν(Ω)) + 〈Φi,∇u〉+ 〈θ0
i ,−u〉+ 〈θ1

i , u− λ〉

+
r

2
|∇u− qi|2 +

r

2
|u+ zi|2 +

r

2
|u− λ− wi|2.
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• Step 2:

(qi+1, zi+1, wi+1) ∈ arg min
(q,z,w)∈Zh

Gh(q, z, w)− 〈(Φi, θ
0
i , θ

1
i ), (q, z, w)〉+

r

2
|Λh(λi+1, ui+1)− (q, z, w)|2

= arg min
(q,z,w)∈Zh

I[F ∗(.,q(.))≤1](q) + I[z≤0](z) + I[w≤0](w)− 〈Φi, q〉 − 〈θ0
i , z〉 − 〈θ1

i , w〉

+
r

2
|∇ui+1 − q|2 +

r

2
|ui+1 + z|2 +

r

2
|ui+1 − λi+1 − w|2.

• Step 3: Update the multiplier

(Φi+1, θ
0
i+1, θ

1
i+1) = (Φi, θ

0
i , θ

1
i ) + r(∇ui+1 − qi+1,−ui+1 − zi+1, ui+1 − λi+1 − wi+1).

Before giving numerical results, let us take a while to comment the above iteration. Overall,
Step 1 is a quadratic programming. Step 2 can be computed easily in many cases and Step 3
updates obviously. We denote by ProjC(.) the projection onto a closed convex subset C.

• In Step 1, we split the computation of the couple (λi+1, ui+1) into two steps: We first
minimize w.r.t. u to compute ui+1 and then we use ui+1 to compute λi+1. More precisely,
we proceed for Step 1 as follows:
(1) For ui+1,

ui+1 ∈ arg min
u∈Eh

−〈u, fh〉+ 〈Φi,∇u〉+ 〈θ0
i ,−u〉+ 〈θ1

i , u〉

+
r

2
|∇u− qi|2 +

r

2
|u+ zi|2 +

r

2
|u− λi − wi|2.

This is equivalent to

r〈∇ui+1,∇v〉+ 2r〈ui+1, v〉 = 〈fh, v〉 − 〈Φi,∇v〉+ 〈θ0
i , v〉 − 〈θ1

i , v〉
+ r〈qi,∇v〉 − r〈zi, v〉+ r〈λi + wi, v〉 ∀v ∈ Eh.

Remark here that the equation is linear with a symmetric positive definite coefficient
matrix.

(2) For λi+1, it is computed explicitly

λi+1 ∈ arg min
s∈R

−s(m− ν(Ω)) + 〈θ1
i , ui+1 − s〉+

r

2
〈ui+1 − s− wi, ui+1 − s− wi〉

= −
ν(Ω)−m−

∫
Ω

θ1
i + r

∫
Ω

(wi − ui+1)

r
∫
Ω

1
.

• In Step 2, the variables q, z, w are independent. So, we solve them separately:
(1) For zi+1 and wi+1, if we choose P2 finite element for zi+1 and wi+1, at vertex xk,

zi+1(xk) = Proj[r∈R: r≤0]

(
−ui+1(xk) +

θ0
i (xk)

r

)
= min

(
−ui+1(xk) +

θ0
i (xk)

r
, 0

)
;
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and

wi+1(xk) = Proj[r∈R: r≤0]

(
ui+1(xk)− λi+1 +

θ1
i (xk)

r

)
= min

(
ui+1(xk)− λi+1 +

θ1
i (xk)

r
, 0

)
.

(2) For qi+1, if we choose P1 finite element for qi+1, then at each vertex xl

qi+1(xl) = ProjBF∗(xl,.)

(
∇ui+1(xl) +

Φi(xl)

r

)
,

where BF ∗(x,.) :=
{
q ∈ RN : F ∗(x, q) ≤ 1

}
the unit ball for F ∗(x, .).

It remains to explain how we compute the projection onto BF ∗(xl,.). This issue is recently
discussed in [8] for Riemann-type Finsler distances and for crystalline norms. For the convenience
of the reader, we retake here the case where the unit ball of F (x, .) is (not necessarily symmetric)
convex polytope. For short, we ignore the dependence of x in F and F ∗. Given d1, ..., dk 6= 0
such that, for any 0 6= v ∈ RN , max

1≤i≤k
{〈v, di〉} > 0. We consider the nonsymmetric Finsler metric

given by
F (v) := max

1≤i≤k
{〈v, di〉} for any v ∈ RN .

It is not difficult to see that the unit ball B∗ corresponding to F ∗ is exactly the convex hull of
{di},

B∗ = conv(di, i = 1, ..., k).

Thus we need to compute the projection onto the convex hull of finite points. In dimension 2,
the projection onto B∗ can be performed as follows: Compute the successive vertices S1, ..., Sn.
If q /∈ B∗, then compute the projections of q onto the segments [Si, Si+1] and compare among
these projections to chose the right one. Another way is as the one in [8]: Compute outward
orthogonal vectors v1, ..., vn (Fig. 1). If q belongs to [Si, Si+1] + R+vi then the projection
coincides with the one on the line through Si, Si+1. If q belongs to the sector Si+R+vi−1 +R+vi
the projection is Si.

Figure 1. Illustration of the projection
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4.3. Unbalanced transport (m = ν(Ω)): Thanks to Remark 3.9, we can reduce the al-
gorithm in this particular case by ignoring the variable λ. With similar considerations for
Λhu = (∇u,−u), we get the following iteration

• Step 1:

ui+1 ∈ arg min
u∈Eh

−〈u, fh〉+ 〈Φi,∇u〉+ 〈θ0
i ,−u〉+

r

2
|∇u− qi|2 +

r

2
|u+ zi|2.

Equivalently,

r〈∇ui+1,∇v〉+ r〈ui+1, v〉 = 〈fh, v〉 − 〈Φi,∇v〉+ 〈θ0
i , v〉+ r〈qi,∇v〉 − r〈zi, v〉, ∀v ∈ Eh.

• Step 2:
(1) For zi+1, choosing P2 finite element for zi+1, then at each vertex xk,

zi+1(xk) = Proj[r∈R: r≤0]

(
−ui+1(xk) +

θ0
i (xk)

r

)
= min

(
−ui+1(xk) +

θ0
i (xk)

r
, 0

)
.

(2) For qi+1, choosing P1 finite element, at vertex xl,

qi+1(xl) = ProjBF∗(xl,.)

(
∇ui+1(xl) +

Φi(xl)

r

)
.

• Step 3: (Φi+1, θ
0
i+1) = (Φi, θ

0
i ) + r(∇ui+1 − qi+1,−ui+1 − zi+1).

5. Numerical experiments

For the numerical implementation, we use the FreeFem++ software [21] and base on [5], [6].
We use P2 finite element for ui, zi, wi, θ

0
i , θ

1
i and P1 finite element for Φi, qi.

5.1. Stopping criterion. In computational version, the measures µ and ν are approximated by
non-negative regular functions that we denote again by µ and ν. We use the following stopping
criteria:

• For the partial transport:

(1) MIN-MAX := min

{
min

Ω
u(x), λ−max

Ω
u(x),min

Ω
θ0(x),min

Ω
θ1(x)

}
.

(2) Max-Lip := sup
Ω

F ∗(x,∇u(x)).

(3) DIV := ‖∇ · Φ + ν − θ1 − µ+ θ0‖L2 .
(4) DUAL := ‖F (x,Φ(x))− Φ(x) · ∇u‖L2 .

(5) MASS :=

∣∣∣∣∫ (ν − θ1)dx−m

∣∣∣∣.
• For the unbalanced transport: We change

(1) MIN-MAX := min

{
min

Ω
u(x),min

Ω
θ0(x)

}
.

(2) DIV := ‖∇ · Φ + ν − µ+ θ0‖L2 .

We expect MIN-MAX ≥ 0,Max-Lip ≤ 1; DIV, DUAL and MASS are small.
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5.2. Some examples. In all the examples below, we take Ω = [0, 1] × [0, 1]. We test for the
Riemannian case and the crystalline case. For the latter, we consider the Finsler metric of the
form F (x, v) = max

1≤i≤k
{〈v, di〉} with given directions d1, ..., dk such that for any 0 6= v ∈ R2,

max
1≤i≤k

{〈v, di〉} > 0.

5.2.1. For the unbalanced transport.

Example 5.12. Taking µ = 3L2
Ω and ν = δ(0.5,0.5) the Dirac mass at (0.5, 0.5). The Finsler

metric is the Euclidean one. The optimal flow is given in Fig. 2. The stopping criterion at each
iteration is given in Fig. 3.

IsoValue
-1.40845
1.77465
4.95775
8.14086
11.324
14.5071
17.6902
20.8733
24.0564
27.2395
30.4226
33.6057
36.7888
39.9719
43.155
46.3381
49.5212
52.7043
55.8874
59.0705

Vec Value
0
0.0740338
0.148068
0.222101
0.296135
0.370169
0.444203
0.518236
0.59227
0.666304
0.740338
0.814371
0.888405
0.962439
1.03647
1.11051
1.18454
1.25857
1.33261
1.40664

Figure 2. Optimal flow for µ = 3, ν = δ(0.5,0.5), F (x, v) = |v|.
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Figure 3. Stopping criterion at each iteration
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Example 5.13. We take µ and ν as in the previous example, and the Finsler metric given
by F (x, v) := |v1| + |v2| for v = (v1, v2) ∈ R2. This corresponds to the crystalline norm with
d1 = (1, 1), d2 = (−1, 1), d3 = (−1,−1) and d4 = (1,−1). The optimal flow is given in Fig. 4
and the stopping criterion at each iteration is given in Fig. 5.

IsoValue
-1.40845
1.77465
4.95775
8.14086
11.324
14.5071
17.6902
20.8733
24.0564
27.2395
30.4226
33.6057
36.7888
39.9719
43.155
46.3381
49.5212
52.7043
55.8874
59.0705

Vec Value
0
0.172759
0.345519
0.518278
0.691037
0.863797
1.03656
1.20932
1.38207
1.55483
1.72759
1.90035
2.07311
2.24587
2.41863
2.59139
2.76415
2.93691
3.10967
3.28243

Figure 4. Optimal flow for µ = 3, ν = δ(0.5,0.5), F (x, (v1, v2)) = |v1|+ |v2|.
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Figure 5. Stopping criterion at each iteration
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5.2.2. For the partial transport.

Example 5.14. Taking µ = 4χ[(x−0.3)2+(y−0.2)2<0.03] and ν = 4χ[(x−0.7)2+(y−0.8)2<0.03]. The mass

of the transport is m :=
ν(Ω)

2
. We test for different Finsler metrics. On each figure below, the

subfigure at left illustrates the unit ball of F and the subfigure at right gives the numerical result
(see Figs 6, 7, 8 and 9). The stopping criteria are summarized in Table 1.

(a) The unit ball of F

IsoValue
-4.21111
-3.74444
-3.27778
-2.81111
-2.34444
-1.87778
-1.41111
-0.944444
-0.477778
-0.0111111
0.455556
0.922222
1.38889
1.85556
2.32222
2.78889
3.25556
3.72222
4.18889
4.65556

Vec Value
0
0.0369496
0.0738992
0.110849
0.147798
0.184748
0.221697
0.258647
0.295597
0.332546
0.369496
0.406445
0.443395
0.480345
0.517294
0.554244
0.591193
0.628143
0.665092
0.702042

(b) Optimal flow

Figure 6. Case 1: F (x, v) = |v|.

(a) The unit ball of F

IsoValue
-4.21111
-3.74444
-3.27778
-2.81111
-2.34444
-1.87778
-1.41111
-0.944444
-0.477778
-0.0111111
0.455556
0.922222
1.38889
1.85556
2.32222
2.78889
3.25556
3.72222
4.18889
4.65556

Vec Value
0
0.0308273
0.0616546
0.0924819
0.123309
0.154137
0.184964
0.215791
0.246619
0.277446
0.308273
0.3391
0.369928
0.400755
0.431582
0.46241
0.493237
0.524064
0.554892
0.585719

(b) Optimal flow

Figure 7. Case 2: The crystalline case with d1 = (1, 1), d2 = (−1, 1), d3 =
(−1,−1) and d4 = (1,−1).
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(a) The unit ball of F

IsoValue
-4.21111
-3.74444
-3.27778
-2.81111
-2.34444
-1.87778
-1.41111
-0.944444
-0.477778
-0.0111111
0.455556
0.922222
1.38889
1.85556
2.32222
2.78889
3.25556
3.72222
4.18889
4.65556

Vec Value
0
0.051695
0.10339
0.155085
0.20678
0.258475
0.31017
0.361865
0.41356
0.465255
0.51695
0.568645
0.62034
0.672035
0.72373
0.775425
0.82712
0.878815
0.93051
0.982205

(b) Optimal flow

Figure 8. Case 3: The crystalline case with d1 = (1, 0), d2 = (
1

5
,
1

5
), d3 =

(−1

5
,
1

5
), d4 = (−1

5
,−1

5
) and d5 = (

1

5
,−1

5
) makes the transport more expensive

in the direction of the vector (1, 0).

(a) The unit ball of F

IsoValue
-4.21111
-3.74444
-3.27778
-2.81111
-2.34444
-1.87778
-1.41111
-0.944444
-0.477778
-0.0111111
0.455556
0.922222
1.38889
1.85556
2.32222
2.78889
3.25556
3.72222
4.18889
4.65556

Vec Value
0
0.0705831
0.141166
0.211749
0.282332
0.352915
0.423498
0.494082
0.564665
0.635248
0.705831
0.776414
0.846997
0.91758
0.988163
1.05875
1.12933
1.19991
1.2705
1.34108

(b) Optimal flow

Figure 9. Case 4: The crystalline case with d1 = (1,−1), d2 = (1,−4

5
), d3 =

(−4

5
, 1), d4 = (−1, 1) and d5 = (−1,−1) makes the transport cheaper in the

direction of the vector (1, 1).
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Table 1. Stopping criteria for 800 iterations

Case DIV DUAL MASS MIN-MAX Max-Lip Time execution (s)
1 2.48182e-05 9.5294e-06 0.000161361 -0.0149942 1.00068 357
2 3.38395e-05 5.58717e-05 0.000195881 -0.00120123 1.00248 867
3 7.44768e-05 5.5997e-05 6.66404e-06 -0.00272389 1.00351 1269
4 6.33726e-05 3.20691e-05 0.000120909 -0.0104915 1.02572 1123

Example 5.15. Let µ = 2χ[(x−0.2)2+(y−0.2)2<0.03] + 2χ[(x−0.6)2+(y−0.1)2<0.01] and
ν = 2χ[(x−0.6)2+(y−0.8)2<0.03]. In this example, we take the Euclidean norm and we let m vary

by taking the values mi =
i

6
min{µ(Ω), ν(Ω)}, i = 1, ..., 6. The results are given in Fig. 10.

IsoValue
-2.11111
-1.88889
-1.66667
-1.44444
-1.22222
-1
-0.777778
-0.555556
-0.333333
-0.111111
0.111111
0.333333
0.555556
0.777778
1
1.22222
1.44444
1.66667
1.88889
2.11111

Vec Value
0
0.00883173
0.0176635
0.0264952
0.0353269
0.0441586
0.0529904
0.0618221
0.0706538
0.0794856
0.0883173
0.097149
0.105981
0.114812
0.123644
0.132476
0.141308
0.150139
0.158971
0.167803

(a) m1

IsoValue
-2.11111
-1.88889
-1.66667
-1.44444
-1.22222
-1
-0.777778
-0.555556
-0.333333
-0.111111
0.111111
0.333333
0.555556
0.777778
1
1.22222
1.44444
1.66667
1.88889
2.11111

Vec Value
0
0.0127298
0.0254596
0.0381893
0.0509191
0.0636489
0.0763787
0.0891084
0.101838
0.114568
0.127298
0.140028
0.152757
0.165487
0.178217
0.190947
0.203676
0.216406
0.229136
0.241866

(b) m2

IsoValue
-2.11111
-1.88889
-1.66667
-1.44444
-1.22222
-1
-0.777778
-0.555556
-0.333333
-0.111111
0.111111
0.333333
0.555556
0.777778
1
1.22222
1.44444
1.66667
1.88889
2.11111

Vec Value
0
0.0167022
0.0334044
0.0501066
0.0668088
0.083511
0.100213
0.116915
0.133618
0.15032
0.167022
0.183724
0.200426
0.217129
0.233831
0.250533
0.267235
0.283938
0.30064
0.317342

(c) m3

IsoValue
-2.11111
-1.88889
-1.66667
-1.44444
-1.22222
-1
-0.777778
-0.555556
-0.333333
-0.111111
0.111111
0.333333
0.555556
0.777778
1
1.22222
1.44444
1.66667
1.88889
2.11111

Vec Value
0
0.0219044
0.0438088
0.0657132
0.0876176
0.109522
0.131426
0.153331
0.175235
0.197139
0.219044
0.240948
0.262853
0.284757
0.306661
0.328566
0.35047
0.372375
0.394279
0.416183

(d) m4

IsoValue
-2.11111
-1.88889
-1.66667
-1.44444
-1.22222
-1
-0.777778
-0.555556
-0.333333
-0.111111
0.111111
0.333333
0.555556
0.777778
1
1.22222
1.44444
1.66667
1.88889
2.11111

Vec Value
0
0.0254916
0.0509833
0.0764749
0.101967
0.127458
0.15295
0.178441
0.203933
0.229425
0.254916
0.280408
0.3059
0.331391
0.356883
0.382375
0.407866
0.433358
0.45885
0.484341

(e) m5

IsoValue
-2.11111
-1.88889
-1.66667
-1.44444
-1.22222
-1
-0.777778
-0.555556
-0.333333
-0.111111
0.111111
0.333333
0.555556
0.777778
1
1.22222
1.44444
1.66667
1.88889
2.11111

Vec Value
0
0.031821
0.063642
0.095463
0.127284
0.159105
0.190926
0.222747
0.254568
0.286389
0.31821
0.350031
0.381852
0.413673
0.445494
0.477315
0.509136
0.540957
0.572778
0.604599

(f) m6

Figure 10. Optimal flows
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6. Appendix

Our aim here is to show Lemma 6.2 that gives a smooth approximation of 1-dF Lipschitz
continuous function for continuous nondegenerate Finsler metrics F . This result is more or less
known in some particular cases. However, we could not find any rigorous proofs for the general
case in the literature.

Lemma 6.2. Let Ω be a connected bounded Lipschitz domain and F be a continuous nondegen-
erate Finsler metric on Ω. For any Lipschitz continuous function u on Ω satisfying

F ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω, (6.19)

there exists a sequence of functions uε ∈ C∞c (RN ) such that

F ∗(x,∇uε(x)) ≤ 1 ∀x ∈ Ω

and

uε ⇒ u uniformly on Ω.

Note that F and F ∗ are defined only in Ω and that the gradient of u is controlled only inside
of Ω by (6.19). If we use the standard convolution to define uε, the value of uε(x) is affected
by the value of u(y) outside of Ω which remains uncontrolled. To overcome this difficulty, if
x is near the boundary, we move it a little into inside of Ω before taking the convolution. To
this aim, we use the smooth partition of unity tool to deal with approximation of u near the
boundary.

Proof. Set

∀x ∈ RN , ũ(x) :=

{
u(x) if x ∈ Ω

0 otherwise.

Step 1: Fix z ∈ ∂Ω. Since Ω is a Lipschitz domain, there exist rz > 0 and a Lipschitz continuous
function γz : RN−1 −→ R such that (up to rotating and relabeling if necessary)

Ω ∩B(z, rz) = {x |xN > γz(x1, ..., xN−1)} ∩B(z, rz).

Set Uz := Ω ∩B(z,
rz
2

). For any x ∈ RN , taking

xεz := x+ ελzen (6.20)

where we choose a sufficiently large fixed λz and all small ε, say fixed λz ≥ Lip(γz) + 1, 0 < ε <
rz

2(λz + 1)
. By this choice and the Lipschitz property of γz, we see that

B(xεz, ε) ⊂ Ω ∩B(z, rz) for all x ∈ Uz. (6.21)

Defining

ũε(x) :=

∫
RN

ρε(y)ũ(xεz − y)dy =

∫
B(xεz ,ε)

ρε(x
ε
z − y)ũ(y)dy for all x ∈ RN , (6.22)
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where ρε is the standard mollifier on RN . Obviously, ũε ∈ C∞c (RN ). Using (6.21), (6.22) and
the continuity of u on Ω, we get

ũε ⇒ u on U z.

Step 2: Now, using the compactness of ∂Ω and ∂Ω ⊂
⋃
z∈∂Ω

B(z,
rz
2

), there exist z1, ..., zn ∈ ∂Ω

such that

∂Ω ⊂
n⋃
i=1

B(zi,
rzi
2

).

For short, we write ri, Ui, xi instead of rzi , Uzi , xzi . Taking an open set U0 b Ω such that

Ω ⊂
n⋃
i=1

B(zi,
ri
2

)
⋃
U0.

Let {φ}ni=0 be a smooth partition of unity on Ω, subordinate to
{
U0, B(z1,

r1

2
), ..., B(zn,

rn
2

)
}

,

that is, 
φi ∈ C∞c (RN ), 0 ≤ φi ≤ 1 ∀i = 0, ..., n

supp(φi) b B(zi,
ri
2

) ∀i = 1, ..., n, supp(φ0) b U0

n∑
i=0

φi(x) = 1 for all x ∈ Ω.

Because of Step 1, there exist ũ1
ε, ..., ũ

n
ε ∈ C∞c (RN ) such that

ũiε ⇒ u on U i, i = 1, ..., n.

For i = 0, since U0 b Ω, we can take ũ0
ε := ρε ? ũ ∈ C∞c (RN ) and ũ0

ε ⇒ u on U0. Set

uε :=
1

1 + Cε+ w(ε)

n∑
i=0

φiũ
i
ε,

where C is chosen later and

w(ε) := sup{|F ∗(x, p)− F ∗(y, p)| : x, y ∈ Ω, |x− y| ≤Mε, |p| ≤ ‖∇u‖L∞},

with constant M := max
1≤i≤n

{λzi + 1}, λzi is given in Step 1. We show that uε satisfies all the

desired properties. By the construction, uε ∈ C∞c (RN ) and

uε ⇒
n∑
i=0

φiu = u on Ω.

At last, we show that F ∗(x,∇uε(x)) ≤ 1 ∀x ∈ Ω. Indeed, for any x ∈ Ω, if x ∈ Ui, i = 1, ..., n
(near the boundary of Ω), we move x a bit into inside of Ω to xεi := xεzi (see (6.20) and (6.21)),
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if x ∈ U0, set xε0 = x. We have

∇uε(x) =
1

1 + Cε+ w(ε)

(
n∑
i=0

∇φi(x)ũiε(x) +

n∑
i=0

φi(x)∇ũiε(x)

)

=
1

1 + Cε+ w(ε)

 n∑
i=0

∇φi(x)

∫
B(xεi ,ε)

ρε(x
ε
i − y)u(y)dy

+

n∑
i=0

φi(x)

∫
B(xεi ,ε)

ρε(x
ε
i − y)∇u(y)dy

 .

The first sum on the right-hand side has a small norm. Indeed, using the fact that

n∑
i=0

∇φi(x)u(x) = 0 for all x ∈ Ω,

we have

n∑
i=0

∇φi(x)

∫
B(xεi ,ε)

ρε(x
ε
i − y)u(y)dy =

n∑
i=0

∇φi(x)

 ∫
B(xεi ,ε)

ρε(x
ε
i − y)u(y)dy − u(x)

 . (6.23)

Moreover,∣∣∣∣∣∣∣
∫

B(xεi ,ε)

ρε(x
ε
i − y)u(u) dy − u(x)

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
∫

B(xεi ,ε)

ρε(x
ε
i − y) (u(y)− u(xεi )) dy

∣∣∣∣∣∣∣+ |u(xεi )− u(x)|

≤ C1ε ∀i = 0, ..., n,

where the constant C1 depends only on Lip(γzi) and the Lipschitz constant of u on Ω. Thus, by
combining this with (6.23),∣∣∣∣∣∣∣

n∑
i=0

∇φi(x)

∫
B(xεi ,ε)

ρε(x
ε
i − y)u(y)dy

∣∣∣∣∣∣∣ ≤ C2ε ∀x ∈ Ω,

where C2 depends only on C1 and ‖∇φi‖L∞ .
Using the nondegeneracy of F , we have

F ∗

x, n∑
i=0

∇φi(x)

∫
B(xεi ,ε)

ρε(x
ε
i − y)u(y)dy

 ≤ C3ε for all x ∈ Ω.
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Fixed any x ∈ Ω, if y ∈ B(xεi , ε) then |x− y| ≤ |x− xεi |+ |xεi − y| ≤Mε. So we obtain

F ∗(x,∇uε(x)) ≤ 1

1 + Cε+ w(ε)
[F ∗(x,

n∑
i=0

∇φi(x)

∫
B(xεi ,ε)

ρε(x
ε
i − y)u(y)dy)

+ F ∗(x,
n∑
i=0

φi(x)

∫
B(xεi ,ε)

ρε(x
ε
i − y)∇u(y)dy)]

≤ 1

1 + Cε+ w(ε)

C3ε+
n∑
i=0

φi(x)

∫
B(xεi ,ε)

ρε(x
ε
i − y)F ∗(x,∇u(y))dy


≤ 1

1 + Cε+ w(ε)
[C3ε+

n∑
i=0

φi(x)

∫
B(xεi ,ε)

ρε(x
ε
i − y)F ∗(y,∇u(y)) dy

+

n∑
i=0

φi(x)

∫
B(xεi ,ε)

ρε(x
ε
i − y) (F ∗(x,∇u(y))− F ∗(y,∇u(y))) dy]

≤ C3ε+ 1 + w(ε)

1 + Cε+ w(ε)

≤ 1 (choose a constant C ≥ C3).

By the continuity of ∇uε and of F ∗, we also have F ∗(x,∇uε(x)) ≤ 1 ∀x ∈ Ω. �

Proposition 6.16. Let F be a continuous nondegenerate Finsler metric on a connected bounded
Lipshitz domain Ω. We have

LipdF =
{
u : Ω −→ R | u is Lipschitz continuous and F ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω

}
:= BF ∗ .

As a consequence, for any 1-dF Lipschitz continuous function u, there exists a sequence of 1-dF
Lipschitz continuous functions uε ∈ C∞c (RN ) and uε ⇒ u uniformly on Ω.

Lemma 6.3. We have LipdF ⊂ BF ∗ .

Proof. Let u ∈ LipdF . Then u is Lipschitz and u is differentiable a.e. in Ω. Let x ∈ Ω be any

point where u is differentiable. We have, for any v ∈ RN ,

〈∇u(x), v〉
F (x, v)

= lim
h→0

u(x+ hv)− u(x)

F (x, hv)

≤ lim sup
h→0

dF (x, x+ hv)

F (x, hv)

≤ lim sup
h→0

1∫
0

F (x+ thv, hv)dt

F (x, hv)
= 1.
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Hence, F ∗(x,∇u(x)) ≤ 1. So u ∈ BF ∗ . �

Lemma 6.4. We have BF ∗ ⊂ LipdF .

Proof. Fix any u ∈ BF ∗ .
Case 1: If u is smooth then F ∗(x,∇u(x)) ≤ 1 ∀x ∈ Ω. For any x, y ∈ Ω and any Lipschitz
curve ξ in Ω joining x and y, we have

u(y)− u(x) =

1∫
0

∇u(ξ(t))ξ̇(t)dt

≤
1∫

0

F ∗(ξ(t),∇u(ξ(t)))F (ξ(t), ξ̇(t))dt

≤
1∫

0

F (ξ(t), ξ̇(t))dt.

Hence u ∈ LipdF .
Case 2: For general Lipschitz continuous function u satisfying F ∗(x,∇u(x)) ≤ 1 a.e. x ∈ Ω,

thanks to Lemma 6.2, there exist uε ∈ BF ∗
⋂
C∞c (RN ) such that uε ⇒ u on Ω. According to

Case 1 above, uε ∈ LipdF . Since uε ⇒ u on Ω, we obtain u ∈ LipdF . �

Proof of Proposition 6.16. The proof follows by Lemma 6.3 and Lemma 6.4. �

Proof of Lemma 2.1. Since 0 ≤ u ≤ λ, the sequence uε in the proof of Lemma 6.2 satisfies
0 ≤ uε ≤ λ. So uε ∈ C∞c (RN ) ∩ LλdF and uε ⇒ u on Ω. �

Remark 6.17. The results still hold true if Ω is connected, bounded and has the segment prop-
erty.
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