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A closed loop optimal experiment design for on-line parameter identification approach is developed10

for nonlinear dynamic systems. The goal of the observer and the nonlinear model predictive control11

theories is here to perform online computation of the optimal time-varying input and to estimate the12

unknown model parameters online. The main contribution consists in combining Lyapunov stability13

theory with an existing closed loop identification approach, in order to maximize the information14

content in the experiment and meanwhile to asymptotically stabilize the closed loop system. To15

illustrate the proposed approach, the case of an open loop unstable aerodynamic mechanical system is16

discussed. The simulation results show that the proposed algorithm allows to estimate all unknown pa-17

rameters, which was not possible according to previous work, while keeping the closed loop system stable.18

19

Keywords: closed loop identification; optimal experiment design; model predictive control; stability;20

nonlinear observer; persistent excitation, delta wing; mechanical system.21

1. Introduction22

Accurate modeling is required for simulation, optimization or control of dynamic processes. There-23

fore, the identification of unknown model parameters can not be avoided. Badly designed exper-24

iments for model parameter identification can be costly (e.g. materials fed at the process inlet,25

energy consumption during such experiments, output materials with undesired properties) and26

increase the time needed for pure model identification. Optimal experiment design (OED) is a27

classical technique for parameter identification purposes (Goodwin et al., 1977; Ljung, 1999). How-28

ever, in a large part of the existing literature on OED for parameter identification, optimal input29

design is separated from parameter estimation. In that case, the experimental data is gathered30

from previous experiences for further offline model parameter estimation (Barz et al., 2012; Ljung,31

1999; Walter and Pronzato, 1994). Moreover, for many decades OED for parameter estimation has32

only been applied to linear or approximated linearized models (Franceschini and Macchietto, 2008;33

Keviczky, 1975; Ng et al., 1977), whereas in areas such as biological and chemical processes, models34

are highly nonlinear, even sometimes unstable.35

Recently, coupled closed loop OED and online parameter estimation approaches have been de-36

veloped by several authors for nonlinear multivariable stable systems. The basic objective in this37

kind of approach is to maximize the information content of the experiments to improve the ac-38
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curacy of parameter estimation, which is usually described by a sensitivity criterion based on the39

Fisher information matrix (FIM)(Goodwin et al., 1977; Ljung, 1999; Walter and Pronzato, 1994).40

In (Jayasankar et al. , 2010), the authors developed an OED for on-line parameter estimation in41

the multivariable case but without any concern with the closed loop stability. In (Zhu and Huang,42

2011), the authors used steady state analysis to add linear equality constraints to an extended43

Kalman filter based approach to reduce the influence of poor initial parameter guesses.44

These techniques for closed-loop identification purposes were addressed for open loop stable45

nonlinear systems. However, for industrial applications it is often necessary to account for process46

constraints. Model Predictive Control (MPC) strategy is usually considered for solving this kind47

of optimal control under constraints, which classically aims to drive the process state to a known48

target value (i.e. set-point or trajectory tracking). Recently, the field of economic MPC (EMPC)49

has emerged (see: (Rawlings et al., 2012), the recent special issue on this topic in the Journal of50

Process Control 24(8) and the references in (Ellis et al., 2014)). In contrary to classical MPC,51

EMPC aims to drive (most of the time) the process state in a particular time-varying state (that52

is unknown, in contrary to the MPC set-point) and which optimizes the defined economic cost53

function. In MPC and EMPC, some works are also dealing on stabilization issues (see for example54

(Huang et al., 2011; Zavala and Biegler, 2009)).55

In this paper a closed loop on-line optimal identification approach for a class of dynamic systems56

is proposed, which optimizes an economic cost function and in the meantime maintains the closed57

loop asymptotically stable. Combining observer theory and nonlinear predictive control theory,58

the basis of the closed-loop OED for online identification approach proposed here was initially59

introduced in (Flila et al., 2008). In this initial work, the nonlinear model was linearized and the60

authors considered only the mono-variable case (a single input, a single measured state and a single61

unknown constant parameter) for stable nonlinear systems. In contrast to this previous work, the62

approach proposed here is developed for a general multi-variable case of open loop unstable or stable63

nonlinear systems, with input constraints and where the state may not be entirely measured. The64

novelty in the present paper is in the extension of the previous approach of (Qian et al., 2013) to65

guarantee local stability of the closed loop of nonlinear dynamic system by integrating a Lyapunov66

stability criterion (Calvet et al., 1989; Castillo et al., 2012) into the optimal control problem.67

The paper is organized as follows. An outline of basic components and requirements needed68

for the proposed approach is presented in Section 2. Then in Section 3, the closed loop optimal69

identification approach for nonlinear dynamic model is developed which also stabilizes the system70

in a neighborhood of a steady state. This approach is illustrated in Section 4 through an example71

of a nonlinear open loop unstable dynamic system: a mechanical rolling delta wing. The obtained72

simulation results and analysis are given in Section 5.73

2. Problem statement74

2.1 Class of systems considered75

The proposed approach is dedicated to processes that feature some dynamic behavior. Meanwhile,76

at least one output yp must be available as an on-line measure and the manipulation of at least77

one exogenous input u must be possible on-line by a controller. Some constraints may be specified78

on the magnitude and velocity of the manipulated input1. Hence, this covers a very large number79

of potential applications.80

Models considered here are nonlinear (or linear) in terms of state representation and/or in terms of81

model parameters. This dynamic multivariable model is described by ordinary differential equations82

1Other constraints may be specified on the measured outputs or estimation of the process states (dealing with safety, set-point
tracking within error bounds, production, ...). In order to handle the stability with the method detailed here, such constraints
are not included.
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as follows:83

�
ẋ(t) = f(x(t), θ, u(t))
y(t) = h(x(t), θ, u(t)),

(1)

where x ∈ Rn is the state vector, y ∈ Rp is the output vector, u ∈ U ⊂ Rm denotes the vector84

of manipulated inputs, θ ∈ Rq is the unknown constant model parameter vector, f and h are85

nonlinear functions of suitable dimensions.86

Assumption 1: In system (1), f and h are C∞ with respect to their arguments.87

2.2 Problem formulation88

The use of model (1) for control or/and simulation requires an identification step to get the value of89

the unknown model parameter vector θ. Here, as motivated before, we are interested in a coupled90

closed loop OED and online parameter estimation approach. This consists in on-line designing the91

optimal experiment by an optimal design of the input vector u (which is constrained by physical92

limitations), while also on-line estimating the unknown parameter vector θ of the model based on93

the on-line process measures yp. In order to do this, the following two main tools are needed.94

2.2.1 Online optimal input design95

MPC strategy is usually considered for solving such optimal control problems with input con-96

straints. The idea of an MPC strategy is to on-line solve a constrained optimization problem at97

each current sampled time tk
2 in order to minimize (or maximize) a criterion J :98

J(ũ(l|k)) =
k+Np�

l=k+1

φ(yp(k), y(l), u(l)), (2)

where the prediction horizon is Np. y(l) is the prediction of the process output vector over this99

prediction horizon, obtained from the model (1) where the initial state x(k) is the last measured or100

estimated process state. At the current time k, to optimize J , this controller aims to determine an101

optimal sequence of inputs over the prediction horizon (ũ(l|k) = {u(k), . . . , u(l), . . . , u(k + Np)})102

under input constraints:103

�
umin � u(l) � umax

Δumin � u(l)−u(l−1)
Ts

� Δumax
(3)

The first control objective is to design a suitable cost function φ in the criterion (2): here, it aims104

to maximize the information content of the experiments to improve the accuracy of the parameter105

estimation and ensure closed loop stability. To design the cost function φ, we are here inspired106

by the recent concept of EMPC which aims to optimize the economic performance of the process107

directly in real time, instead of solving a set-point or reference trajectory tracking. With EMPC,108

in recent works (Angeli et al., 2012), (Zanon et al., 2014) and (Alangar et al., 2015), the initial109

economic cost function is penalized by a quadratic term. This allows us to guarantee the closed110

loop stability in a neighborhood of a steady state. Meanwhile, in these works, it is either assumed111

2To simplify the notation in the following discrete formulations, s(k) = s(tk) (resp. s(l) = s(tl)) represents the value of the
signal s at the current (resp. future) discrete time t = k × Ts (resp. t = l × Ts), where Ts is the constant sampling time and
k (resp. l) is a time index (i.e. an integer). For the input, a zero order hold is used between two consecutive sampling time

instants. The various models are still formulated in a continuous framework and are solved numerically. Hence, sampled values
may be taken at any discrete time. It is assumed that process data may also be sampled at the same rate.
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that all the model parameters are known, or that the state disturbance vector is bounded.112

Based on this, the second control objective is to propose a method to solve online this constrained113

optimization problem (2-3) to find the optimal input u(k) to apply at each time on the real process.114

The prediction of the output y(l) in the cost function (2) depends also on the value of the parameter115

vector θ in the model (1). Here, since such parameters are unknown, they must be estimated online.116

In the field of parameter identification, one of the very common techniques in the engineering117

literature is based on the Kalman filter. In the following we recall main lines of this technique.118

2.2.2 Observer design for online identification119

This technique consists first in extending model (1) with its unknown constant parameters θ to be120

estimated (see for instance (Cox, 1964); (Nelson and Stear, 1976); (Ljung, 1979)):121





ẋ(t) = f(x(t), θ, u(t))

θ̇ = 0
y(t) = h(x(t), θ, u(t)).

(4)

In the following, the augmented state vector is noted xa = [x θ]T ∈ Rn+q and the vector122

function is fa = [f 0]T .123

In the nonlinear case, different observer design techniques have been proposed such as: high gain124

observer (Gauthier et al., 1992), extended Kalman filter (EKF) (Besançon, 2007b) or adaptive-gain125

observer (Boizot et al., 2010; Nadri et al., 2013). The choice of the observer structure depends on126

the model structure and its observability property.127

The nonlinear system (4) considered here may a priori admit inputs for which observability is128

not guaranteed (i.e. is not uniformly observable). Consequently, to design an observer for nonlinear129

systems requires the observability property which generally depends on the applied inputs (i.e.130

the sensitivity of the measurements with respect to the inputs). This addresses the well known131

important issue of persistency of excitation, which is still an open issue in the nonlinear case.132

For state affine nonlinear systems, appropriate inputs have been characterized. In this case,133

observability corresponds to the notion of regularly persistent inputs which is clearly formulated134

using the Gramian of observability (Bornard et al. (1988)). We can find also some earlier results135

on input conditions to guarantee a possible observer design, depending on the system structure in136

(Besançon (2007c); Dufour et al. (2012)). However, the design of such inputs is still difficult and137

and in practice done heuristically.138

Under observability conditions, a global observer can be designed for the augmented system (4):139

Definition 1: A global observer based on the augmented model (4) can be given by a dynamical140

system as:141

�
˙̂xa(t) = fa(x̂a(t), u(t)) + ga(t, h(x̂a(t), u(t))− yp(t))
with: ga(t, 0) = 0,

(5)

where ga is a function (of the output estimation error) to be designed and yp is the process output142

vector (on-line measures) such that143

i) if x̂a(0) = xa(0), then x̂a(t) = xa(t), ∀t ≥ 0;144

ii) if ∀xa(0), ∀x̂a(0), then lim
t→+∞

�x̂a(t)− xa(t)� = 0.145

The estimation problem consists in determining a gain structure ga and tuning the observer146

parameters such that the estimation error e(t) = xa(t) − x̂a(t) converges asymptotically to zero.147

Note that this convergence is also related to appropriate input excitation.148
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2.2.3 Problem considered149

From (5), the observer design problem may be turned into an optimization problem in the sense150

that we have to find an optimal input excitation u (corresponding to the observability of the151

system) which guarantees the convergence of the estimation error.152

Based on model (1) with unknown constant parameters θ, a new optimal approach is proposed to153

guarantee the observability of system (4) through an optimal persistent input excitation calculated154

on-line.As a first step, an initial cost function is designed based on the sensitivity of the measure-155

ments with respect to the inputs to guarantee the persistence of the input. Then, the problem of156

closed-loop stability is considered. To guarantee this property, a second cost function is introduced157

into the optimization problem.158

Remark 1: - Note that the proposed approach can be also relevant in the case of uniformly ob-159

servable systems in the sense that the designed optimal input should improve the robustness of the160

observer with respect to measurement noise and model uncertainties.161

- For a simple illustration of the approach, we assume in what follows that all the states are mea-162

sured. However, in general the method does not require all states to be measured.163

3. A closed loop optimal identification approach164

3.1 Structure for coupled control and online parameter identification165

In this paper, the developed general framework combines a closed loop OED with an observer for a166

nonlinear dynamic system, which can be open loop unstable. Based on the chosen model structure,167

an observer is designed for the augmented system.168

Then, a sensitivity model is developed to capture the dynamics of the sensitivities of the state169

vector to the unknown model parameters. Finally, the outputs of the four components (a process,170

a model, an observer and a sensitivity model) are fed back into the optimal control problem which171

is solved by the EMPC strategy taking into account the stability analysis.172

Fig. 1 shows how the components needed in the proposed closed loop identification algorithm173

are combined. In the following, the remaining components for the proposed closed loop optimal174

identification approach are presented, leading to the final optimal control problem.175

3.2 Sensitivity model176

The sensitivity model is explicitly deduced from model (1). Sensitivity analysis tells us how the177

unknown parameter vector θ affects the model state x and the model output y.178

Using the definition of the sensitivity function (·)θ = ∂(·)
∂θ of a variable (·) with respect to the179

parameters θ, and the dynamical model (1), one gets the sensitivity model:180

�
ẋθ(t) = ∂f

∂x (x(t), θ, u(t))xθ +
∂f
∂θ (x(t), θ, u(t))

yθ(t) = ∂h
∂x (x(t), θ, u(t))xθ +

∂h
∂θ (x(t), θ, u(t)) ,

(6)

where xθ ∈ Rn×q and yθ ∈ Rp×q are the matrices of sensitivities of the states and the outputs,181

respectively, with respect to the parameters.182

3.3 Prediction model183

Based on model (1), the prediction model (7) aims to predict, at the current time k and over the184

prediction horizon Np, the future model output y. It is based on the current estimation x̂(k) of the185

5
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Figure 1. Closed loop control structure for on-line identification.

process state and the current estimation θ̂(k) of the unknown constant parameters given by the186

observer (5):187





ẋ(t) = f(x(t), θ̂(k), u(t)) ∀t ∈]tk, tk+Np
]

y(t) = h(x(t), θ̂(k), u(t)) ∀t ∈]tk, tk+Np
]

x(tk) = x̂(k).

(7)

3.4 Prediction sensitivity model188

Based on the sensitivity model (6), the prediction sensitivity model (8) aims to predict, at the189

current time k and over the prediction horizon Np, the future sensitivity yθ of the output of190

the prediction model (7) with respect to the current estimation θ̂(k) of the unknown constant191

parameters:192





ẋθ(t) =
∂f

∂x

�
x(t), θ̂(k), u(t)

�
xθ(t) +

∂f

∂θ

�
x(t), θ̂(k), u(t)

�
, ∀t ∈]tk, tk+Np

]

yθ(t) =
∂h

∂x

�
x(t), θ̂(k), u(t)

�
xθ(t) +

∂h

∂θ

�
x(t), θ̂(k), u(t)

�
, ∀t ∈]tk tk+Np

]

xθ(tk) =

�
xθ(k|k − 1), for tk > 0
0, for tk = 0,

(8)

where xθ(k|k − 1) is the one step ahead solution of (8) at the time k − 1.193

194

Physical values involved in these sensitivities have usually different scales and units. So, in order195

to re-scale the effects of the different parameters on the different outputs of the model, each196
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sensitivity is normalized with the relative-sensitivity function:197





x̄
iθj = θ̂j(k)

xi
x

iθj ; i = 1, · · · , n; j = 1, · · · , q

ȳ
iθj = θ̂j(k)

yi
y

iθj ; i = 1, · · · , p; j = 1, · · · , q.
(9)

3.5 Sensitivity criterion198

In the proposed approach, one of the objectives is to maximize the future information content of199

the experiment which must be described by a sensitivity criterion. First, one defines a sensitivity200

matrix ȳθ(l), which at the current instant k gives the prediction at a future time l > k of the201

normalized output sensitivity matrix ȳθ as202

ȳθ(l) =




ȳ1θ1(l) ȳ1θ2(l) . . . ȳ1θq(l)

ȳ2θ1(l)
. . .

...
...

. . .
...

ȳpθ1(l) . . . . . . ȳpθq(l)


 . (10)

Using (10), we can now define the FIM as203

M(l) = �ȳθ(l)�2. (11)

This matrix contains the information of the experiment, at the current time k, for a future time204

l > k. Then, the classical E-optimality criterion205

Jθ(l) =

����
λmin(M(l))

λmax(M(l))

���� , l ∈]k k +Np], (12)

is defined to be used in a maximization problem within a EMPC framework to get an OED.206

The criterion given by (12) is specific to the maximization of the information contained in the207

FIM. Consequently, it does not take into account the eventual problem of system instability and208

the resulting optimal control does not ensure closed-loop system stability. In the following, this209

maximization problem is modified to take also this stability objective into account.210

3.6 Lyapunov local stability criterion211

The study of closed loop stability for nonlinear systems often relies on a Lyapunov function.212

Concerning EMPC, in (Alangar et al., 2015), the decrease of the derivative of the Lyapunov function213

is constrained by the predictive control resolution. But this relies on the perfect knowledge of the214

model parameters. In the case of open loop unstable nonlinear dynamic systems with uncertain215

parameters, it is always difficult to formulate an optimal control problem which can guarantee216

closed loop stability. Following the nonlinear robust control design methodology (Başar et al.217

(1995)), solving this problem relies on finding a positive definite and proper smooth Lyapunov218

function satisfying the nonlinear Hamilton Jacobi Bellman equation, which can be difficult (or219

impossible) to solve. However, if we focus on the linear approximation of the nonlinear system,220

then this problem can be solved locally.221

7
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Now, let us consider the following controlled uncertain nonlinear system:222

ẋ = F (x, u) + d(t), x(0) = x0 , (13)

where x in Rn is the state vector, u in Rm is the control input, and F : Rn → Rn is a C1 function223

such that 3 F (0, 0) = 0 and d in C0(R;Rn) is an unknown external disturbance. The function F224

being smooth, we can introduce the two matrices (A(t), B(t)) inRn×n×Rn×m with A(t) = ∂F
∂x

��
(x,u)225

and B(t) = ∂F
∂u

��
(x,u) to describe the first order approximation of system (13) at (x(t), u(t)). All226

along this paper, it is assumed that the system (13) satisfies the following assumption:227

Assumption 2 (First order controllability:): The pair of matrices (A(t), B(t)) is controllable228

∀t.229

Based on Assumption 2, we focus on the design of an optimal local controller for the linear time230

varying system:231

ẋ(t) = A(t)x(t) +B(t)u(t) + g(x, t), (14)

where A(.) and B(.) are time varying state matrices given by (13). g(x, t) is a locally Lipschitz232

continuous function nearby x = 0 such that g(0, t) = 0, ∀t > 0, and which can be considered as a233

“disturbance” of the system:234

• if g(x, t) = 0, the system (14) is non-autonomous linear.235

• if lim
�x�→0,x�=0

g(x,t)
�x� = 0 uniformly with respect to t, the system (14) is non-autonomous quasi-236

linear system (Calvet et al., 1989; Willems, 1970).237

In the context of MPC technique, at time k, an update of the model parameters θ̂(k) is done and238

the time varying matrices A(t) and B(t) of the linearized system (14) are updated (A(k), B(k))239

and considered constant over the prediction horizon Np. Consequently, at time k, the Hamilton240

Jacobi Bellman equality is an algebraic equation which is easy to solve :241

P (k)A(k) +A(k)TP (k)− P (k)B(k)R−1B(k)TP (k) +Q = 0, (15)

where the unique solution P (k) is a positive definite matrix in Rn×n, with both Q and R are242

positive definite matrices.243

244

Now, let us assume that (A(k), B(k)) is stabilizable and (A(k), Q
1

2 ) is detectable, then245

V (x) = xTP (k)x is a Lyapunov function for system (14).246

247

Based on this, the optimal input u minimizing the cost :248

J(u) = xT (t)P (k)x(t), (16)

stabilizes the solution of system (14) to the origin.249

250

Then, based on the prediction of the model states x(l), a stability criterion is established as a251

quadratic Lyapunov function as follows:252

JL(l) = xT (l)P (k)x(l), l ∈]k k +Np]. (17)

3As usual, the same development can be done for any pair (x, u) �= (0, 0) that represents a steady state in (13).

8
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By construction, this criterion JL is therefore a positive definite and decreasing function. Con-253

sequently, the input sequence ũ(l|k) minimizing JL allows to stabilize locally asymptotically the254

system (13) in closed loop.255

In the following, the stability criterion JL (17) based on P (k) has to be combined with the256

sensitivity criterion Jθ (12) to get the final criterion to maximize such that the EMPC can also257

handle local stability. Otherwise, since that linearization is done around the augmented state vector,258

robust stabilization particularly depends on the quality of convergence of the estimation error.259

However, based on the update of the linearization at every time k and thanks to the optimization260

algorithm which allows to increase the robustness of the observer to the measurements noise an261

uncertainties, the local stability in closed loop is handled.262

3.7 Final optimal control problem formulation263

In (Qian et al., 2013) a first approach was designed based on an EMPC, where the cost function264

aimed only to maximize the FIM of the experiment, while some fictitious output constraints were265

designed by trial and error to stabilize the process in closed loop. The main drawback is that266

design and tuning of output constraints is not easy. Compared to this result, in the present work,267

instead of using fictitious output constraints, a dual cost function is formulated in an EMPC which268

combines two parts in a constrained maximization problem: one part is, as previously (Qian et269

al., 2013), a sensitivity criterion (12) to improve parameter estimation, and the second part (the270

new part) is based on a Lyapunov function (17) deduced from Lemma 1 to locally asymptotically271

stabilize the process in closed loop. Indeed, on one hand, if only the maximization of the FIM is272

considered, the closed loop system may become unstable. On the other hand, if only the closed273

loop stability of the system is considered, the information content in the experience may not be274

rich enough to guarantee accuracy of the parameter estimation step. Similarly to the discussion275

on the theorem 3 in (Angeli et al., 2012), the solution adopted here is to find the optimal control276

which leads to a balance between parameter estimation and the stability of the system in closed277

loop. Hence, one formulates the final optimal identification problem as follows:278





ũ∗(l|k) = arg maxũ(l|k) J
ũ(l|k) = {u(k) · · ·u(l) · · ·u(k +Np)}, l ∈ [k k +Np]

J = 1
Np

�k+Np

l=k+1

�
β Jθ(l)

wθ
− (1− β)JL(l)

wL

�

under the input constraints, (∀k > 0) :�
umin � u(k) � umax

Δumin � u(k)−u(k−1)
Ts

� Δumax

based on the observer (5),
the prediction model (7), the sensitivity model (8),
the sensitivity criterion (12) and the stability criterion (17).

(18)

Remark 2: Note that this formulation does not aim to solve a set-point regulation problem but279

the OED. Therefore, only the input is constrained. Indeed, adding tight state constraints can be280

penalizing for such a design of persistent excitation and handling such constraints requires more281

knowledge on the system. Meanwhile, to ensure closed loop stability, the Lyapunov term (17) re-282

places (in the sense of closed loop stability) the previous fictitious constraints on the output (Qian283

et al., 2013).284

Here, J is the final optimization criterion to maximize, β is the real weighting tuning parameter285

in [0, 1] used to mix the two competitive parts involved in the cost function: the sensitivity criterion286

9
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Jθ and the Lyapunov stability criterion JL
4. Since these two criteria may have different scales, two287

weights wθ and wL are defined, to normalize Jθ and JL respectively in J . Hence, the pure sensitivity288

maximization is one of the two extremes (i.e. β = 1) where the outputs contain the maximum of289

information in all the unknown model parameters but closed loop stability is not ensured. On290

the other extreme (i.e. β = 0), the pure stabilization problem is shown to have a well defined291

Lyapunov function. In the meantime, the information content in the outputs might be not rich292

enough, which may render the accurate estimation of all parameters of the model impossible. This293

will be illustrated with the tuning of β in the case study in Section 5. Hence an optimal control294

ũ∗(l|k) is obtained that in a unique experience maximizes the content of information fed into the295

observer used for the online parameter estimation, and meanwhile locally stabilize the system and296

solve the disturbance attenuation in closed loop.297

Moreover, in contrary to the case studied in (Angeli et al., 2012), the weighting matrix P involved298

in the stability criteria JL is not constant but is adapted online according to the estimation of the299

model parameters.300

Note also that, we do not need here to specify a weighting matrix to penalize the deviation from301

the control input u away from 0 (the steady input).302

The robustness of the proposed approach to measurements noise and model uncertainties relies303

on the choice of the sensitivity cost function (12). However, to preserve this performance, the choice304

of the parameter β is important and should be done based on prior knowledge on the real system.305

3.8 Implementation of the algorithm306

Based on the nonlinear constrained optimal problem (18) to be solved online, the implementation307

of the EMPC strategy can be summarized as follows, at the current instant k:308

• Step 1: update the input/output measures and apply at the process input the first component309

of ũ∗(l|k − 1) (with a zero order hold).310

• Step 2: integrate the observer (5) to get an estimate of the state x̂(k) and the unknown311

constant parameters θ̂(k), based on the current input and output measures.312

• Step 3: solve online the nonlinear constrained optimization problem (18) to get the optimal313

control sequence ũ∗(l|k). This requires integrating the prediction model (7) and the prediction314

sensitivity model (8) over the prediction horizon for all control sequence guesses ũ(l|k). It is315

based on the current input and output measures, the unknown parameter estimations θ̂(k)316

(considered as constant over the prediction horizon) and the state estimations x̂(k)317

• Step 4: The first element u∗(k|k) of the optimal control sequence ũ∗(l|k) is applied at the318

next sampling time k + 1 (via a zero order blocker).319

At the next discrete time the whole procedure is repeated. Finally, this optimal control problem320

is solved to estimate the unknown constant parameters, excite the system and stabilize the closed321

loop.322

This algorithm has been implemented in Matlab and under the name ODOE4OPE software5. The323

models are solved with the Matlab ODE solvers. The local solution of the constrained optimization324

problem is obtained by the Matlab fmincon routine.325

It has to be noticed that this method may lead to a computational burden, especially for large326

size systems with relatively short sampling times. Indeed, the search for the optimal ũ∗(l|k) at each327

time k may be time consuming since the prediction model, the prediction sensitivity model, the328

minimum and maximum eigenvalues of the predicted FIM must be computed repeatedly for each329

guess of ũ(l|k).330

4As discussed previously, since it is a Lyapunov function and since the cost function J has to be maximized, one adds a minus
sign before JL.
5More information on odoe4ope.univ-lyon1.fr
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4. A rolling delta wing: the step by step procedure331

In this section, the developed closed loop on-line parameter identification approach is illustrated332

step by step for an open loop unstable dynamic system: a mechanical rolling delta wing. This333

application has been studied in (Jain et al., 2005) and in (Qian et al., 2013), whose results will be334

compared to the simulation results obtained with the approach presented here.335

4.1 Step 1: Model, open loop analysis and recent works336

The nonlinear model features a single dimensionless input u(t), a two dimensionless component337

state vector x(t) and the five unknown dimensionless constant parameter vector θ (Jain et al.,338

2005):339





ẋ1(t) = x2(t)
ẋ2(t) = α1θ1x1(t) + (α1θ2 − α2)x2(t)...

...+ α1θ3x
3
1(t) + α1θ4x

2
1x2(t) + α1θ5x1x

2
2(t) + α3u(t),

(19)

where t is the dimensionless time and α is the known constant parameter vector.The dimensionless340

numerical values of constant known parameters and target values of the unknown parameters341

obtained from (Nayfeh et al., 1989) are listed in the table 1. To underline the open loop instability

Table 1. Constant parameters: unknown values (top) and
known values (bottom) (Nayfeh et al., 1989).

index 1 2 3 4 5

θ -0.05686 0.03254 0.07334 -0.3597 1.4681

index 1 2 3

α 0.354 0.001 1

342

of the system, the nonlinear system (19) is first linearized around the steady state (u0, x0), with343

u0 ∈ [umin umax] = [−0.01 0.01] (which is in the following the domain of interest for this system).344

Figure 2 shows each pair of steady states [x01 x02] and the real part of each eigenvalue of the345

linearized system for the corresponding input u0. The real parts of two eigenvalues are always346

positive, which presents the instability of the delta wing model in open loop, and therefore the347

need to design a stabilizing controller.348

In previous work (Jain et al., 2005), a closed loop identification of the five unknown model349

parameters is discussed. A feedback linearizing control is used such that the closed-loop behavior350

matches with a specified second order linear reference model response with damped sinusoidal input351

reference. Both designs of this model and its input reference are not really discussed in a general352

framework. With their approach, the convergence of the two parameter estimations (θ1 and θ2) to353

their targets is reported, while the convergence of the three remaining parameter estimations (θ3,354

θ4 and θ5) to their target is not possible.355

In 2013 (Qian et al., 2013), the sensitivity criterion E-optimality is used as the cost function of356

the optimal control problem. To stabilize the system in a prescribed region, two fictitious output357

constraints were imposed and designed by trial and error method. The convergence of the five358

11
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Figure 2. Linearized system of (19), for u0 in [−0.01 0.01]: Steady state x0
1 (top left) and x0

2 (top right), real part of each

eigenvalue (bottom left and right).

unknown constant parameter estimations to their target is obtained with good accuracy and the359

system is stable in closed loop.360

4.2 Step 2: Observer design361

Similarly to the work of (Jain et al., 2005), both the states here are on-line measured. Hence, the362

purpose of the observer to be designed is to estimate on-line the vector of unknown parameters363

θi(i = 1, · · · , 5). To do so, according to the augmented model (4), system (19) is extended by the364

vector θ̇ = 0. Consequently, the obtained augmented model is a state affine system up to nonlinear365

output injection in the following form366

�
ẋa(t) = Aa(y(t))xa(t) +Ba(u(t))
y(t) = Caxa(t),

(20)
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where xa(t)=




x1(t)
x2(t)
θ1
θ2
θ3
θ4
θ5




; Ba(u(t))=




0
−α3u(t)

0
0
0
0
0




; CT
a=

�
I2×2

05×2

�
;367

with Aa(y(t))=

�
02×1 A(y(t))
05×1 05×6

�
; AT (y(t))=




1 −α2

0 α1y1(t)
0 α1y2(t)
0 α1y

3
1(t)

0 α1y
2
1(t)y2(t)

0 α1y1(t)y
2
2(t)



,368

369

I2×2 is the 2× 2 identity matrix, 0a×b is the a× b matrix of zeros.370

Then, a high gain observer based on the augmented state xa(t) can be designed as follows (see371

(Hammouri and Morales , 1990) and (Besançon, 2007a) for more details). For any xa(0), the system372

(20) admits an exponential observer of the form373

�
˙̂xa(t) = Aa(y(t))x̂a(t) +Ba(u(t))− ΓSµ(t)

−1CT
a (Cax̂a(t)− yp(t))

Ṡµ(t) = −µSµ(t)−Aa(y(t))
TSµ(t)− Sµ(t)Aa(y(t)) + CT

a ΓCa,
(21)

where Sµ is a 7× 7 symmetric positive definite matrix, the positive constant µ > 0 and Γ > 1 are374

the observer tuning parameters.375

4.3 Step 3: Sensitivity model376

Based on the model (19), the sensitivity model (6) simply becomes:377





ẋ1θ1 = x2θ1
ẋ1θ2 = x2θ2
ẋ1θ3 = x2θ3
ẋ1θ4 = x2θ4
ẋ1θ5 = x2θ5
ẋ2θ1 = α1(x1 + θ1x1θ1) + (α1θ2 − α2)x2θ1 + 3α1θ3x

2
1x1θ1 ...

...+ α1θ4(2x1x1θ1x2 + x21x2θ1) + α1θ5(x1θ1x
2
2 + 2x1x2x2θ1)

ẋ2θ2 = α1θ1x1θ2 + (α1(x2 + (θ2x2θ2)− α2x2θ2)) + 3α1θ3x
2
1x1θ2 ...

...+ α1θ4(2x1x1θ2x2 + x21x2θ2) + α1θ5(x1θ2x
2
2 + 2x1x2x2θ2)

ẋ2θ3 = α1θ1x1θ3 + (α1θ2 − α2)x2θ3 + α1(x
3
1 + 3θ3x

2
1x1θ3)...

...+ α1θ4(2x1x1θ3x2 + x21x2θ3) + α1θ5(x1θ3x
2
2 + 2x1x2x2θ3)

ẋ2θ4 = α1θ1x1θ4 + (α1θ2 − α2)x2θ4 + 3α1θ3x
2
1x1θ4 ...

...+ α1(x
2
1x2 + θ4(2x1θ4x1x2 + x21x2θ4)) + α1θ5(x1θ4x

2
2 + 2x1x2x2θ4)

ẋ2θ5 = α1θ1x1θ5 + (α1θ2 − α2)x2θ5 + 3α1θ3x
2
1x1θ5 + ...

...α1θ4(2x1θ5x1x2 + x21x2θ5) + α1(x1x
2
2 + θ5(x1θ5x

2
2 + 2x1x2x2θ5)).

(22)

4.4 Step 4: Control design378

As described in section 3, the outputs of the process yp, the state x of the model (19), the state379

x̂a of the observer (20) and the state xθ of the sensitivity model (22) are fed back into the control380

law. In (18), the cost function is built from two parts: the sensitivity criterion and the Lyapunov381

stability criterion. The outputs of the sensitivity model are normalized using the relative-sensitivity382
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function (9) in order to establish the sensitivity criterion (12). At the same time, a Lyapunov383

stability analysis is also needed to stabilize the system in closed loop. For determining the Lyapunov384

function (17), let us first consider system (19) as a quasi-linear system (14) in which385





At the current time k, over the prediction horizon Np:

A(k) =

�
0 1

α1θ̂1(k) α1θ̂2(k)− α2

�

B(k) =

�
0
α3

�

g(x, k) =




0

α1θ̂3(k)x̂
3
1(k) + α1θ̂4(k)x̂

2
1(k)x̂2(k)...

...+ α1θ̂5(k)x̂1(k)x̂
2
2(k)


 ,

(23)

where the function vector g(x, k) is assumed to be a ”small disturbance” of the system and respects386

the condition of non-autonomous quasi-linear systems (Calvet et al., 1989). Then based on the387

constant matrices A(k) and B(k) over the prediction horizon, one computes the positive semi-388

definite matrix P (k) by solving the algebraic Riccati equation (15). Finally, using the computed389

P (k) and the prediction of model states x(l), one gets the Lyapunov function (17). Effects of tuning390

the weighting value β are discussed in the following section.391

5. A rolling delta wing: numerical simulation results392

5.1 Numerical conditions393

All simulation runs are performed under the following conditions where all values are dimensionless6394





input constraints: − 0.01 ≤ u(k) ≤ 0.01
prediction horizon: Np = 5
sampling time: Ts = 1
observer tuning parameters: µ = 0.03, Sµ = I7×7 and Γ = 2
parameters in Riccati equation: Q = 0.01I2×2 and R = I
weights in the cost function: wθ = 10−14 and wL = 1.

(24)

Initial estimation errors for θi are listed in table 2: in order to see the robustness of the approach,395

large initial errors in the estimation of θi are introduced, including even sign errors.

Table 2. θ: initial estimation errors.

θ 1 2 3 4 5

Initial error (%) 80 -200 200 80 -200

396

The simulation runs are performed under the ODOE4OPE software7 based on Matlab.397

5.2 Influence of the weighting value β398

As discussed before, the weighting value β, ranging between 0 an 1, balances the dual cost function399

to obtain the convergence of the five unknown parameter estimation and also stabilizes the system in400

closed loop. In order to study the effects of the weighting value β, a series of simulations is presented401

6The time, the input and the states are also dimensionless.
7To use this software, please visit http://odoe4ope.univ-lyon1.fr
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with different values of β to compare the convergence of the unknown parameter estimations to402

their targets and the closed loop stability. Moreover, to see the impact of noise measurement, two403

cases are studied to show the robustness of the proposed closed loop on-line optimal identification404

approach defined in this paper:405

• Case 1: without noise.406

• Case 2: with a 5% Gaussian noise on the output measurements.407

Table 3 presents the mean value (resp. the norm of the mean value) of the last 60 values of the408

estimation of the five parameters in the two cases. As it can be seen here, in the case without noise,409

for several weighting values β (i.e. 0.3, 0.5, 0.6 and 0.7), and in spite of large initial error, the final410

estimation error of θi tends to zero (the maximal final estimation error is less than 9% (often less411

than 1%) and the minimum is less than 1%), which means the convergence of the five parameter412

estimations to their targets is achieved. With β tuned between 0.2 and 0.8 in the case without noise,413

it is robust for both the parameter estimations and the closed loop stability. In the case with noise,414

table 3 shows that for β = 0.6, the most accurate parameter estimations are obtained: all five final415

estimation errors are less than 3%. The closer the weighting value β approaches its limits 0 or 1, the416

larger the parameter estimation errors are: Indeed, for β = 0 (i.e., the cost function is only dealing417

with the stability) in the two cases, both input u and model state x tend as expected towards zero,418

but there is not enough information for parameter estimation: the estimation convergence for the419

two first components of the parameter vector is obtained, but the estimation for the other three420

other parameters is not possible (see table 3). For β � 0.8 in the case without noise or for β � 0.7421

in the case with noise (i.e. maximizing sensitivity criterion is more important than stabilizing the422

system), the system response is completely divergent. In other words the system is unstable in423

closed loop, so parameter estimation is impossible.424

Table 3. Influence of the tuning of β: Final mean parameter estimation error (%) for each parameters
and for the whole parameter vector, and states stability.

θi Vector
β 1 2 3 4 5 θ x1 x2

0 without noise −0.003 8 179 79 −200 125 stable stable
0 with noise 0.5 −13 178 79 −200 125 stable stable

0.3 without noise 0.01 2 0.2 −1 −1 1 stable stable
0.3 with noise 0.01 2 16 4 −62 27 stable stable

0.5 without noise -0.06 0.4 -0.5 1 2 1 stable stable
0.5 with noise 0.4 7 4 14 −4 7 stable stable

0.6 without noise −0.2 3 0.2 8 −5 5 stable stable
0.6 with noise -0.05 -1 -0.06 -2 0.7 1 stable stable

0.7 without noise 0.1 −2 0.04 −0.4 2 1 stable stable
0.7 with noise −0.3 16 2 2 −6 8 unstable unstable

0.8 without noise 1 8 3 0.2 −19 9 unstable unstable
0.8 with noise 2 −19 8 2 −63 30 unstable unstable

1 without noise 359 −250 792 827 22 548 unstable unstable
1 with noise 48 120 50 −16 −140 88 unstable unstable

The optimal tuning for β is almost similar in the two cases: 0.5 for the case without noise, and 0.6425

for the case with noise. This tuning is therefore robust with respect to the noise.426

5.3 Simulation results for β = 0.6, with output noise427

Applying the proposed developed approach on the delta wing system, the results for the case of428

β = 0.6 with output noise are presented here in more details. Figure 3 (a zoom is shown in Figure429

4) presents the closed loop optimal control time behavior within input constraints which stabilizes430

15
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the rolling delta wing behavior as shown in Figure 5. The first component yp1
of the output yp431

is stabilized in the region between −0.6 and 0.8 (which is larger than the output constraint set432

defined by trial and error in (Qian et al., 2013)), and the second component yp2
of the output433

yp is maintained between −0.1 and 0.1. In Figures 6 and 7, the five parameter targets and time434

evolution of the estimations are normalized (hence, 1 is the target): all unknown parameters are435

estimated. Meanwhile, the parameter θ1 reaches its target in t = 200, the parameter θ2 reaches its436

target before t = 600 (Figure 6), and the other three parameters converge to their targets around437

t = 500 (Figure 7). Therefore, the optimal control stabilizes the system in closed loop and helps to438

estimate all five unknown parameters with high accuracy.439
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Figure 3. Closed loop optimal input for β = 0.6 with output noise.
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Figure 4. Closed loop optimal input for β = 0.6 with output noise (zoom on 0 ≤ t ≤ 200).

6. Conclusion440

In this paper, a closed loop controller for on-line parameter identification was designed for a general441

class of nonlinear dynamic systems. An optimization problem was formulated based on a sensitivity442

criterion and a Lyapunov function. Indeed, based on the observer theory and the MPC strategy,443

a cost function was maximized online to get a trade-off between local stability and the observer444

robustness by tuning a unique controller parameter. Consequently, stability was guaranteed in445
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Figure 5. Closed loop outputs for β = 0.6 (top: yp1, bottom: yp2) with output noise.
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Figure 6. Closed loop estimation for β = 0.6 (from the top to the bottom: θ1 and θ2) with output noise.
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Figure 7. Closed loop estimation for β = 0.6 (from the top to the bottom: θ3, θ4 and θ5) with output noise.
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closed loop by Lyapunov analysis (while previous results were based on a trial and error method)446

and the estimation error converged asymptotically to zero. This generic approach was illustrated447

step by step with simulations on an aircraft example (an open loop unstable mechanical delta wing448

system). In contrary to a previous work, the convergence of all five parameter estimations to their449

target and the stability of closed loop were shown with noisy output measurements.450

As possible future works, it could be discussed how to add output constraints to keep also the451

system in a desired production area. It should then be considered how this competes with the452

stability criteria. Also, a formal proof of robustness needs to be addressed, to minimize the impact453

of the transient estimation error on the closed loop control objectives. Interval observers, as a tool454

to give the estimation bounds, may be considered.455
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