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Cooperative scattering in cold atoms has gained renewed interest, in particular in the context of
single-photon superradiance, with the recent experimental observation of super- and subradiance
in dilute atomic clouds. Numerical simulations to support experimental signatures of cooperative
scattering are often limited by the number of dipoles which can be treated, well below the number of
atoms in the experiments. In this paper, we provide systematic numerical studies aimed at matching
the regime of dilute atomic clouds. We use a scalar coupled-dipole model in the low excitation limit
and an exclusion volume to avoid density-related effects. Scaling laws for super- and subradiance
are obtained and the limits of numerical studies are pointed out. We also illustrate the cooperative
nature of light scattering by considering an incident laser field, where half of the beam has a π phase
shift. The enhanced subradiance obtained under such condition provides an additional signature of
the role of coherence in the detected signal.

I. INTRODUCTION

Since the seminal work by Dicke in 1954 [1], a vast
range of phenomena has been studied in the context of
light emission and scattering by an ensemble of N two-
level systems [2–10]. More recently, the properties of such
situations when only one excitation at most is present
in the system has been studied, both theoretically and
experimentally (“single-photon superradiance” [11–13]).
Some of the theoretical work is based on the study of
an effective Hamiltonian, investigating either the escape
rates of photons from the system [14], related to the imag-
inary part of the effective Hamiltonian, or the eigenval-
ues of the complete effective Hamiltonian [15–17], with
in particular the prediction of a localization transition
in the scalar model, absent in a more complete vectorial
model [18–20].

Experimental studies of cooperative effects in atom-
light interaction however typically involves an incident
laser beam, either driving the system to a steady state,
or realizing a pulsed excitation to study the dynamics of
collective effects. The experimental signatures studied so
far include the momentum transfer to the center of mass
of the atomic cloud [21–24] or the light scattered either
in the backward direction [25], the forward direction [26–
28], or at different angles [29–31].

Theoretical investigations of interference effects in mul-
tiple scattering around the backward direction (coher-
ent backscattering) can be performed using an approxi-
mate diagrammatic approach [32]. For forward scatter-
ing, steady-state properties as well as the dynamics after
the switch off of the driving field can be well understood
by using a description based on the average refractive in-
dex of the cloud [26, 28, 33], as long as the atomic sample
remains at low density [27, 34]. However, these efficient
theoretical approaches do not allow describing scattering
at a random angle, as used in [29–31]. Nevertheless, in
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the single scattering limit, an alternative approach has
been proposed that allows for analytical predictions of
the scattering off axis [35].

One more universal approach to light scattering in any
direction, in both single and multiple scattering limits,
is the so-called coupled-dipole model [36, 37]. This ap-
proach, which can be derived in the low-excitation limit
either in a quantum framework or from classical scatter-
ing, requires a numerical solution of N coupled equations.
The near-field dipole-dipole coupling as well as the polar-
ization of the electromagnetic radiation can be taken care
of, but a simplified model consists in a scalar description
of the dipole-dipole interaction. Even though not ex-
act, this scalar approximation has the merit of having
allowed identifying the important role of near-field cou-
pling in the problem of Anderson localization [18, 19], not
discussed in the context of single parameter scaling [38].
Another advantage of the scalar model is that it allows
the simulation of large optical depth without density-
related effects. Indeed, as one typically can use up to
N = 104 atoms in the numerical simulations and the on-
resonance optical depth scales as b0 ∝ N/(k0R)2, the
simulation of b0 ≈ 20 corresponds to a size of the cloud
of k0R ≈ 20, where k0 = 2π/λ is the wavenumber corre-
sponding to the atomic transition and R the size of the
atomic cloud. For a fixed number of atoms, larger values
of b0 are thus simulated by smaller values of k0R. This
comes along with larger spatial densities ρ and smaller
interatomic distances d ∼ 1/ρ1/3, yielding for the above
choice of parameters values of k0d ∼ 1. For such densi-
ties, the near-field term of the vectorial coupled-dipole
model significantly affects the results. The simulation of
the dilute limit realized in the experiments is thus diffi-
cult. A good compromise is thus to use the scalar model,
keeping in mind that this model features a phase transi-
tion when the density reaches values of ρλ3 ≈ 20 [18, 19].
However, even below this critical density, where one ex-
pect the long-range coupling to dominate over the lo-
cal coupling, we have noticed that for a randomly-filled
cloud of particles, occasionally two atoms will be located
at very short distance and pair physics can become vis-
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ible [16, 19, 39]. As such pair physics is less probable
in the dilute atomic cloud, we have added an exclusion
volume around each atom to avoid close distances and
related effects. A precise simulation of scaling laws as
expected in the large atom number limit is therefore del-
icate and the scope of this paper is to provide the sys-
tematic studies we have performed to explore super- and
subradiance in dilute clouds of cold atoms. We note that
the experiments [30, 31] are performed with rubidium
atoms, having a degenerate ground state with multiple
Zeeman sublevels. The additional complexity related to
this degeneracy is largely out of reach for present theo-
ries, even though some attempts to take care of effects
related to this more complex internal structure of the
atoms have been made recently [34, 40].

As a further study of cooperativity, we illustrate the
role of coherence in subradiance by applying a recently
proposed idea [41] to a realistic experimental geometry.
Using a properly phased excitation, we show that the
time-dependent scattering is indeed sensitive to the phase
profile of the laser field and, more importantly for experi-
mental aspects, that such a phased excitation can induce
an increase of the subradiant fraction of light by almost
one order of magnitude. Controlling the addressed states
of the full Hilbert space by engineered steering is a splen-
did illustration of the potential of cooperative scattering
in such open (quantum) systems.

This paper is organized as follows: in section II, we
review the scalar coupled-dipole model we use to de-
scribe the interaction between an atomic cloud and a
laser beam. In section III, we discuss in more detail the
impact of the exclusion condition to avoid close atomic
pairs and we present scaling laws of super- and subra-
diance obtained in this framework. In section III D, we
study a phased excitation of the atomic cloud, yielding in
particular an increase of subradiant scattering. Finally,
we summarize our findings in section V.

II. THE COUPLED-DIPOLE MODEL

A. Coupled-dipole equations

Even though it is possible to derive the equations de-
scribing the evolution of coupled dipoles in the low excita-
tion limit from classical equations, a quantum formalism
is often conveniently used. We thus consider a set of N
identical atoms interacting with a laser beam and vacuum
modes (Fig. 1). Each atom j is a non-degenerate two-
level system, with ∣gj⟩ (resp. ∣ej⟩) labeling the ground
(resp. excited) state. The resonance frequency of the
atomic transition is ω0, the natural lifetime of the ex-
cited state is τ0 and the natural decay rate is Γ = 1/τ0.
The atoms are considered motionless and distributed at
random positions rj in a given distribution that models
the geometry of the sample. The laser beam is described
by a classical monochromatic plane wave of amplitude
E0, wave vector k0 and frequency ω.
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laser

cloud




x
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0
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FIG. 1. The physical system. A spherical Gaussian cloud of
identical atoms interacts with a monochromatic plane wave
with frequency ω and vacuum modes. The wave vector k0 of
the plane wave is set along the z direction. Each atom is a
two-level system with resonance frequency ω0. The angles θ
and φ defines the spherical coordinates.

Following [21, 42] we write the coupled-dipole equa-
tions in the scalar approximation as

β̇j = (i∆ −
Γ

2
)βj −

iΩ

2
eik0⋅rj −

Γ

2
∑
j′≠j

eik0rjj′

ik0rjj′
βj′ , (1)

where rjj′ = ∣rj − rj′ ∣ is the relative distance between the
atoms j and j′, Ω = dE0/h̵ is the Rabi frequency associ-
ated to the laser drive, and ∆ = ω−ω0 is the laser detun-
ing from the atomic resonance. Here βj(t) are the time-
dependent amplitudes of dipoles j. Eq. (1) is valid for
weak driving fields, i.e., the solution in the linear-optics
regime. This amount to approximating the quantum so-
lution to the first order in Ω, which is valid for s(∆) ≪ 1,
where s(∆) = 2Ω2/(Γ2+4∆2) is the saturation parameter.
We note that testing this assumption quantitatively, in
particular in regard to the long-lived subradiant modes,
would require a full quantum treatment [43]. In a quan-
tum framework, βj(t) can be considered as the optical
coherence of the atom j and the wave function of the
atom ensemble reads

∣Ψ(t)⟩ = α(t) ∣G⟩ +
N

∑
j=1

βj(t) ∣j⟩ , (2)

where ∣G⟩ ≡ ∣g1...gN ⟩ is the ground state for all atoms and
∣j⟩ ≡ ∣g1...ej ...gN ⟩ are the N single-atom excited states for
each atom j.
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B. Light scattered by the atomic cloud

The electric field at a position r far from the atomic
cloud is related to the atomic dipoles βj(t) by

E(r, t)∝
e−iω0(t−r/c)

r

N

∑
j=1

e−ik0r̂⋅rjβj(t) , (3)

where r̂ = r/r defines the direction of the detection from
the center of the atomic cloud. We thus obtain the an-
gular emitted intensity I ∝ ∣E∣2 by

I(r̂, t)∝
1

r2

RRRRRRRRRRR

N

∑
j=1

e−ik0r̂⋅rjβj(t)
RRRRRRRRRRR

2

. (4)

In spherical coordinates, the emitted intensity in the
direction (θ,φ) (see Fig. 1) can thus be written as

Iθ,φ(t)∝
RRRRRRRRRRR

N

∑
j=1

e−ik0fj(θ,φ)βj(t)
RRRRRRRRRRR

2

, (5)

where fj(θ, φ) = xj sin θ cosφ + yj sin θ sinφ + zj cos θ and
rj = (xj , yj , zj) are the coordinates of the atom j. We
thus first solve the coupled-dipole equations (1) and from
the solution of βj(t) we compute the angular- and time-
resolved scattered intensity using Eq. (5).

With a plane wave laser propagating along the z axis
with k0 = k0ẑ and for an atomic cloud with revolution
symmetry around the z axis, we can integrate the angular
intensity distribution along φ to obtain

Iθ(t)∝ ∫
2π

0
Iθ,φ(t)dφ = ∫

2π

0

RRRRRRRRRRR

N

∑
j=1

e−ik0fj(θ,φ)βj(t)
RRRRRRRRRRR

2

dφ .

(6)
This integration along φ yields lower fluctuations for fi-
nite numerical resolution. However, this procedure does
not allow to study speckle-like fluctuations of the scat-
tered light. Also, as we will see in section III D, for a laser
drive with a phase profile which does not respect the rev-
olution symmetry around the z axis, one cannot use the
integration over φ to study super- and subradiance by a
‘phased’ excitation.

The total emitted power P (t) is the power emitted
by the atoms integrated over all directions: P (t) =

∫ I(r, t)dr with dr = r2 sin θdrdθdφ. By substituting
Eq. (4), we obtain

P (t)∝ ∫
π

0
∫

2π

0

RRRRRRRRRRR

N

∑
j=1

e−ik0fj(θ,φ)βj(t)
RRRRRRRRRRR

2

sin θdθdφ. (7)

In this paper, we are mainly interested in the decay
dynamics after the extinction of the driving laser and
thus consider only times t ≥ 0, where t = 0 corresponds
to the switch off of the driving field. For t ≥ 0, Ω = 0, one
can show that Eq. (7) yields (see Appendix)

P (t)∝ −
d

dt

N

∑
j=1

∣βj(t)∣
2
, (8)

which can be interpreted as the energy transfer from the
dipoles to the light. This simplified expression for the
time-dependant total scattered light allows for faster nu-
merics, convenient for some initial explorations, but as we
show below, it is unable to provide the full scaling laws
for superradiance, where angle-dependent effects can be
prominent.

III. DECAY DYNAMICS FOR A SPHERICAL
GAUSSIAN CLOUD

The atomic system is modeled as a spherical cloud with

a Gaussian probability distribution ρ(rj) = ρ0e
−∣rj ∣

2
/2R2

,
where R is the rms size of the cloud. The resonant opti-
cal thickness is b0 = 2N/(k0R)2 and the peak density

ρ0λ
3 = (2π)3/2N/(k0R)3. Note that here we use the

definition of the optical depth for a scalar model, dif-
ferent from what should be used in a vectorial model
[b
(v)
0 = 3N/(k0R)2], where the polarization of the light

yields an on-resonant scattering cross section of 3λ2/2π.
The comparison to the optical depth in the experiment
is furthermore different, as for atoms in a statistical mix-
ture of the ground states, the on-resonant optical depth

is reduced by a degeneracy factor g = 2F ′+1
3(2F+1)

, which,

for the F = 2 → F ′ = 3 transition of rubidium 87 used
in [30, 31] gives a reduction of the on-resonant optical
depth of g ≈ 0.47.

Typical experimental values [30, 31] are λ ∼ 1µm,
N ∼ 109 and R ∼ 1 mm, yielding b0 ∼ 10 − 100 and ρ0λ

3

∼ 10−2. With ρ0λ
3≪ 1, the cloud is very dilute, allow-

ing to consider near-field effects as negligible. However,
it is very hard to simulate a cloud with 109 atoms on
available computers. So in practice we use N ∼ 103–104,
but we require b0 ∼ 10, in order to have similar optical
depths in the simulations as in the experiments. As a
consequence of smaller N in the simulation, the simu-
lated density increases to ρ0λ

3 ∼ 1–10. Moreover, the
computed intensities should be averaged for many differ-
ent configurations of the positions of the atoms, in order
to remove residual fluctuations, important for the small
number of atoms used in simulations. In this article we
have averaged over 100 realizations.

A. Impact of an exclusion volume

Our procedure for simulations consists in generating a
spherical Gaussian cloud by choosing randomly the po-
sitions of the N atoms from a Gaussian distribution of
rms size R. However, as close atomic pairs may occur
with such a random choice of positions, with a proba-
bility increasing with the atomic density, and consider-
ing that such pairs [16, 19, 39, 44] lead to strong two-
body super- and subradiant decay absent in very dilute
clouds, we choose to add an exclusion volume around
each atom. After drawing the atomic positions in the
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FIG. 2. Comparison between the total emitted fluorescence
for a spherical cloud with and without pairs (i.e., without
and with an exclusion volume, respectively) for k0R ≈ 12.9,
b0 ≈ 7.55 and ρ0λ

3
≈ 4.6. The exclusion-volume condition is

k0rjj′ < 3 for the distance between all pairs of atoms j and
j′. The detuning is ∆ = 10Γ and the curves are obtained
after averaging over 100 different configurations of the atomic
positions.

cloud, we look for pairs of atoms with distance k0rjj′ ≤ 3
and change the corresponding positions until the condi-
tion k0rjj′ > 3 if fulfilled for all pairs. This numerical
value for the exclusion volume corresponds to a distance
where the two-body super- and subradiant decay rates,
Γ2 = Γ [1 ± sin(k0rjj′)/k0rjj′], become close to single-
atom physics.

In order to illustrate the pair effect in the decay dy-
namics, we plot in Fig. 2 the total scattered light (Eq. 8)
for a cloud with and without using an exclusion volume.
The cloud without pairs was generated from initial tar-
get parameters b0 = 10 and ρ0λ

3= 7 for the Gaussian
distribution (with corresponding values of N = 633 and
k0R = 11.3). After the exclusion condition is fulfilled,
almost 50% of the N atoms had their position changed,
however their distribution remains Gaussian with a good
approximation, but with a larger size: k0R increased to
12.9, implying that b0 and ρ0λ

3 have to be recalculated.
That gives b0 = 7.55 and ρ0λ

3= 4.6. Note that this in-
crease of size comes along with introducing some corre-
lation in the positions, which might induce some spuri-
ous density effects. To compare this situation to a cloud
without exclusion volume, we choose those final values for
b0 and ρ0λ

3, only setting randomly the positions of the
atoms without the exclusion condition. As shown in Fig.
(2), the presence of atomic pairs increases the subradiant
amplitude at long times. This can be understood by the
very long lifetimes of the two-atom subradiant state for
very small distances.

B. Scaling of the super- and subradiance with b0

From decay curves similar as the one shown in Fig. 2,
one can extract the super and subradiant decay rates
Γsup, Γsub(or their associated time constant τsup= Γsup

−1

, τsub= Γsub
−1) by using an exponential fit in the appro-

priate range. For superradiance, the fit interval must be
set at short time after the laser switch off, in order to get
the first time constant. Here, we have used the fitting
interval t ∈ [0,0.2]τ0. For subradiance, the fit interval
must be set long after the switch off of the laser, but, as
discussed in the following (Sect. III D), the precise choice
is somewhat arbitrary. Here we have chosen to fit the
subradiant decay rate in the interval given by the rel-
ative amplitude of the signal, Iθ(t)/Iθ(0) ∈ [10−4,10−3],
similar to what has been used in the experiment [30]. Ex-
amples of decay curves and associated fits are shown in
Fig. 3. Faster (superradiant) and slower (subradiant) de-
cays compared to the single-atom decay are well visible.
We have chosen the emission angle θ = 45○ for this illus-
tration, but one can check that the decay is similar for
other directions, except in the exact forward direction
θ = 0, where a strong superradiant forward scattering
lobe is present [11, 28, 45], and consequently the relative
amplitude of the subradiant decay is much lower.

The duration of the pulse of the driving laser before
switch off can also affect the results, as studied in detail
in [35]. Here we consider only long-pulse excitation so
that the steady-state is reached before the switch off.
We have numerically used a duration Tpulse = 100τ0 and
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FIG. 3. Decay of the scattered light in a direction θ = 45○

from the laser direction, computed from Eq. (6), for atomic
samples of several b0 and constant density ρ0λ

3
= 4.6. The

laser detuning is ∆ = 10Γ. The red curves are exponential fits
in the interval Iθ(t)/Iθ(0) ∈ [10−4,10−3] that allow extracting
the subradiant decay rate Γsub. A similar fit (not showed) is
done in the interval t ∈ [0,0.2]τ0 to extract the superradiant
decay rate Γsup. The black dashed line is the decay curve for
a single atom.
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FIG. 4. Cooperative decay rates Γsup (a) and τsub=Γsub
−1 (b)

as a function of the resonant optical depth b0 for different
densities ρ0λ

3
= 0.5 (red ○), 0.9 (blue ◇), 2.5 (green +), 3.7

(yellow ∗), 4.6 (magenta ×) and 5.3 (black ◻). The decay
rates are obtained by fitting decay curves similar as those in
Fig. 3, computed with a laser excitation at a large detuning
∆ = 10Γ and a long pulse in order to reach the steady state.

have checked that starting from the steady-state solution
before switching off the laser does not modify the results.

The behavior of the super- and subradiant decay rates
as a function of the parameters of the cloud (atom num-
ber, size, optical depth or density) has been the subject
of extensive discussions. In the case of a low-density sam-
ple driven at large detuning, the collective steady state is
essentially the timed-Dicke state [8, 11, 46]. The corre-
sponding superradiant decay rate Γsup has been analyti-
cally computed for various geometries [21, 47–51] and it
has been shown that it is proportional to the resonant op-
tical depth b0. Based on numerical investigations, it has
been argued that the same apply for subradiance, with
a characteristic time τsub evolving linearly with b0 [52].
This result has been checked numerically and experimen-
tally in [30, 53]. It has been actually showed that the full
decay curves depends only on b0 in this regime [9].

All previous calculations and simulations, however, ap-
ply to the total decay rate of the collective state, which
is mainly dominated by the forward scattering lobe. In
Fig. 4 we present the superradiant decay rate Γsup and
subradiant decay time τsub computed from the scattered
light at θ = 45○ as a function of b0 for several densities,
following an excitation to the steady state with a large
detuning ∆ = 10Γ. The chosen angle is close to the ex-
perimental configuration of [30, 31]. The computation

is done for several densities, in order to check whether
the density plays any role. The results of the simulations
show that the density plays only a marginal role, inducing
a small shift of the superradiant decay rate (Fig. 4a) and
not affecting the subradiant one (Fig. 4b). This resid-
ual density effect might come from the correlations intro-
duced by the exclusion volume condition and should thus
be absent at the lower densities of the experiments. The
main trend is clearly the linear evolution of the superra-
diant decay rate and subradiant time constant, following

Γsup = (1 + αb0)Γ , (9)

τsub = (1 + βb0) τ0 . (10)

Linear fitting the low-density data gives α ≈ 0.21 and
β ≈ 0.53. For comparison, the only available analytical
results is for the total decay rate of the time-Dicke state,
which gives α = 1/8 for a Gaussian cloud [42]. We indeed
recover this scaling for forward scattering, but superradi-
ance is “stronger” for light scattered off-axis, as already
discussed in [31]. Note that we do not expect any quan-
titative agreement with the experiments because of the
complex multilevel structure of the atoms used in the
experiments.

C. Angular dependance of super- and subradiance

As already mentioned, the decay dynamics in general
depends on the scattering angle (Eq. 6). The most promi-
nent feature of the angular dependence is the forward
scattering lobe [11, 45]. It is visible in steady state but,
as it is mainly superradiant, it also affects the temporal
dynamics, with, in particular, a lower relative weight of
subradiant decay in the forward direction and a slightly
different slope α (Eq. 9) for the superradiant decay [31].
An extensive study of the superradiant decay rate as a
function of the scattering angle has recently been pre-
sented, showing a complicated dependency near the for-
ward lobe [35]. It also depends on the detuning of the
exciting laser.

In Fig. 5(a) we summarize these findings on the super-
radiant decay rate as a function of the scattering angle for
near-resonance and detuned excitation, and we also show
the behavior of the subradiant decay in Fig. 5(b). The
resonant optical depth is fixed, b0 = 8.55. At large de-
tuning, the superradiant decay rate Γsup is significantly
larger off axis than exactly on axis, which is a nonin-
tuitive feature. Except very close to the forward lobe,
where Γsup evolves a lot with the angle (not shown here,
see [35]), Γsup hardly evolves everywhere else. On reso-
nance, on the contrary, superradiance is visible only in
the forward direction, and Γsup< Γ off axis, which means
that superradiance is suppressed and that the light es-
cape rate is slowed down by multiple scattering [54]. Al-
though the collective state is different from the timed-
Dicke state in this situation [8], and more generally su-
perradiant modes are much less populated near resonance
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FIG. 5. Cooperative decay rates Γsup (a) and τsub (b) as a function of the detection angle θ measured from the laser axis,
where θ = 0 is the forward direction and θ = 180○ is the backscattering direction. Data were calculated for on-resonance (red)
and far-detuned (blue) excitation, for a sample with fixed density ρ0λ

3
= 4.6 and b0 = 8.55. In (a), superradiance is suppressed

on-resonance except in the forward direction. Off-resonance, it is faster off-axis (θ ≠ 0) than on-axis (θ = 0). In (b), subradiance
is isotropic for all detunings and directions. The fitting range of the subradiant decay has been set to a lower value for the
point at θ = 0 in order to take into account the lower relative amplitude of subradiance due to the forward superradiant lobe.

[46], the forward superradiant lobe is still preserved be-
cause it comes from the diffracted light on the edge of
the cloud when driven by a plane wave. For subradiance,
we do not see any significant variation of τsub with the
emission angle, confirming initial intuition that subradi-
ance is on average isotropic [30, 52]. The relative ampli-
tude of the subradiant decay is however much smaller at
θ = 0 because of the dominant forward superradiant lobe.
The slightly slower decay at resonance is due to multiple
scattering, which contributes to slowing down the de-
cay [54]. The precise interplay between subradiance and
multiple scattering near resonance is the subject of stud-
ies in progress.

D. Long-time limit

As mentioned at the beginning, the fitting interval for
subradiance is somewhat arbitrary and the subradiant
decay time that can be measured in an experiment is
related to the noise level below which the decay is not
measurable. It is thus interesting to look if the decay
rate still evolves at very late times, even if those times
are not accessible experimentally. From the numerical
decay curves, we can compute the instantaneous decay
rate

Γ(t) = −
d

dt
[lnP (t)] , (11)

here defined for the total scattered light (Eq. 7).
In Fig. 6 we show Γ(t) for ∆ = 10Γ and different val-

ues of b0. We find that the decay rates still evolve long

after the switch off, until it eventually reaches a constant
value at very long time, here t ≥ 600τ0. We have checked
that this does not depend on the duration of the excit-
ing pulse. The final value of Γ(t) corresponds to the
smallest real part of the eigenvalue spectrum (see [46]),
which is very sensitive to the configuration of the po-
sitions. Moreover, the population of the corresponding
mode can be negligible, which means that the signal is

10
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0

t / τ
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 / 
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FIG. 6. Temporal decay rates Γ(t) calculated from the
total fluorescence (Eq. 8), for several b0, with ρ0λ

3
= 4.6 and

∆ = 10Γ. The decay rates still evolve even for very long
times, becoming completely constant for t ≥ 600τ0 after the
extinction of the driving laser.
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(b)(a)

FIG. 7. Phased cloud. (a) The cloud is excited by a laser propagating along the z axis, which goes through a wave plate such
as the half space y > 0 of the cloud is excited with a phase shift of δ = π compared to the atoms in the half space y < 0. The
detector measures the intensity Iθ,φ(t) computed from Eq. (5). (b) Emission diagram in the steady state for the phased cloud,
for b0 = 8.55, ρ0λ

3
= 4.6 and ∆ = 10Γ. The single forward lobe, characteristic of superradiance with a plane wave (without phase

shift), is divided into two components for the “phased” excitation. The emission diagram is isotropic in other directions.

far below the detection threshold of any realistic exper-
iment. The long-time limit of Γ(t) is thus not relevant
from an experimental point of view. On the other hand,
this problem shows that we lack a rigorous definition of
the subradiant decay rate, and we have to rely on empir-
ical definitions to measure or numerically evaluate it.

IV. SUBRADIANCE IN A PHASED CLOUD

Subradiance is hard to detect experimentally because
of its low relative level in the decay dynamics, on the or-
der of 10−3 [30], which limits the prospect of using subra-
diant states for quantum information processing, metrol-
ogy, or transport experiments [41, 55–59]. Finding a way
to selectively populate the subradiant states, or at least
to enhance their relative weight, is thus a relevant chal-
lenge.

Inspired by [41], in this section we analyze the decay
dynamics of what we call a phased cloud (Fig. 7a). This
is an atomic cloud where one half side is driven with a
phase shift of δ = π compared to the atoms in the other
half (δ = 0). This set-up can be experimentally realized
by making the incoming laser to go through a wave plate
of different thickness. Then, after the laser extinction,
the scattered light is detected in the direction orthogonal
to the phase step.

For the simulations, the driving laser is set along the
z-axis and the phase shifter is placed such that the atoms
in the half space y > 0 are driven by the laser with the
phase k0zj+π in Eq. (1), while the atoms in the half space
y < 0 are driven with the phase k0zj as previously. As

the phased-cloud system is not symmetric with respect to
the z-axis, we use Eq. (5) to compute the scattered light
in a given direction θ, φ. Fig. 7b shows the emission
diagram of the phased cloud in the steady state. The
main effect of the phase step is to divide the forward
emission into two lobes. This is due to the destructive
interference between the light emitted by the atoms in
the two different half spaces. A similar idea, controlling
the direction of the main diffraction lobe via the phase
of the driven atoms, has been discussed in [60].

The remarkable property of this phased cloud is the de-
cay dynamics for directions orthogonal to the laser axis
(θ = 90○). Fig. 8(a) compares the scattered intensity for
the phased excitation and the standard excitation, i.e.,
without phase shifter (“normal” excitation). As previ-
ously, the data are normalized to the steady-state values
before switch off, which are similar in both cases. How-
ever, after some decay time, the signal obtained with the
phased excitation is significantly higher. This means that
the relative weight of subradiance is enhanced by a factor
∼ 6− 8 [Fig. 8(b)], which is a significant improvement for
experiments. It also shows that subradiance is sensitive
to the phase of the laser, which is a marked difference
with radiation trapping [54], and thus stresses that this
is a coherent effect.

This improvement obtained with a very simple phase
profile for the incident laser shows that there should
be possible to enhance the population of the subradiant
states by engineering the phase or intensity or temporal
profile of the exciting laser.
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FIG. 8. (a) Comparison between the normal and phased
cloud for the decay dynamics. The parameters of the sample
are b0 = 8.55, ρ0λ

3
= 4.6 and the laser detuning is ∆ = 10Γ.

Superradiance is almost completely suppressed and the rel-
ative amplitude of subradiance is increased, while the decay
rate is conserved. Here the scattered intensity is calculated
at θ = 90○, φ = 90○ (see Fig. 7), but the result is similar for
all φ. (b) Ratio between the scattered light from the phased
and normal cloud, during the decay, as computed in (a). The
phased excitation increases the relative amplitude of subradi-
ance by a factor ∼ 6–8.

V. SUMMARY

In this article, we have reported a detailed numerical
investigation on the decay dynamics for a dilute spher-

ical Gaussian cloud of N particles, using the coupled-
dipole equations. We have discussed the effect of us-
ing an exclusion-volume condition avoiding pairs of close
atoms, in order to better simulate the low-density regime
in which some experiments are performed [30, 31]. It was
shown that the superradiant decay rate scales linearly
with the resonant optical depth b0. On the contrary, the
subradiant decay rate, although defined with some arbi-
trary considerations, is inversely proportional to b0. We
have also shown that while the superradiant decay rate
is significatively different for the light scattered on axis
and off axis, the subradiant decay rate is isotropic. Fi-
nally, the decay dynamics of a sample driven by a laser
with a 0 − π phase profile was studied and it was shown
that this configuration increases significantly the relative
weight of subradiance detected in some directions. This
paves the way for the development of even more involved
and efficient way to selectively populate the subradiant
states, which is promising for their future use in various
fields, for instance for quantum information processing,
metrology, or transport experiments [41, 55–59].
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[60] C. E. Máximo, R. Kaiser, Ph. W. Courteille, and
R. Bachelard, “The atomic lighthouse effect,” J. Opt.
Soc. Am. A 31, 2511–2517 (2014).

[61] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley,
New York, 1999).

Appendix A: Proof of Equation (8)

The equivalence of the Eqs. (7) and (8) is verified by
showing that both are proportional to

I =∑
j

∑
j′

sin(k0rjj′)

k0rjj′
βjβ

∗

j′ . (A1)

For simplicity we have dropped the j, j′ = 1, ...,N in the
summation.

Let us to start with Eq. (7). We rewrite it as

P (t)∝∑
j

∑
j′
∫

2π

0
∫

π

0
e−ik0r̂⋅(rj−rj′)βjβ

∗

j′ sin θdθdφ .

(A2)
By choosing a coordinate frame such that r̂ ⋅ (rj − rj′) =
rjj′ cos θ [61], and noting that the integral over φ gives
2π, we have

P (t)∝ 2π∑
j

∑
j′
βjβ

∗

j′ ∫

π

0
e−ik0rjj′ cos θ sin θdθ

= 2π∑
j

∑
j′
βjβ

∗

j′ ∫

1

−1
e−ik0rjj′udu

= 4π∑
j

∑
j′

sin(k0rjj′)

k0rjj′
βjβ

∗

j′ , (A3)

i.e., proportional to Eq. (A1). Note that Eq. (A3) is valid
for all t and not only during the decay (t > 0).

Now we turn to Eq. (8). We start by expanding the
derivative in the right-hand side by using the Kronecker
delta:

f(t) ≡ −
d

dt
∑
j

∣βj(t)∣
2
= −

d

dt
∑
j

∑
j′
βjβ

∗

j′δjj′

= −∑
j

∑
j′
δjj′ (β̇jβ

∗

j′ + βj β̇
∗

j′) . (A4)

The terms β̇j are replaced by the coupled-dipole equation
(1) and its complex conjugate, rewritten with the term
(−Γ/2)βj absorbed into the summation, i.e.,

β̇j = i∆βj −
iΩ

2
eik0⋅rj −

Γ

2
∑
j′
Vjj′βj′ . (A5)

After the substitutions, we have

f(t) = −∑
j

∑
j′
δjj′ ([i∆βj −

iΩ

2
eik0⋅rj −

Γ

2
∑
m

Vjmβm]β∗j′

+βj [−i∆β∗j′ +
iΩ

2
e−ik0⋅rj′ −

Γ

2
∑
n

V ∗

j′nβ
∗

n])

=
Γ

2
∑
j

∑
j′
δjj′ (∑

m

Vjmβmβ
∗

j′ +∑
n

V ∗

nj′βjβ
∗

n)

+
iΩ

2
∑
j

(eik0⋅rjβ∗j − c.c.)

=
Γ

2
∑
j

∑
j′

(Vjj′ + V
∗

jj′)βjβ
∗

j′

−
iΩ

2
∑
j

(e−ik0⋅rjβj − c.c.) (A6)



11

The first term is proportional to Eq. (A1) after sub-
stituting Vjj′ = eik0rjj′ /(ik0rjj′) and noting that it is
symmetric to the exchange j ⇆ j′. Furthermore, from
Eq. (A3), it is also equal to the total emitted power P (t).

Thus, we rewrite Eq. (A6) as

P (t)∝ −
d

dt
∑
j

∣βj(t)∣
2
+
iΩ

2
∑
j

(e−ik0⋅rjβj − c.c.) (A7)

for all t.
When the driving laser is switched off, Ω = 0 and

Eq. (A7) yields to Eq. (8), valid during the decay.
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