
HAL Id: hal-01518531
https://hal.science/hal-01518531

Submitted on 4 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid CPU/GPU KD-Tree Construction for Versatile
Ray Tracing

Jean-Patrick Roccia, Christophe Coustet, Mathias Paulin

To cite this version:
Jean-Patrick Roccia, Christophe Coustet, Mathias Paulin. Hybrid CPU/GPU KD-Tree Construction
for Versatile Ray Tracing. Eurographics 2012, CRS4 Visual Computing and University of Cagliari.,
May 2012, Cagliari, Italy. �hal-01518531�

https://hal.science/hal-01518531
https://hal.archives-ouvertes.fr


EUROGRAPHICS 2012 / C. Andujar, E. Puppo Short Paper

Hybrid CPU/GPU KD-Tree Construction for Versatile Ray
Tracing

Jean-Patrick Roccia1,2, Christophe Coustet2, Mathias Paulin1

1IRIT - Université de Toulouse, France
2HPC-SA, Toulouse, France

Abstract
In this paper, we propose an hybrid CPU-GPU ray-tracing implementation based on an optimal Kd-Tree as accel-
eration structure. The construction and traversal of this KD-tree takes benefits from both the CPU and the GPU
to achieve high-performance ray-tracing on mainstream hardware. Our approach, flexible enough to use only
one computing units (CPU or GPU), is able to efficiently distribute workload between CPUs and GPUs for fast
construction and traversal of the KD-tree.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Modern ray-tracing applications require tracing a high num-
ber of rays on the same scene. However, rays are rarely co-
herent enough to make their packetization easy and efficient.

Monte Carlo based methods, designed to numerically
solve integral equations using a high number of independent
samples, are typically this kind of methods. In the case of
the rendering equation, samples are rays or paths made of
rays. Such methods are widely used in radiative simulation
and high quality rendering and their accuracy is directly de-
pendent on the number of rays traced. Results are refined by
iterative step of simulation, and each iteration of a Monte
Carlo simulation generates an important number of random,
thus incoherent, rays.

Nevertheless, all the applications do not rely on a huge
number of rays to give a result. For instance, for interactive
exploration or design, the user just needs to evaluate an equa-
tion involving few rays to get a virtual measure at one point
or to select one object in the scene.

In order to fulfill constraints of both kind of applications,
we propose two contributions for building an optimal KD-
Tree: a technical one, split event encoding, that reduces
the building cost of a KD-Tree and a system one, hybrid
CPU/GPU architecture, that efficiently balances the com-
putations between CPU and GPU.

As demonstrated in section 2, current parallel algorithms

for building KD-Tree do not lead to optimal trees. In order
to build an optimal KD-Tree, we show in section 3.1 how
to encode split-events to allow efficient hybrid CPU/GPU
algorithm that minimizes data transfers as well as computa-
tion time (section 3.2). As our KD-Tree is built in a hybrid
way, it can be efficiently used for traversal on both proces-
sors. We show in section 4 how versatile our system could
be when using a CUDA implementation (section 5).

2. Previous works

While the number of computation cores available on CPU or
GPU increases, many parallel approaches for building KD-
Trees are proposed. Nevertheless, increasing parallelism and
improving load-balancing often lead to sub-optimal trees.

The building of a KD-Tree consists in splitting a node at
a location that balances the tree according to a cost function.
Surface Area Heuristic (SAH) [MB90] is known to be very
efficient for ray tracing. However, due to the lack of paral-
lelism on the top-level nodes and in order to quickly generate
enough nodes for subsequent computations, split heuristic is
often simplified in the first steps of the construction. This
method clearly improves the construction time, but has two
drawbacks: first, the KD-Tree is not optimal on the top nodes
and, second, increasing the number of computing units will
force to use the simplified split heuristic for an increasing
number of nodes.

There are two common simplifications for split finding

c© The Eurographics Association 2012.



J.P. Roccia, C. Coustet, M. Paulin / Hybrid CPU/GPU KD-Tree

methods. The first consists in using the initial bounding
boxes of triangles to evaluate the SAH cost of all split candi-
dates. This implies that the selected split plane is not neces-
sarily the real best choice, because of non-updated triangles
limits in the current node. The second consists in only test-
ing a constant number of regularly distributed split planes
instead of using real limits of triangles in the current node
whereas they are optimal split candidates.

To our knowledge, all the KD-Tree construction algo-
rithms for GPU are built with this kind of approximations.
On the CPU side, [HB02] estimates that the use of the real
limits of triangles provides a 9-35% gain in traversal time
compared to initial triangles boxes and demonstrates that
these trees are optimals. [WH06] provides an improved con-
struction algorithm for an optimal KD-Tree that [CKL∗10]
partially parallelizes on 4-sockets Xeon computer (not a par-
ticularly mainstream setting). While increasing construction
time, both methods improve traversal time. Nevertheless,
they both suffer of the same limit: they are hardly useable
in real life situations.

On the traversal side, the classical algorithm, introduced
in [HKBv98] is still very efficient and optimized, thanks
to early-exit optimization and segmented ray validity han-
dling. The idea is to traverse always the first intersected child
to ensure that the best valid intersection found in a visited
node is necessarily the final intersection. This allows stop-
ping traversal without visiting any additional node when an
intersection is found. However, a dynamic stack is required
in order to go back on the last visited node when no valid in-
tersection is found, which is not GPU friendly. ThatâĂŹs
why [FS05] introduces a stackless traversal approach for
KD-Tree on GPU that keeps all principle of the previous
method but by modifying validity range of the ray, restarts
from the root node when no intersection is found. Another
stackless algorithm was proposed by [PGSS07]. The main
idea is to keep ropes that interconnect adjacent nodes. This
increases performances by going directly on the next node to
traverse instead of going back in the tree levels when no in-
tersection is found in the current leaf. The main disadvantage
of this method is the memory cost of the ropes: the memory
cost of the tree is typically increased by a factor three.

3. Hybrid KD-Tree Construction

The aim of our building method is to use both the CPU and
the GPU, if available, to obtain an optimal KD-Tree, with-
out approximation during the split plane selection. Our first
contribution in this area concerns the representation of trian-
gles limits, which are commonly named events. The second
contribution concerns a robust and efficient model of task
repartition between CPU and GPU.

3.1. Event representation

Each node contains a list of all trianglesâĂŹ limits in its
space. A triangle limit is in fact a floating value, a triangle
index and an event-type flag (start or end of triangle). This

Initial value 0.0f 0.1f -0.1f
0x00000000 0x3dcccccd 0xbdcccccd

Start event 0.0f 0.099999994f -0.1f
0x00000000 0x3dcccccc 0xbdcccccd

End event 1.401e-45f 0.1f -0.099999994f
0x00000001 0x3dcccccd 0xbdcccccc

Table 1: Examples of event type encoding in the event itself.

Without With Acceleration
event-type merging event-type merging factor

0.534s 0.039s x13.7

Table 2: Sorting time acceleration : events representation
infuence on NVidia GeForce GTX 460 sorting step for 12M
events (i.e.: 2M triangles node.

list must be kept ordered during the whole construction of
the tree to allow a lot of optimization for the SAH cost eval-
uation. It must also be modified at each split to remove the
triangles which not lie in child nodes and to update events of
shared triangles (i.e.: triangles intersected by the split plane).

[WH06] uses a float for the event’s location along with a
bool for the start/end type of the event. All the weightiness in
the processing of nodes comes from this very simple choice.
It adds steps in the ordering predicate when sorting events to
ensure that start triangle events are placed before end triangle
events in case of equal values and adds a memory access
when using events. It also adds 6 bools per triangle in the
node structure.

By finding a way to merge events with their types when
manipulating the event/type couple, these limits could be
overcome. This merging must preserve ordering of events
and must limit the KD-Tree sub-optimality to a bare mini-
mum. Concretely, event type only requires one bit. ThatâĂŹs
why we decided to store the event type into the least signifi-
cant bit of the float value of the event location. So, an event
is only a structure containing a modified float and its associ-
ated triangle index. The least significant bit of a start event
is set to the sign bit of the float, when an end event receives
the boolean complementation of its sign bit (see Table 1).

Depending on the float sign and event type, this can shift
the float to the previous/next IEEE representable float. This
leads to a minimal KD-tree perturbation, maintains event or-
dering, and ensures for free that a start event always comes
before its corresponding end event, even for aligned trian-
gles.

This encoding allows to directly use high performance
libraries providing key/value sort functions, with best per-
formances on floats/unsigned (see Table 2), in order to sort
events and their associated triangles indexes both on the
CPU and the GPU. The type of an event can be retrieved
by comparing its sign bit to its least significant bit, avoiding
a memory access to a bool.

c© The Eurographics Association 2012.



J.P. Roccia, C. Coustet, M. Paulin / Hybrid CPU/GPU KD-Tree

3.2. CPU/GPU task repartition

The goal of our task repartition is to organize the collabora-
tion between the CPU and the GPU in order to best exploit
most of their specificities without being forced to use both
of them.

For this, nodes of the KD-Tree are divided into two cate-
gories, small nodes and large nodes, depending of their num-
ber of triangles, NT. The aim of this classification is to pro-
cess the large nodes on the GPU in order to exploit massive
parallelism on their high number of events, whereas small
ones are processed on the CPU. If NT is greater than a user-
specified threshold, the node is a large node. Otherwise it is a
small node. This threshold must be set according to the max
depth of the KD-Tree and the total number of triangles in
the scene. In our tests, we experimentally fix this threshold
to 100000 triangles to obtain the best efficiency.

The GPU creates the root of the kd-tree by computing and
sorting the initial events. Then, it processes the large nodes
in depth-first order to provide the CPU with small nodes as
fast as possible.

Note that nodes are sent one by one to the GPU to re-
duce the maximum memory occupancy. The initial sort is
efficiently performed by a key/value sort on primitive types
(floats/unsigned), thanks to the event compact representation
proposed in section3.1.

The CPU processes small nodes in parallel with one
thread per node. This approach is very flexible in term of
computing repartition: if a computing unit is unavailable,
the CPU will build the entire tree by considering that all the
nodes are small nodes. The GPU can also consider that all
the nodes are large nodes.

The small nodes are processed with the four steps method
of [WH06] using our merged event representation. The CPU
threads are waiting for any small nodes pushed in the small
nodes buffer. They are released when the small nodes buffer
is empty and the large nodes thread is over. Note that if a
large node canâĂŹt be computed on the GPU, we just have
to push this large node into the small nodes buffer and the
CPU will process it. There are two cases where computing
power is lost: when the CPU is waiting for the first small
node, and when the GPU is idle, waiting the CPU to finished
small nodes processing. These idle times is filled by imple-
menting a large node process for the CPU, like in [CKL∗10],
and a small node process for the GPU, taking many small
nodes and processing them in parallel.

4. Hybrid KD-Tree traversal

We have implemented two versions of the KD-Tree traver-
sal: one using a static stack [HKBv98] and the other using
the stackless KD-restart method [FS05]. Both traversal algo-
rithms don’t use any paquetization or coherency classifica-
tion on rays. The static stack approach is 30% faster than the
KD-restart method and all our measurements are made using
this algorithm.

We use a task manager to launch all the ray-tracing thread,
thereafter called tracers, required by the application. Our
task manager can be viewed as a simple counter of remain-
ing rays and a pointer to input (rays)/output (hits) structures.
Every tracer can ask the task manager the number of rays to
treat. When the job is finished, the task manager stops the
tracers.

By using NVIDIA CUDA API [NVI11] zero-copy mem-
ory access, ray tracing can be distributed very simply. In-
deed, the same input/output pointers and an offset can be
passed to all tracers independently of their types. The GPU
tracers call a CUDA kernel with these parameters directly,
without explicitly transferring any data. In order to avoid
CPU/GPU divergence on results, the same algorithm is
used to traverse the KD-Tree on both the CPU and the
GPU. The same function is called, by defining it as __de-
vice__and__host__ function. Load balancing between the
CPU and the GPU is a difficult point of every hybrid method.
In our system, we use a simple heuristic that first assigns
rays to the CPU tracers, to avoid launching a GPU kernel for
a too little number of rays. In our tests, for best efficiency,
the GPU takes ideally one hundred times more rays than the
CPU.

The main difficulty of our approach is to find the good
number of rays that each CPU/GPU thread requests to the
task manager. This can be solved by tracing some rays at
the initialization in order to calibrate the tracers, or by using
precomputed benchmarks according to the hardware config-
uration.

5. CUDA implementation

All the GPU part of our hybrid raytracer is implemented
with the NVIDIA CUDA API. We chose to use the zero-
copy memory to simplify the hybrid part of our raytracer.
The KD-tree and the rays/hits buffers are shared by the CPU
and the GPU by using this kind of memory. The large node
processing, inspired of the [CKL∗10] algorithm, can be split
in a global initialization step and four node processing steps.
Each step is totally adapted for a GPU parallelization.

Step 1: Root initialization (see Figure 1-(1)) is separated
into two phases. A first CUDA kernel computes, in parallel
for each triangle, the min/max limits on each axis and fills
the events value/index by axis. The second step is a call to a
key/value sort primitive on events for each axis.

Step 2: Find best split plane (see Figure 1-(2)) for a node
. This step takes the buffers of events values and their as-
sociated triangles index as input. For each event, the left
counter buffer is initialized with 1 for start events and 0 for
end events. The right counter buffer is initialized with 0 for
start events and 1 for end events. A parallel exclusive scan on
the left counter buffer and a reversed parallel exclusive scan
on the right counter buffer are then realized. At this point the
number of left/right triangles for each split plane candidate
generated by events are available. The SAH cost evaluation

c© The Eurographics Association 2012.



J.P. Roccia, C. Coustet, M. Paulin / Hybrid CPU/GPU KD-Tree

can now be computed, in parallel, for each split plane candi-
date. The last thing to do is to find the minimum SAH cost
value, by using a parallel minimum finding on GPU.

Step 3: Classify triangles (see Figure 1-(3)) as
left/right/shared with respect to the best split plane
found in the previous step . It works only on events posi-
tioned on the best axis plane. The first pass treats all starts
events in parallel, and initializes their triangles as left/right
triangles in function of the position of the event relatively to
the best event. The second pass finishes the task by marking
triangles of end events positioned after the best events as
shared events, only if it was initialized as left event.

Step 4: Filter geometry and computes new events on each
side of the split for the shared triangles (see Figure 1-(4)).
This step takes triangle position flags generated by the pre-
vious step as input, and classifies events in function of their
associated triangles position. Purely left and right triangles
are just kept sorted for the next step. Shared triangles events
are specially processed. For the split axis, a simplified kernel
is launched to clamp shared events with a maximum of the
best event value for the left events, and a minimum of the
best event value for the right events. For other axis the inter-
sections of shared triangles with the split plane is computed
in parallel to obtain new events on each side. At this point,
shared events lists for the left and the right side are available.

Step 5: Finalize lists (see Figure 1-(5)) and merges shared
events with the left/right side lists , takes the left and right
events lists and updated shared events lists of the previous
phases. It just consists to merge the left/right events of the
current node with the shared left/shared right updated events:
first sort the updated shared lists and proceed to a parallel
merge of two sorted list for each child of the current node.

Triangles	
 Create_events()	


Triangle_ids	
 Events	


Vertex	


Sort_by_key()	


Count_left_right()	


Left_counter	
 right_counter	
Exlusive_scan	
 Reversed 
Exlusive_scan	


Compute_SAH()	
SAH	


Find_min()	
 Best_plane	


Use_start_events()	


Triangle_sides	

Use_end_events()	


Generate_new_lists()	

L_Triangle_ids	

R_Triangle_ids	


S_Triangle_ids	
 S_Events	

R_Events	

L_Events	


Update_events()	

SL_Triangle_ids	
 SL_Events	

SR_Triangle_ids	
 SR_Events	


Merge_presorted()	

LF_Triangle_ids	

RF_Triangle_ids	
 RF_Events	


LF_Events	


Root Initialization	

(1)	


Find Best Split Plane	

(2)	


Classify triangles	

(3)	

	


Filter Geometry	

(4)	

	


Finalize Lists	

(5)	


Figure 1: GPU large node processing implementation de-
tails, step by step. Blue cells for CUDA kernels, black cells
for data. L=left, R=right, S=shared, F=final.

Model
[CKL∗10] Our builder

1-core 32-cores 1-core 4-cores 4-cores
CPUA CPUA CPUB CPUB CPUB/GPU

Dragon (871K) 5.5 0.65 2.43 1.42 0.54
Happy (1M) 6.8 0.83 3.2 2.0 0.69
Soda (2M) / / 5.2 3.0 1.34

Table 3: Construction times (in seconds) on some well-
known Stanford Computer Graphics Laboratory models,
maximum tree depth = 8, NTT = 350000 for all measures.
CPUA: Intel Xeon X7550*4 sockets, CPUB: Intel Core i7
920, GPU: NVidia GeForce GTX 460.

Model [AL09] Our tracer Acceleration
Dragon (871K) 34.5 108.5 x3.15
Happy (1M) 32.5 112.3 x3.45
Soda (2M) 32 52.4 x1.63

Table 4: Traversal performances for four diffuse rays per
pixels (in Mrays.s-1). Results obtained on NVidia GeForce
GTX 460.

6. Results

Event/type merging is the main point of our optimal KD-
Tree construction algorithm. It makes the processing on
mainstream hardware simpler and faster (see Table 3). The
hybrid CPU/GPU organization provides a gain of 51-65% on
build times, and allows outperforming the previously avail-
able HPC-class hardware performance level.

We chose to confront results with [AL09], a BVH based
high performance raytracer. We use the Fermi implementa-
tion of the author, available in its public git repository. Only
diffuse rays are measured, to avoid coherent rays effect. Our
ray tracer effectively outperforms [AL09] on this kind of
rays (see table 4).

The hybrid part of the traversal allows us to launch iso-
lated rays on the CPU, without CUDA kernel call extra cost,
and obtains very high performance when GPU massive par-
allelism can’t be exploited.

References
[AL09] AILA T., LAINE S.: Understanding the efficiency of ray

traversal on gpus. In Proceedings of the Conference on High
Performance Graphics 2009 (New York, NY, USA, 2009), HPG
’09, ACM, pp. 145–149. 4

[CKL∗10] CHOI B., KOMURAVELLI R., LU V., SUNG H.,
BOCCHINO R. L., ADVE S. V., HART J. C.: Parallel sah k-
d tree construction. In Proceedings of the Conference on High
Performance Graphics (Aire-la-Ville, Switzerland, Switzerland,
2010), HPG ’10, Eurographics Association, pp. 77–86. 2, 3, 4

[FS05] FOLEY T., SUGERMAN J.: Kd-tree acceleration struc-
tures for a gpu raytracer. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(New York, NY, USA, 2005), HWWS ’05, ACM, pp. 15–22. 2,
3

[HB02] HAVRAN V., BITTNER J.: On improving kd-trees for ray
shooting. Journal of WSCG 10, 1 (February 2002), 209–216. 2

[HKBv98] HAVRAN V., KOPAL T., BITTNER J., ŽÁRA J.: Fast

c© The Eurographics Association 2012.



J.P. Roccia, C. Coustet, M. Paulin / Hybrid CPU/GPU KD-Tree

robust bsp tree traversal algorithm for ray tracing. J. Graph. Tools
2 (January 1998), 15–23. 2, 3

[MB90] MACDONALD D. J., BOOTH K. S.: Heuristics for ray
tracing using space subdivision. Vis. Comput. 6 (May 1990),
153–166. 1

[NVI11] NVIDIA: The CUDA homepage.
http://developer.nvidia.com/category/zone/cuda-zone, 2011.
3

[PGSS07] POPOV S., GÃIJNTHER J., SEIDEL H.-P.,
SLUSALLEK P.: Stackless kd-tree traversal for high per-
formance gpu ray tracing. Computer Graphics Forum 26, 3
(2007), 415–424. 2

[WH06] WALD I., HAVRAN V.: On building fast kd-trees for
ray tracing, and on doing that in O(N log N). In Proceedings
of the 2006 IEEE Symposium on Interactive Ray Tracing (2006),
pp. 61–69. 2, 3

c© The Eurographics Association 2012.


