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In this paper, we extend and complement previous works about propagation in kinetic reaction-transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded velocities, having dimension higher than one. We extend previous results obtained by the first author with Calvez and Nadin in dimension one. We study the large time/large scale hyperbolic limit via an Hamilton-Jacobi framework together with the half-relaxed limits method. We deduce spreading results and the existence of travelling wave solutions. A crucial difference with the mono-dimensional case is the resolution of the spectral problem at the edge of the front, that yields potential singular velocity distributions. As a consequence, the minimal speed of propagation may not be determined by a first order condition.

Introduction

The model.

In this paper, we are interested in propagation phenomena occuring in the following reactiontransport equation

       ∂ t f (t, x, v) + v • ∇ x f (t, x, v) = M (v)ρ(t, x) -f (t, x, v) + rρ(t, x) (M (v) -f (t, x, v)) , (t, x, v) ∈ R + × R n × V , f (0, x, v) = f 0 (x, v) , (x, v) ∈ R n × V , (1.1) 
where r > 0. The mesoscopic density f depends on time t ∈ R + , position x ∈ R n and velocity v ∈ V and describes a population of individuals. The macroscopic density is ρ(t, x) = ´V f (t, x, v) dv. The subset V ⊂ R n is the set of all possible velocities. From now on, we assume

The reproduction of individuals is taken into account through a reaction term of monostable type. The constant r > 0 is the growth rate in absence of any saturation. New individuals start with a velocity chosen at random with the same probability distribution M . The quadratic saturation term accounts for local competition between individuals, regardless of their speed.

We assume that initially 0 ≤ f 0 ≤ M , so that this remains true for all times, see [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF][START_REF] Cuesta | Traveling Waves of a Kinetic Transport Model for the KPP-Fisher Equation[END_REF].

Earlier works and related topics

It is relatively natural to address the question of spreading for (1.1) since there is a strong link between (1.1) and the classical Fisher-KPP equation [START_REF] Fisher | The Wave of Advance of Advantageous Genes[END_REF][START_REF] Andreï | Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF]. Indeed, a suitable parabolic rescaling

ε 2 ∂ t g ε + εv • ∇ x g ε = (M (v)ρ gε -g ε ) + ε 2 rρ gε (M (v) -g ε ) , (1.3) 
leads to the Fisher-KPP equation (see [START_REF] Cuesta | Traveling Waves of a Kinetic Transport Model for the KPP-Fisher Equation[END_REF] for example) in the limit ε → 0,

∂ t ρ 0 -v 2 M ∂ xx ρ 0 = rρ 0 1 -ρ 0 , (1.4) 
g 0 := lim ε→0 g ε = M ρ 0 ,
assuming that the two following conditions on M hold:

ˆV vM (v)dv = 0, v 2 M := ˆV v 2 M (v)dv > 0. 2 
We recall that for nonincreasing initial data decaying sufficiently fast at x = +∞, the solution of (1.4) behaves asymptotically as a travelling front moving at the minimal speed c * = 2 r v 2 M [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF][START_REF] Andreï | Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF]. However, even though the philosophy of the results will be the same in spirit, we emphasize that nothing related to this parabolic limit will be used in the present paper. Our argumentation does not rely on any perturbative analysis. Hence, we obtain results without any smallness assumption on the parameters. This will yield significant differences, regarding both the results and the methods of proof.

A short review of earlier results is now in order. Hadeler has worked on propagation for reactiontelegraph equations [START_REF] Hadeler | Hyperbolic travelling fronts[END_REF][START_REF] Hadeler | Reaction transport systems in biological modelling[END_REF], that can be seen as two-speeds kinetic models. Morever, a similar type of result was obtained by Cuesta, Hittmeir and Schmeiser [START_REF] Cuesta | Traveling Waves of a Kinetic Transport Model for the KPP-Fisher Equation[END_REF] in the diffusive regime (i.e. for sufficiently small ε in (1.1)). Using a micro-macro decomposition, they constructed possibly oscillatory travelling waves of speed c ≥ 2 √ rD for ε small enough (depending on c). In addition, when the set of admissible speeds V is bounded, c > 2 √ rD, and ε is small enough, they prove that the travelling wave constructed in this way is indeed nonnegative.

Propagation for the full kinetic model (1.1) has then been investigated by the first author with Calvez and Nadin in [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF]. In one dimension of velocities, and when the velocities are bounded, they proved the existence and stability of travelling waves solutions to (1.1). The minimal speed of propagation of the waves is determined by the resolution of a spectral problem in the velocity variable. In particular, it is not related with the KPP speed, except that the speeds coincide in the diffusive regime. It is worth mentioning that the case of unbounded velocities is significantly different as the front spreads with arbitrarily large speed [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF]. This case shall not be discussed further in this paper. This phenomenon was newly appearing for this type of equations and unexpected from the macroscopic limit. One aim of this paper is to extend the construction of travelling waves solutions to any velocity dimension, which was left open after [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF].

There is a strong link between this KPP type propagation phenomena and large deviations for the underlying velocity-jump process. Indeed, it is well known that fronts in Fisher-KPP equations are so-called pulled fronts, that is, are triggered by very small populations at the edge that are able to reproduce almost exponentially. Thus, studying large deviations for these type of processes at the kinetic level is an interesting problem in itself. In [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF][START_REF] Bouin | A kinetic eikonal equation[END_REF], the authors have combined Hamilton-Jacobi equations and kinetic equations to study large deviations (and propagation) from a PDE point of view. These works show that he asymptotics of large deviations in the kinetic equation do not coincide with the asymptotic of large deviations obtained after a diffusive approximation.

As a side note, the Hamilton-Jacobi technique (that will be described in the next subsection) has also much been used recently to study long time dynamics in all sorts of stuctured models. An interested reader could describe the evolution of dominant phenotypical traits in a given population reading [START_REF] Barles | Concentration in Lotka-Volterra Parabolic or Integral Equations: A General Convergence Result[END_REF][START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF][START_REF] Lorz | Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations[END_REF] and the references therein), study different adaptative dynamics issues [START_REF] Diekmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF], describe propagation in reaction-diffusion models of kinetic types [START_REF] Bouin | Invasion fronts with variable motility: Phenotype selection, spatial sorting and wave acceleration[END_REF] but also in age renewal equations [START_REF] Calvez | Limiting Hamilton-Jacobi equation for the large scale asymptotics of a subdiffusion jump-renewal equation[END_REF]. This approach has also recently been used to study large deviations of velocity jump-processes [START_REF] Bouin | A kinetic eikonal equation[END_REF][START_REF] Bouin | Large deviations for velocity-jump processes and non-local Hamilton-Jacobi equations[END_REF][START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF] or slow-fast systems [START_REF] Bressloff | On the Hamiltonian structure of large deviations in stochastic hybrid systems[END_REF][START_REF] Bressloff | Path integrals and large deviations in stochastic hybrid systems[END_REF][START_REF] Faggionato | Averaging and Large Deviation Principles for Fully-Coupled Piecewise Deterministic Markov Processes and Applications to Molecular Motors[END_REF][START_REF] Kifer | Large deviations and adiabatic transitions for dynamical systems and Markov processes in fully coupled averaging[END_REF][START_REF] Perthame | Asymmetric potentials and motor effect: a homogenization approach[END_REF]].

The Hamilton-Jacobi limit

After the seminal paper by Evans and Souganidis [START_REF] Evans | A PDE Approach to Geometric Optics for Certain Semilinear Parabolic Equations[END_REF][START_REF] Freidlin | Functional Integration and Partial Differential Equations[END_REF], an important technique to derive the propagating behavior in reaction-diffusion equations is to revisit the WKB expansion to study hyperbolic limits. We will directly present the technique on our problem for conciseness but one can find the original framework for the Fisher-KPP equation in [START_REF] Evans | A PDE Approach to Geometric Optics for Certain Semilinear Parabolic Equations[END_REF] and complements in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi. Number 17 in Mathématiques & applications[END_REF][START_REF] Barles | Wavefront propagation for reaction-diffusion systems of PDE[END_REF][START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Panagiotis | Front propagation: Theory and applications[END_REF].

We perform the hyperbolic scaling (t, x, v) → t ε , x ε , v in (1.1). Importantly, the velocity variable is not rescaled (it cannot be rescaled since it lies in a bounded set). The kinetic Hopf-Cole transformation (already used in [START_REF] Bouin | A kinetic eikonal equation[END_REF][START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF]) is written

∀(t, x, v) ∈ R + × R n × V, f ε (t, x, v) = M (v)e -ϕ ε (t,x,v) ε . (1.5)
Thanks to the maximum principle [START_REF] Cuesta | Traveling Waves of a Kinetic Transport Model for the KPP-Fisher Equation[END_REF], ϕ ε is well defined and remains nonnegative for all times. Plugging (1.5) in (1.1), one obtains the following equation for ϕ ε :

∂ t ϕ ε + v • ∇ x ϕ ε + r = (1 + r) ˆV M (v ′ ) 1 -e ϕ ε (v)-ϕ ε (v ′ ) ε dv ′ + rρ ε . (1.6)
Our aim is to pass to the limit in (1.6). To make the convergence result appear naturally, we shall start by providing formal arguments. Assuming Lipschitz bounds on ϕ ε , and since ρ ε is uniformly bounded, the boundedness of ´V M (v ′ )(1exp((ϕ ε (v)ϕ ε (v ′ ))/ε)dv ′ implies that we expect the limit ϕ 0 to be independent of v. To identify the limit ϕ 0 , we shall thus perform the following expansion

ϕ ε (t, x, v) = ϕ 0 (t, x) + εη(t, x, v). (1.7)
Plugging the latter into (1.7) yields

∂ t ϕ 0 + v • ∇ x ϕ 0 + r = (1 + r) ˆV M (v ′ ) 1 -e η(v)-η(v ′ ) dv ′ + re -ϕ 0 ε ˆV e -η(v ′ ) dv ′ .
As a consequence, for any (t, x) ∈ ϕ 0 > 0 , we have

∂ t ϕ 0 + v • ∇ x ϕ 0 = 1 -e η(v) (1 + r) ˆV M (v ′ )e -η(v ′ ) dv ′ . (1.8) 
One should read this equation as an eigenvalue problem in the velocity variable. Indeed, setting

p(t, x) = ∇ x ϕ 0 (t, x), η(t, x, v) := -ln Q p(t,x) M (v) , H(p(t, x)) := -∂ t ϕ 0 (t, x),
we see that (H, Q) are the principal eigenelements of the following spectral problem

(1 + r)M (v) ˆV Q p (v ′ ) dv ′ -(1 -v • p) Q p (v) = H(p)Q p (v).
The dependency with respect to r can be identified by setting p ′ := p 1+r , H(•) := H((1+r)•)-r 1+r and Q p ′ = Q p . Indeed, we have then that ∂ t ϕ 0 + (r + 1)H( p r+1 ) + r = 0 and the Hamiltonian H is given by

1 + H p ′ -v • p ′ Q p ′ (v) = M (v) ˆV Q p ′ (v ′ ) dv ′ . (1.9)
After these heuristics, we are now ready to define properly the Hamiltonian H involved.

Definition 1.2. We define, for e ∈ S n-1 ,

l(e) = ˆV M (v) v(e) -v • e dv.
The so-called singular set is defined by

Sing (M ) := p ∈ R n , ˆV M (v) µ(p) -v • p dv ≤ 1 = p ∈ R n , l p |p| ≤ |p| . (1.10)
Then, the Hamiltonian H involved in this paper is given as follows:

• If p / ∈ Sing (M ), then H is uniquely defined by the following implicit relation :

ˆV M (v) 1 + H(p) -v • p dv = 1, (1.11) 
• else,

H(p) = µ (p) -1.
The relevancy of such a definition, i.e. the resolution of (1.9), will be discussed in Section 2 below. With this definition in hand, the convergence result for the sequence of functions ϕ ε is as follows.

Theorem 1.3. Suppose that (H0) and (H1) hold, and that the initial data satisfies

∀(x, v) ∈ R n × V, ϕ ε (0, x, v) = ϕ 0 (x, v).
Then, (ϕ ε ) ε converges uniformly on all compacts of R * + × R n × V towards ϕ 0 , where ϕ 0 does not depend on v. Moreover ϕ 0 is the unique viscosity solution of the following Hamilton-Jacobi equation:

     min ∂ t ϕ 0 + (1 + r)H ∇xϕ 0 1+r + r, ϕ 0 = 0, (t, x) ∈ R * + × R n , ϕ 0 (0, x) = min v∈V ϕ 0 (x, v), x ∈ R n .
(1.12)

Let us now emphasize the differences between the result presented here and the very related works [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF][START_REF] Bouin | A kinetic eikonal equation[END_REF][START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF]. First, the results from [START_REF] Bouin | A kinetic eikonal equation[END_REF] and [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF] only hold for n = 1 and for M ≥ δ > 0. In [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF], the first author successfully proved a convergence result in the case r > 0. It is worth mentioning that a much wider class of collision operators was considered in [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF], but under the condition of existence of a L 1 eigenvector. We believe that the ideas of the present work could be used there, but with technicalities inherent from the spectral problem that would require a special study.

As explained before, the multidimensional case (n > 1) is more delicate since the relation (1.11) may not have a solution. We refer to our Example 2.3 for a situation where this happens. In [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF], the second author generalized the convergence result of [START_REF] Bouin | A kinetic eikonal equation[END_REF] in the multidimensional case, with no reaction term. However, the proof we design in this paper is simpler and more adaptable. For this we manage to use the half-relaxed limits of Barles and Perthame [START_REF] Barles | Exit Time Problems in Optimal Control and Vanishing Viscosity Method[END_REF] in the spirit of [START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF]. We point out that an asymptotic preserving scheme has been developed by Hivert in [START_REF] Hivert | An asymptotic preserving scheme for front propagation in a kinetic reactiontransport equation[END_REF] to numerically solve (1.6) using the Hamilton-Jacobi framework developed in [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF]. We present the proof of Theorem 1.3 in Section 2 below.

Travelling wave solutions and spreading of planar like initial data

We then investigate the existence of travelling wave solutions of (1.1). As in the mono-dimensional case treated in [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF], we will prove that there exists a minimal speed c * for which travelling wave solutions exist. We will use the following definition throughout the paper. Definition 1.1. A function f is a travelling wave solution of speed c ∈ R + and direction e ∈ S n-1 of equation (1.1) if it can be written f

(t, x, v) = f (x • e -ct, v), where the profile f ∈ C 2 R, L 1 (V ) solves (v • e -c) ∂ ξ f = M (v)ρ -f + r ρ M (v) -f (1.13)
and satisfies

∀(z, v) ∈ R × V , 0 ≤ f (z, v) ≤ M (v) , lim z→-∞ f (z, v) = M (v) , lim z→+∞ f (z, v) = 0 . (1.14)
It is well known for this kind of Fisher-KPP type problems that propagation fronts are so-called pulled fronts, that is the speed of propagation is given by seeking exponentially decaying solutions of the linearized problem in a moving frame. As a consequence, for any λ > 0, one can define c(λ, e) using the spectral problem solved in Definition 1.2. Indeed, we set c(λ, e) = (1 + r)H λe 1 + r + r.

(1.15)

Then we have the formula for the minimal speed in the direction e ∈ S n-1 .

c * (e) = inf λ>0 c(λ, e) .

We obtain the following existence result. Following very closely the proof used in the mono-dimensional case, we shall prove this Theorem using sub and super-solution and a comparison principle satisfied by (1.1). We shall construct these sub-and super-solution using travelling wave solutions of the linearized problem. The main difference concerning the travelling wave result is the way we prove the minimality of the speed c * (e). Indeed, it might happen that c(λ, e) is singular at its minimum λ * so that one can not reproduce the same argument as for the mono-dimensional case used in [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF], that was based on the Rouché Theorem. Using the Hamilton-Jacobi framework above, in a similar fashion as in [?], we prove the following result. Proposition 1.5. Let f 0 be a non-zero initial data, compactly supported in some direction e 0 , such that there exists γ < 1 such that

γM (v)1 [-xm,xm]•e 0 +e ⊥ 0 (x) ≤ f 0 (x, v) ≤ M (v)1 [-x M ,x M ]•e 0 +e ⊥ 0 (x), for all (x, v) ∈ R n × V .
Let f be the solution of the Cauchy problem (1.1) associated to this initial data. Then we have lim

t→+∞ sup x•e 0 >ct ρ(t, x) = 0, if c > c * (e 0 ), (1.16 
)

lim t→+∞ f (t, e ⊥ 0 + cte 0 , v) = M (v) , if c < c * (e 0 ), (1.17 
)

uniformly in v ∈ V .

Spreading of compactly supported initial data

Finally, we also deduce from the Hamilton-Jacobi framework a spreading result for initial conditions that are compactly supported. To this aim, let us first define the speed w * (e 0 ) associated to any direction e 0 ∈ S n-1 via the following Freidlin-Gärtner formula (see [START_REF] Freidlin | On the propagation of concentration waves in periodic and random media[END_REF] for its first derivation).

w * (e 0 ) = min

e∈S n-1 e 0 •e>0 c * (e) e 0 • e .
We obtain the following result.

Proposition 1.6. Let f 0 be a non-zero compactly supported initial data such that 0

≤ f 0 (x, v) ≤ M (v) for all (x, v) ∈ R n × V .
Let f be the solution of the Cauchy problem (1.1) associated to this initial data. Then for any e 0 ∈ S n-1 and all x ∈ R n , we have

lim t→∞ f (t, x + cte 0 , v) = 0, if c > w * (e 0 ), (1.18) 
pointwise and

lim t→∞ f (t, cte 0 , v) = M (v), if 0 ≤ c < w * (e 0 ), (1.19 
)

for all v ∈ V .
This result is interesting since contrary to the case of the usual Fisher-KPP equation in heterogeneous domains, where the Freidlin-Gärtner formula holds, see [START_REF] Rossi | The Freidlin-Gartner formula for general reaction terms[END_REF], here there is no heterogeneity in space. The heterogeneity coming potentially from the velocity set, this would not be present in the macroscopic limit (the Fisher-KPP equation, see above). Of course, if V is rotationally symmetric, the speed w * is independent of the direction, and the propagation is radial.

One could wonder how the shape of V (e.g. its topological properties or its convexity) influences the shape of the front and the speed of propagation. We will investigate this question in a future work.

The rest of this paper is organized as follows. In Section 2, we prove the Hamilton-Jacobi limit. We discuss the construction of travelling waves and the spreading results in Section 3.

The Hamilton-Jacobi limit

In this Section, we present the proof of the convergence result Theorem 1.3. We then prove a convergence result for ρ ε in the region {ϕ 0 = 0}. This result will help us to show that the speed of propagation is still the minimal speed of existence of travelling waves, despite the singularity of H.

The spectral problem

In this Section, we discuss the resolution of the spectral problem given by (1.9). We also provide examples for which the singular set of M is not empty.

The resolution

For any p ′ > 0, we look for an eigenvalue H(p ′ ) associated to a positive eigenvector Q p such that

1 + H(p ′ ) -v • p ′ Q p ′ (v) = M (v) ˆV Q p ′ (v ′ ) dv ′ , v ∈ V.
Note that it may happen that Q p ′ has a singular part. Since the problem is linear, one can always assume that Q p ′ is a probability measure. We are thus led to find an eigenvalue H(p ′ ) such that there exists a probability measure Q p ′1 such that

1 + H(p ′ ) -v • p ′ Q p ′ (v) = M (v), v ∈ V.
To make the singular set Sing (M ) appear naturally, let us first investigate the case when Q p ′ ∈ L 1 (V ). If a solution exists, then the profile Q p ′ necessarily satisfies the following equation:

Q p ′ (v) = M (v) 1 + H(p ′ ) -v • p ′ , v ∈ V. (2.20) 
This is only possible if such an expression defines a probability measure. As a consequence, one shall look for conditions under which there exists H(p ′ ) such that

I H(p ′ ), p ′ := ˆV M (v ′ ) 1 + H(p ′ ) -v ′ • p ′ dv ′ = 1, with 1 + H(p ′ ) -v ′ • p > 0 for all v ′ ∈ V , that is H(p ′ ) > µ(p ′ ) -1.
For any p ′ / ∈ Sing(M ), since the function ξ → I(ξ, p ′ ) is decreasing over (µ(p ′ ) -1, +∞), H(p ′ ) exists and is unique in this interval since I(µ(p ′ ) -1, p ′ ) > 1, by the definition of p ′ not being in the singular set.

However, for any p ′ ∈ Sing(M ), it is not possible to solve [START_REF] Coville | Singular measure as principal eigenfunction of some nonlocal operators[END_REF], there exists a solution to (1.9), given by the couple (H(p ′ ), Q p ′ ) where H(p ′ ) = µ(p ′ ) -1 and Q p ′ is a positive measure given by:

I (H(p ′ ), p ′ ) = 1 since I(µ(p ′ ) -1, p ′ ) ≤ 1. After Theorem 1.2 in
Q p ′ := M (v) µ(p ′ ) -v • p ′ dv + 1 - ˆV M (v) µ(p ′ ) -v • p ′ dv δ w ,
where δ w is the dirac mass located at w ∈ Arg µ(p ′ ).

From [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF], we know that the set Sing(M ) c is convex and contains 0. To identify the different cases where such a singularity set may occur, we detail three examples hereafter.

Examples

Example 2.1. In the one-dimensional case (n = 1), we have

Sing(M ) = ∅ when inf v∈V M (v) > 0 since ˆv -v M (v ′ ) µ(p ′ ) -vp ′ dv = ˆv -v M (v) |p ′ |v max -vp ′ dv ≥ inf M (v) |p ′ |v • ˆ1 -1 dv 1 -v = +∞. (2.21)
By monotone convergence we have

lim H→µ(p ′ )-1 ˆv -v M (v) 1 + H -vp ′ dv = +∞,
hence, for all p ′ ∈ R, there exists a unique H(p ′ ) that solves the spectral problem in L 1 (V ). This latter framework is the one used in [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF]. In fact, we can only require that M does not cancel in a neighborhood of v = v in order to get Sing(M ) = ∅. Indeed, the integral in (2.21) will also diverge in that scenario. If M (v) = 0, this argument may not work out. Consider for example:

Example 2.2. Let n = 1, V = [-1, 1] and M (v) = 3 2 (1 -|v|) 2 . Then, l(1) = ˆ1 -1 M (v) 1 -v dv = 3 2 ˆ1 -1 (1 -|v|) 2 1 -v dv = 3 ˆ1 0 (1 -v) 2 (1 -v)(1 + v) dv = 3 ˆ1 0 1 -v 1 + v dv = 3 ˆ1 0 2 -(1 + v) 1 + v dv = 3 ˆ1 0 2 1 + v dv -1 = 3(2 ln(2) -1). Hence, |p ′ | ≥ 3(2 ln(2) -1) if and only if ˆ1 -1 M (v) µ(p ′ ) -vp ′ dv = 3 2|p ′ | ˆ1 -1 (1 -|v|) 2 1 -v dv ≤ 1,
therefore, Sing(M ) = (-3(2 ln(2) -1), 3(2 ln(2) -1)) c . Let us also notice that

ˆV M (v) (v(1) -v) 2 dv = 3 2 ˆ1 -1 (1 -|v|) 2 (1 -v) 2 dv = 3 ˆ1 0 1 + v 2 (1 + v) 2 dv = 3 ˆ1 0 (1 + v) 2 -2(1 + v) + 2 (1 + v) 2 dv = 3 ˆ1 0 1 - 2 1 + v + 2 (1 + v) 2 dv = 3(1 -2 ln(2) + 1) = 6(1 -ln(2)) < +∞.
We will make a use of this result later.

In the multi-dimensional case, we may encounter a singular set, even when inf v∈V M (v) > 0. These singularities can occur in the simplest cases.

Example 2.3. Let n ≥ 1, let V = B(0, 1) be the n-dimensional unit ball. Let e = e 1 and M = ω -1 n .1 B(0,1) , where ω n is the Lebesgue measure of V . For n = 1, since M > 0 we have Sing(M ) = ∅ (recall example 2.1). Suppose now that n > 1. Then,

l(e 1 ) = ˆB(0,1) M (v) v(e 1 ) -v • e 1 dv = 1 ω n ˆB(0,1) 1 1 -v 1 dv = 1 ω n ˆ1 -1 1 1 -v 1 ˆ1{v 2 1 +v 2 2 +...+v 2 n ≤1} (v 2 , . . . , v n )dv 2 . . . dv n dv 1 .
Now, for fixed v 1 , the quantity ´1{v 2

1 +v 2 2 +...+v 2 n ≤1} (v 2 , . . . , v n )dv 2 . . . dv n is the Lebesgue measure of the (n -1)-dimensional ball of radius 1 -v 2 1 , hence ˆ1{v 2 1 +v 2 2 +...+v 2 n ≤1} (v 2 , . . . , v n )dv 2 . . . dv n = ω n-1 × 1 -v 2 1 n-1
.

Finally,

l(e 1 ) = ω n-1 ω n ˆ1 -1 1 -v 2 1 n-1 2 1 -v 1 dv 1 = 2ω n-1 ω n ˆ1 0 1 -v 2 1 n-3 2 dv 1 = 2ω n-1 ω n ˆπ 2 0 (cos(θ)) n-2 dθ, = n n -1 ,
where we have used, for example, the relationship between the volume of the unit ball and the Wallis integrals. By rotational invariance, Sing(M ) = B 0, n-1 n c .

Proof of Theorem 1.3

In this Section, we now prove Theorem 1.3. We will use the half-relaxed limits method of Barles and Perthame [START_REF] Barles | Exit Time Problems in Optimal Control and Vanishing Viscosity Method[END_REF]. In addition to that, and similarly to the papers [START_REF] Bouin | A kinetic eikonal equation[END_REF][START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF], we need to use the perturbed test-function method. We emphasize that the corrected test function is defined thanks to the spectral problem (1.9), keeping only the regular part of the eigenfunction (recall that it may have singularities). Since the sequence ϕ ε is uniformly bounded by the maximum principle (check Proposition 5 in [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF]), we can define its upper-and lower-semi continuous envelopes by the following formulas

ϕ * (t, x, v) = lim sup ε→0 (s,y,w)→(t,x,v) ϕ ε (s, y, w), ϕ * (t, x, v) = lim inf ε→0 (s,y,w)→(t,x,v) ϕ ε (s, y, w)
Recall that ϕ * is upper semi-continuous, ϕ * is lower semi-continuous and that from their definition, one has ϕ * ≤ ϕ * . We have the following: Proposition 2.4. Let ϕ ε be a solution to (1.6).

(i) The upper semi-limit ϕ * is constant with respect to the velocity variable on R * + × R n .

(ii) The function (t, x) → ϕ * (t, x) is a viscosity sub-solution to (1.12) on R * + × R n .

(iii) The function (t, x) → min w∈V ϕ * (t, x, w) is a viscosity super-solution to (1.12) on R * + × R n . We recall that for all (t, x), the minimum min w∈V ϕ * (t, x, w) is attained since V is bounded and ϕ * is lower semi-continuous. We point out here that if r = 0, that is, the case of [START_REF] Bouin | A kinetic eikonal equation[END_REF][START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF], it is not necessary to prove that ϕ * is constant in the velocity variable. One can replace this by proving that max w∈V ϕ * is a sub-solution to (1.12). The fact that ϕ * is constant in the velocity variable is needed to control the limit of ρ ε .

Proof of Proposition 2.4. We start with the proof of (i). Take (t 0 , x 0 , v 0 ) ∈ R * + × R n × V . Let ψ be a test function such that ϕ *ψ has a strict local maximum at (t 0 , x 0 , v 0 ). Then there exists a sequence (t ε , x ε , v ε ) of maximum points of ϕ εψ satisfying (t ε , x ε , v ε ) → (t 0 , x 0 , v 0 ). From this we deduce that lim ε→0 ϕ ε (t ε , x ε , v ε ) = ϕ * (t, x, v). Recalling (1.6), we have at (t ε , x ε , v ε ):

∂ t ψ + v ε • ∇ x ψ + r = (1 + r) 1 -ˆV M (v ′ )e ϕ ε -ϕ ε ′ ε dv ′ + rρ ε .
From this, we deduce that

ˆV ′ M (v ′ )e ϕ ε (t ε ,x ε ,v ε )-ϕ ε (t ε ,x ε ,v ′ ) ε dv ′
is uniformly bounded for any V ′ ⊂ V . By the Jensen inequality,

exp 1 ε |V ′ | M ˆV ′ ϕ ε (t ε , x ε , v ε ) -ϕ ε (t ε , x ε , v ′ ) M (v ′ )dv ′ ≤ 1 |V ′ | M ˆV ′ M (v ′ )e ϕ ε (t ε ,x ε ,v ε )-ϕ ε (t ε ,x ε ,v ′ ) ε dv ′ ,
where

|V ′ | M := ´V ′ M (v)dv. Thus, lim sup ε→0 ˆV ′ ϕ ε (t ε , x ε , v ε ) -ϕ ε (t ε , x ε , v ′ ) M (v ′ )dv ′ ≤ 0.
We write

ˆV ′ ϕ ε (v ε ) -ϕ ε (v ′ ) M (v ′ )dv ′ = ˆV ′ (ϕ ε (v ε ) -ψ(v ε )) -ϕ ε (v ′ ) -ψ(v ′ ) + ψ(v ε ) -ψ(v ′ ) M (v ′ )dv ′ = ˆV ′ (ϕ ε (v ε ) -ψ(v ε )) -ϕ ε (v ′ ) -ψ(v ′ ) M (v ′ )dv ′ + ˆV ′ ψ(v ε ) -ψ(v ′ ) M (v ′ )dv ′
We can thus use the Fatou Lemma, together withlim sup ε→0 ϕ ε (t ε , x ε , v ′ ) ≥ -ϕ * (t 0 , x 0 , v ′ ) to get

ˆV ′ M (v ′ )dv ′ ϕ * (v 0 ) - ˆV ′ ϕ * (v ′ )M (v ′ )dv ′ = ˆV ′ ϕ * (v 0 ) -ϕ * (v ′ ) M (v ′ )dv ′ ≤ ˆV ′ lim inf ε→0 ϕ ε (v ε ) -ϕ ε (v ′ ) M (v ′ )dv ′ ≤ lim inf ε→0 ˆV ′ ϕ ε (v ε ) -ϕ ε (v ′ ) M (v ′ )dv ′ ≤ lim sup ε→0 ˆV ′ ϕ ε (v ε ) -ϕ ε (v ′ ) M (v ′ )dv ′ ≤ 0,
We shall deduce, since the latter is true for any

|V ′ | that ϕ * (t 0 , x 0 , v 0 ) ≤ inf V ϕ * (t 0 , x 0 , •)
and thus ϕ * is constant in velocity.

We now continue with the proof of (ii). We have to prove that on {ϕ * > 0} ∩ (R * + × R n ), the function ϕ * is a viscosity subsolution of (1.12). To this aim, let

ψ ∈ C 2 (R * + × R n ) be a test function such that ϕ * -ψ has a local maximum in (t 0 , x 0 ) ∈ (R * + × R n ) ∩ {ϕ * > 0}.
We denote by p 0 (t 0 , x 0 ) = ∇xψ(t 0 ,x 0 ) 1+r . # First case : p 0 (t 0 , x 0 ) / ∈ Sing M .

We define a corrector η according to the following formula:

η(v) = ln 1 + H p 0 (t 0 , x 0 ) -v • p 0 (t 0 , x 0 )
Let us define the perturbed test function ψ ε := ψ + εη. We recall the fact that in this case ´V M (v ′ ) exp(-η(v ′ ))dv ′ = 1. The function ψ ε converges uniformly to ψ since η is bounded on V . As a consequence, there exists a sequence (t ε , x ε , v ε ) of maximum points of ϕ εψ ε satisfying (t ε , x ε ) → (t 0 , x 0 ) and such that lim ε→0 ϕ ε (t ε , x ε , v ε ) = ϕ * (t 0 , x 0 ). Recalling (1.6), we have at (t ε , x ε , v ε ):

∂ t ψ ε + v ε • ∇ x ψ ε + r = (1 + r) 1 -ˆV M (v ′ )e ϕ ε -ϕ ε ′ ε dv ′ + rρ ε .
Since (t ε , x ε , v ε ) is a maximum point, we may rearrange the r.h.s. of the latter so that the previous equation may be rewritten as follows

∂ t ψ ε + v ε • ∇ x ψ ε + r ≤ (1 + r) 1 -ˆV M (v ′ ) exp η(v ε ) -η(v ′ ) dv ′ + rρ ε , = (1 + r) 1 -ˆV M (v ′ ) exp -η(v ′ ) dv ′ exp (η(v ε )) + rρ ε , = (1 + r) (1 -exp (η(v ε ))) + rρ ε , = -(1 + r)H p 0 (t 0 , x 0 ) + v ε • ∇ x ψ 0 (t 0 , x 0 ) + rρ ε .
Since (t 0 , x 0 ) ∈ {ϕ * > 0} and lim ε→0 ϕ ε (t ε , x ε , v ε ) = ϕ * (t 0 , x 0 ), we have that, eventually, ϕ ε (t ε , x ε , v ε ) > ϕ * (t 0 , x 0 )/2 > 0 for ε sufficiently small. Since

rρ ε e ϕ ε ε -1 = 1 -ˆV M (v ′ )e ϕ ε -ϕ ε ′ ε dv ′ -(∂ t ψ ε + v ε • ∇ x ψ ε ) ,
and the latter r.h.s. is uniformly bounded from above in ε, we deduce that lim ε→0 ρ ε (t ε , x ε ) = 0.

Taking the limit ε → 0, we get

∂ t ψ t 0 , x 0 + (1 + r)H ∇ x ψ(t 0 , x 0 ) 1 + r + r ≤ 0.
# Second case : p 0 (t 0 , x 0 ) ∈ Sing M .

Let v * ∈ Arg µ(p 0 (t 0 , x 0 )). The function (t, x) → ϕ ε (t, x, v * )ψ(t, x) has a local maximum at a point (t ε , x ε ) satisfying (t ε , x ε ) → (t 0 , x 0 ) as ε → 0. We then have:

∂ t ψ(t ε , x ε ) + v * • ∇ x ψ(t ε , x ε ) + r = ∂ t ϕ ε (t ε , x ε , v * ) + v * • ∇ x ϕ ε (t ε , x ε , v * ) + r = (1 + r) ˆV M (v ′ ) 1 -e ϕ ε (v * )-ϕ ε (v ′ ) ε dv ′ + rρ ε ≤ (1 + r) + rρ ε .
Since (t 0 , x 0 ) ∈ {ϕ * > 0}, we have ρ ε (t ε , x ε ) → 0. As a consequence, taking the limit ε → 0, we get

∂ t ψ(t 0 , x 0 ) + µ(∇ x ψ(t 0 , x 0 )) ≤ 1.
We finally turn to the proof of (iii). That is, the fact that on R * + × R n , the function min w∈V ϕ * (•, w) is a viscosity supersolution of (1.12).

Let ψ ∈ C 1 (R * + × R n ) be a test function such that min w∈V ϕ *ψ has a local minimum in (t 0 , x 0 ) ∈ R * + . We denote by p 0 (t 0 , x 0 ) = ∇xψ(t 0 ,x 0 ) 1+r . We define the truncated corrector η δ ,

η(v) = ln 1 + H p 0 (t, x) -v • p 0 (t, x) , η δ (v) = max (η(v), -1/δ) .
Let us define the perturbed test function ψ ε := ψ + εη δ . For any δ > 0, the function ψ ε converges uniformly to ψ as ε → 0 since η δ is bounded on V . Since ϕ * (t 0 , x 0 , •) attains its minimum at, say, v 0 , we have, for all v ∈ V and locally in the (t, x) variables, ϕ * (t 0 , x 0 , v 0 )ψ(t 0 , x 0 ) = min w∈V ϕ * (t 0 , x 0 )ψ(t 0 , x 0 ) ≤ min w∈V ϕ * (t, x)ψ(t, x) ≤ ϕ * (t, x, v)ψ(t, x), and thus (t 0 , x 0 , v 0 ) is a local minimum of ϕ *ψ, strict in the (t, x) variables. By the definition of the lower semi-limit, there exists a sequence (t ε δ , x ε δ , v ε δ ) of minimum points of ϕ εψ ε satisfying (t ε δ , x ε δ ) → (t 0 , x 0 ). We obtain, after (1.6), at the point

(t ε δ , x ε δ , v ε δ ) , ∂ t ψ ε + v ε δ • ∇ x ψ ε + r ≥ (1 + r) 1 -ˆV M (v ′ ) exp η δ (v ε ) -η δ (v ′ ) dv ′ , = (1 + r) 1 -ˆV M (v ′ ) exp -η δ (v ′ ) dv ′ exp (η δ (v ε δ )) .
Since the sequence v ε δ lies in a compact set, taking the limit ε → 0 (up to extraction), we obtain v 0 δ such that

∂ t ψ + v 0 δ • ∇ x ψ + r ≥ (1 + r) 1 -ˆV M (v ′ )e -η δ (v ′ ) dv ′ e η δ (v 0 δ ) . By construction, η δ ≥ η. As a consequence, ´V M (v ′ )e -η δ (v ′ ) dv ′ ≤ ´V M (v ′ )e -η(v ′ ) dv ′ ≤ 1. Thus, ∂ t ψ + v 0 δ • ∇ x ψ + r ≥ (1 + r) 1 -e η δ (v 0 δ ) .
We now pass to the limit δ → 0. By compactness of V , one can extract a converging subsequence from (v 0 δ ) δ , we denote by v * the limit. # First case : p 0 (t 0 , x 0 ) / ∈ Sing M .

In this case, since η is bounded, η δ = η for δ sufficiently small. Thus, passing to the limit δ → 0, one gets

∂ t ψ + v * • ∇ x ψ + r ≥ (1 + r) (1 -exp (η(v * ))) , = -(1 + r)H p 0 (t 0 , x 0 ) + v * • ∇ x ψ(t 0 , x 0 ),
from which we deduce

∂ t ψ t 0 , x 0 + (1 + r)H ∇ x ψ(t 0 , x 0 ) 1 + r + r ≥ 0.
# Second case : p 0 (t 0 , x 0 ) ∈ Sing M .

In this case, the corrector η δ is

η δ (v) = max ln µ ∇ x ψ(t 0 , x 0 ) -v • ∇ x ψ(t 0 , x 0 ) , -1/δ . If v * / ∈ Arg µ(p 0 (t 0 , x 0 )), since η is bounded on all compacts of V \ Arg µ(p 0 (t 0 , x 0 )), η δ (v 0 δ ) = η(v 0
δ ) for δ sufficiently small and we recover the first case. If v * ∈ Arg µ(p 0 (t 0 , x 0 )), then take δ ′ > 0, one has when δ < δ ′ is sufficiently small,

- 1 δ ′ = η δ ′ (v 0 δ ) ≥ η δ (v 0 δ ),
and thus lim δ→0 η δ (v 0 δ ) = -∞. From that we conclude

∂ t ψ + µ ∇ x ψ(t 0 , x 0 ) ≥ 1.
We now conclude with the proof of the convergence result. For this, we need to input initial conditions. Obviously, one cannot get any uniqueness result for the Hamilton-Jacobi equation (1.12) without imposing any initial condition. We now check the initial condition of (1.12) in the viscosity sense.

Proposition 2.5. If one assumes that ϕ ε 0 = ϕ 0 , the sequence ϕ ε converges uniformly on compact subsets of R * + × R n to ϕ 0 , the unique viscosity solution of

     min ∂ t ϕ 0 + (1 + r)H ∇xϕ 0 1+r + r, ϕ 0 = 0, (t, x) ∈ R * + × R n , ϕ 0 (0, x) = min v∈V ϕ 0 (x, v), x ∈ R n .
Proof of Proposition 2.5. We extend the definition of ϕ * to {t = 0} × R n by the formula

ϕ * (0, x) = lim sup tց0 + x ′ →x ϕ * (t, x ′ ).
One has to prove the following

min min ∂ t ϕ * + (1 + r)H ∇ x ϕ * 1 + r + r, ϕ * , ϕ * -min v∈V ϕ 0 (•, v) ≤ 0, (2.22) 
on {t = 0} × R n in the viscosity sense. Let ψ ∈ C 1 (R + × R) be a test function such that ϕ *ψ has a strict local maximum at (t 0 = 0, x 0 ). We now prove that either

ϕ * (0, x 0 ) ≤ min v∈V ϕ 0 (x, v), or ∂ t ψ + (1 + r)H ∇ x ψ 1 + r + r ≤ 0 when ϕ * (0, x 0 ) > 0.
Suppose then that ϕ * (0, x 0 ) > min v∈V ϕ 0 (x, v).

We shall now prove that

∂ t ψ + (1 + r)H ∇ x ψ 1 + r + r ≤ 0,
since then ϕ * (0, x 0 ) > 0. We now go through the same steps as for the proof of Proposition 2.4, but with slight changes due to the present situation. We keep the same notations.

# First case : p 0 (t 0 , x 0 ) / ∈ Sing M .

The function ψ ε converges uniformly to ψ since η is bounded on V . Adding this fact to the definition of ϕ * (0, x 0 ), we get the existence of a sequence (t ε , x ε , v ε ) of maximum points of ϕ εψ ε satisfying t ε > 0, (t ε , x ε ) → (0, x 0 ) and such that lim ε→0 ϕ ε (t ε , x ε , v ε ) = ϕ * (0, x 0 ). The rest of the proof is similar.

# Second case : p 0 (t 0 , x 0 ) ∈ Sing M .

Let v * ∈ Arg µ(p 0 (t 0 , x 0 )). As for the previous case, due to the definition of ϕ * , the function (t, x) → ϕ ε (t, x, v * )-ψ(t, x) has a local maximum at a point (t ε , x ε ) satisfying (t ε > 0, x ε ) → (t 0 , x 0 ) as ε → 0. The conclusion is the same.

We shall now prove that the initial condition for min w ϕ * is given by

max min ∂ t min w ϕ * + (1 + r)H ∇ x (min w ϕ * ) 1 + r + r, min w ϕ * , min w ϕ * -min v∈V ϕ 0 ≥ 0, (2.23) on {t = 0} × R n in the viscosity sense.
Let us prove (2.23). Let ψ ∈ C 1 (R + × R) be a test function such that min w∈V ϕ *ψ has a strict local minimum at (t 0 = 0, x 0 ). We now prove that either min w∈V ϕ * (0, x 0 , w) ≥ min v∈V ϕ 0 (x 0 , v), or

∂ t ψ + (1 + r)H ∇ x ψ 1 + r + r ≥ 0 and min w∈V ϕ * (0, x 0 , w) ≥ 0.
Suppose that min w∈V ϕ * (0, x 0 , w) < min v∈V ϕ 0 (x 0 , v). The argument now starts similarly as in the proof above. Let us define the perturbed test function ψ ε := ψ +εη δ . For any δ > 0, the function ψ ε converges uniformly to ψ since η δ is bounded on V . Since ϕ * (0, x 0 , •) attains its minimum at, say, v 0 , we have, for all v ∈ V and locally in the (t, x) variables,

ϕ * (0, x 0 , v 0 ) -ψ(0, x 0 ) ≤ min w∈V ϕ * (0, x 0 ) -ψ(0, x 0 ) ≤ min w∈V ϕ * (t, x) -ψ(t, x) ≤ ϕ * (t, x, v) -ψ(t, x),
and thus (0, x 0 , v 0 ) is a local minimum of ϕ * -ψ, strict in the (t, x) variables. By the definition of the lower semi-limit, there exists a sequence (t ε δ , x ε δ , v ε δ ) of minimum points of ϕ ε -ψ ε satisfying (t ε δ , x ε δ ) → (0, x 0 ). We first claim that there exists a subsequence

(t ε k , x ε k , v ε k ) k of the above sequence, with ε k → 0 as k → ∞, such that t ε k > 0, for all k.
Suppose that this is not true. Then, take a sequence (x

ε k ′ δ , v ε k ′ δ ) k ′ such that (ε k ′ , x ε k ′ δ ) → (0, x 0 ) and that ϕ ε k ′ -ψ ε k ′ has a local minimum at 0, x ε k ′ δ , v ε k ′ δ
. It follows that, for all (t, x, v) in some neighborhood of (0, x

ε k ′ δ , v ε k ′ δ ), we have min v∈V ϕ 0 (x ε k ′ δ , v) -ψ ε k ′ 0, x ε k ′ δ , v ε k ′ δ ≤ ϕ 0 (x ε k ′ δ , v ε k ′ δ ) -ψ ε k ′ 0, x ε k ′ δ , v ε k ′ δ ≤ ϕ ε k ′ 0, x ε k ′ δ , v ε k ′ δ -ψ ε k ′ 0, x ε k ′ δ , v ε k ′ δ ≤ ϕ ε k ′ (t, x, v) -ψ ε k ′ (t, x, v) . Taking lim inf k ′ →∞ (t,x,v)→(0,x 0 ,v 0 )
at the both sides of the inequality, one obtains

min v∈V ϕ 0 (x 0 , v) -ψ 0, x 0 ≤ min w∈V ϕ * (0, x 0 ) -ψ 0, x 0 .
However, this is in contradiction with min w∈V ϕ * (0, x 0 , w) < min v∈V ϕ 0 (x 0 , v). Now having in hand that this sequence of times t εn > 0, one can reproduce the same argument as from the proof above along the subsequence (t εn , x εn , v εn ).

By the strong uniqueness principle satisfied by (1.12) (that is, a comparison principle for discontinuous sub-and super-solutions), we deduce that for all

(t, x, v) ∈ R * + × R n × V , min w∈V ϕ * (t, x, w) ≤ ϕ * (t, x, v) ≤ ϕ * (t, x, v) = ϕ * (t, x) ≤ min w∈V ϕ * (t, x, w)
We deduce that necessarily all these inequalities are equalities, and thus that ϕ ε converges locally uniformly towards ϕ 0 , independent of v, on any subcompact of R * + × R n .

Convergence of the macroscopic density ρ ε

We prove a convergence result for ρ ε in the region {ϕ 0 = 0}. Namely Proposition 2.6. Let ϕ ε be the solution of (1.6). Then, uniformly on compact subsets of Int ϕ 0 = 0 , lim

ε→0 ρ ε = 1, lim ε→0 f ε (•, v) = M (v).
Proof of Proposition 2.6. We develop similar arguments as in [START_REF] Evans | A PDE Approach to Geometric Optics for Certain Semilinear Parabolic Equations[END_REF]. Let K be a compact set of {ϕ 0 = 0}. Note that it suffices to prove the result when K is a cylinder. Let (t 0 , x 0 ) ∈ Int (K) and the test function

∀(t, x) ∈ K, ψ 0 (t, x) = |x -x 0 | 2 + t -t 0 2 .
Since ϕ 0 = 0 on K, the function ϕ 0ψ 0 admits a strict maximum in (t 0 , x 0 ). The locally uniform convergence of ϕ εψ 0 gives a sequence (t ε , x ε , v ε ) of maximum points with (t ε , x ε ) → (t 0 , x 0 ) and a bounded sequence v ε such that at the point (t ε , x ε , v ε ) one has:

∂ t ψ 0 + v ε • ∇ x ψ 0 + r ≤ rρ ε . (2.24) 
As a consequence, one has, since r > 0,

ρ ε (t ε , x ε ) ≥ 1 + o(1), as ε → 0, (2.25) 
and then lim ε→0 ρ ε (t ε , x ε ) = 1 if one recalls ρ ε ≤ 1 (which, again, is a consequence of the maximum principle).

However, we need an extra argument to get lim ε→0 ρ ε (t 0 , x 0 ) = 1. Since (t ε , x ε , v ε ) maximizes ϕ εψ 0 , we deduce that for all v ∈ V , we have

ϕ ε (t ε , x ε , v ε ) -ψ 0 (t ε , x ε ) ≥ ϕ ε t 0 , x 0 , v -ψ 0 (t 0 , x 0 ).
Since ψ 0 (t ε , x ε ) ≥ 0, ψ 0 (t 0 , x 0 ) = 0, we find

f ε (t 0 , x 0 , v) = M (v)e -ϕ ε (t 0 ,x 0 ,v) ε ≥ M (v)e -ϕ ε (t ε ,x ε ,v ε ) ε .
(2.26)

We shall now prove that

lim ε→0 ε -1 ϕ ε (t ε , x ε , v ε ) = 0. Let us rewrite (1.6) at the point (t ε , x ε , v ε ) in the form rρ ε (t ε , x ε ) e ϕ ε (t ε ,x ε ,v ε ) ε -1 = 1 -ˆV M (v ′ )e ϕ ε (t ε ,x ε ,v ε )-ϕ ε (t ε ,x ε ,v ′ ) ε dv ′ -∂ t ψ 0 + v • ∇ x ψ 0 (t ε , x ε , v ε )
We finally deduce using the maximum principle in the latter r.h.s. that

0 ≤ rρ ε (t ε , x ε ) e ϕ ε (t ε ,x ε ,v ε ) ε -1 ≤ o ε→0 (1)
and thus

lim ε→0 ε -1 ϕ ε (t ε , x ε , v ε ) = 0. This implies lim ε→0 f ε (t, x, v) = M (v) locally uniformly on K × V .

Speed of expansion

To be self-contained, we recall here how to study the propagation of the front after deriving the limit variational equation, in the case r > 0. From Evans and Souganidis [START_REF] Evans | A PDE Approach to Geometric Optics for Certain Semilinear Parabolic Equations[END_REF], we are able to identify the solution of the variational Hamilton-Jacobi equation (1.12) using the Lagrangian duality. We emphasize that, in this context, one may assume that our initial condition is well-prepared, i.e. ϕ(0, x, v) = ϕ 0 (x). We recall the equation:

   min ∂ t ϕ + (1 + r)H ∇xϕ 1+r + r, ϕ = 0, ∀(t, x) ∈ R * + × R n , ϕ(0, x) = ϕ 0 (x).
We recall from [START_REF] Bouin | A kinetic eikonal equation[END_REF][START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF] that the Hamiltonian H is convex. For any e 0 ∈ S n-1 , we define the minimal speed in that direction by the formula

c * (e) = inf λ>0 c(λ, e), c(λ, e) = 1 λ (1 + r)H λe 1 + r + r . (2.27) 
We first discuss the speed of propagation of a front-like initial data.

Proposition 2.7. Assume that

ϕ 0 (x) := 0 x ∈ e ⊥ 0 +∞ else .
Then the nullset of ϕ propagates at speed c * (e 0 ) :

∀t ≥ 0, {ϕ(t, •) = 0} = e ⊥ 0 + c * (e 0 )t e 0 .
Proof of Proposition 2.7. We first notice that since the initial data is invariant under any translation in e ⊥ 0 , and the the equation (1.12) invariant by translation, the solution ϕ depends only on x • e 0 . That is ϕ(t, x) = ϕ(t, (x • e 0 )e 0 ) = ϕ(t, x • e 0 ). The function ϕ satisfies

   min ∂ t ϕ + (1 + r)H ∂ ξ ϕ 1+r e 0 + r, ϕ = 0, ∀(t, ξ) ∈ R * + × R, ϕ(0, ξ) = ϕ 0 (ξ).
where ϕ 0 (ξ) := 0 ξ = 0, +∞ else .

The Lagrangian associated to the latter Hamilton-Jacobi equation is by definition To solve the variational Hamilton-Jacobi equation, let us define

L(p) = sup q∈R pq -(1 + r)H q 1 + r e 0 -
J(x, t) = inf x∈X ˆt 0 [L( ẋ)] ds x(0) = x, x(t) = 0
the minimizer of the action associated to the Lagrangian. Thanks to the so-called Freidlin condition, see [START_REF] Evans | A PDE Approach to Geometric Optics for Certain Semilinear Parabolic Equations[END_REF][START_REF] Freidlin | Functional Integration and Partial Differential Equations[END_REF] we deduce that the solution of (1.12) is ϕ(t, ξ) = max (J(ξ, t), 0) .

The Hopf-Lax formula gives J(ξ, t) = tL t -1 ξ thanks to the assumption on the initial condition. Hence,

ξ ∈ {ϕ(t, •) = 0} ⇐⇒ L t -1 ξ ≤ 0 ⇐⇒ sup q∈R (qξ -|q|c(|q|, e 0 )t) ≤ 0, ⇐⇒ ∀q ∈ R, qξ -|q|c(|q|, e 0 )t ≤ 0, ⇐⇒ |ξ| ≤ c * (e 0 )t.
We deduce the result for ϕ by changing the variables back.

For a compactly supported initial data, the issue of the speed of propagation in general is more involved, since different directions may have different speeds of propagation. Namely, the following Freidlin-Gärtner formula holds: 

L(p) = sup q∈R n p • q -(1 + r)H q 1 + r -r , = sup e∈S n-1 sup λ∈R + λp • e -(1 + r)H λe 1 + r + r , = sup e∈S n-1 sup λ∈R + (λ [p • e -c(λ, e)]) ,
To solve the variational Hamilton-Jacobi equation, let us define

J(x, t) = inf x∈X ˆt 0 [L( ẋ)] ds x(0) = x, x(t) = 0
the minimizer of the action associated to the Lagrangian. Thanks to the so-called Freidlin condition, see [START_REF] Evans | A PDE Approach to Geometric Optics for Certain Semilinear Parabolic Equations[END_REF][START_REF] Freidlin | Functional Integration and Partial Differential Equations[END_REF] we deduce that the solution of (1.12) is ϕ(x, t) = max (J(x, t), 0) .

The Lax formula gives J(x, t) = min y∈R n tL xy t + ϕ 0 (y) = tL x t thanks to the assumption on the initial condition. Hence, 

ϕ(t, xe 0 ) = 0 ⇐⇒ L x t e 0 ≤ 0 ⇐⇒ sup e∈S n-1 sup λ∈R + (λ [x(e 0 • e) -c e (λ)t]) ≤ 0, ⇐⇒ ∀λ ∈ R + , ∀e ∈ S n-1 , λ [(x • e 0 )(

Existence of travelling waves and spreading result

In this Section, we now explain how to construct travelling wave solutions to (1.1). We will follow closely the construction in [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF]. As is classical in this type of Fisher-KPP problems, the speeds of propagation are given by studying the linearized problem at infinity. As we will see later on, the main difference that has motivated this paper is the possible singularity of c(λ, e) at λ * (e).

Proof of Theorem 1.4 : Travelling wave solutions

Given a direction e ∈ S n-1 , looking for exponential solutions to the linearized problem of the form e -λ(x•e-c(λ,e)t) F λ,e (v) for any positive λ is exactly looking for solutions to

[1 + λ(c(λ, e) -v • e)] F λ,e (v) = (1 + r)M (v) ˆV F λ,e (v ′ )dv ′ , v ∈ V.
In view of earlier computations, it boils down to setting c(λ, e) as in (2.27) and F λ,e := Q λe 1+r as in (2.20).

Recall that λe 1+r ∈ Sing(M ) if and only if l(e) ≤ λ 1+r , that is λ ≥ λ(e) := (1 + r)l(e). Thus, for λ ≤ λ(e), the function c(λ, e) is convex and regular, and the profile is explicitly given by

F λ,e (v) = (1 + r)M (v) 1 + λ(c(λ, e) -v • e) > 0.
For λ ≥ λ(e), that is to say λe 1+r ∈ Sing(M ) one has c(λ, e) = v(e) -1 λ which is concave and increasing. As such, the infimum of λ → c(λ, e) is attained for a λ ≤ λ(e), which we denote λ * (e).

As a consequence, the minimal speed c * (e) is always associated to an integrable eigenvector, since if λ * (e) = λ(e), one has

F λ(e),e (v) = (1 + r)M (v) λ(e) (v(e) -v • e) ,
with ´V F λ(e),e (v) dv = 1 thanks to the definition of λ(e). Given a direction e ∈ S n-1 , we shall now discuss the type of functions λ → c(λ, e) that may arise from this problem. Qualitatively, four situations may happen. The first possibility is the one already appearing in [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF] in the mono-dimensional case, that is λ(e) = +∞ and thus Sing(M ) = ∅. We plot an exemple of this case in Figure 3.1, case 1. If λ(e) < +∞, three supplementary situations can occur. Either the infimum of λ → c(λ, e) is attained for λ < λ(e), as shown in Figure 3.1, case 2, either it is attained for λ = λ(e). In the latter case, the infimum can either be attained at a point where the left derivative of c(λ, e) is zero (Figure 3.1, case 3), or where it is negative (Figure 3.1, case 4). 

(1 + r)M (v) 1 + λ(c -v • e) dv. (3.28) 
Differentiating with respect to λ, we find

ˆV λc ′ (λ, e)M (v) [1 + λ(c(λ, e) -v • e)] 2 dv + ˆV (c(λ, e) -v • e)M (v) [1 + λ(c(λ, e) -v • e)] 2 dv = 0 Recalling ´V M (v)
1+λ(c(λ,e)-v•e) dv = (1 + r) -1 and defining

J (λ, e) = ˆV M (v) [1 + λ(c(λ, e) -v • e)] 2 dv, we get c ′ (λ, e) = 1 - (1 + r) -1 J(λ, e) 1 λ 2 .
As such, computing the value of lim λ→ λ(e) -J (λ, e) allows to know in which case one falls. Indeed, the function λ → c(λ) attains its minimum at λ(e) if and only if c ′ λ-(e) ≤ 0, which is equivalent

to J ( λ(e)) ≤ (1 + r) -1 which is in turn equivalent to ˆV M (v) (v(e) -v • e) 2 dv ≤ (1 + r)l(e) 2 , (3.29) 
which can be checked case by case. Note that one has always, given the Cauchy-Schwarz inequality, l(e) 2 ≤ ´V In this case, Sing(M ) = ∅ so that the function λ → c(λ, 1) is regular. This is the case discussed in [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF]. (b) n = 2, V = D(0, 1), M ≡ 1 π and r = 1. In this case, Sing(M ) = ∅ but the minimum of c(λ, e 1 ) is attained for λ < λ(e 1 ) = 4.

M (v) (v(e)-v•e) 2 dv.
(c) n = 1, V = [-1, 1], M (v) = 3 2 (1 -|v|) 2 and r = -1 + l(1) -2 ´1 -1 M (v)
(1-v) 2 dv ≈ 0.37. In this case, the minimum of c(λ, e 1 ) is attained for λ = λ(e 1 ), with a zero left derivative. Numerically λ(1) ≈ 1.58.

(d) n = 1, V = [-1, 1], M (v) = 3
2 (1 -|v|) 2 and r = 1. In this case, the minimum of c(λ, 1) is attained for λ = λ(1), with a negative left derivative. Numerically, λ(1) ≈ 2.31.

Example 3.2. Let us look back at Example 2.2. As was stated, l(1) = 3(2 ln(2) -1) and ´V M (v)

(1-v) 2 dv = 6(1ln(2)) < +∞. Thus, for r > -1 + l(1) -2 ´M(v) (1-v) 2 dv > 0, the condition (3.29) is satisfied so the minimum of λ → c(λ, e) is attained at λ(e). For r = -1 + l(1) -2 ´V M (v)

(1-v) 2 dv the minimum has its left derivative equal to 0 (i.e. λ * (1) = λ(1)). We illustrate those results in section 3.1, case 3 and 4.

Since c(λ, e) tends to infinity when λ tends to 0, for any c ≥ c * (e) one can find λ ∈ (0, λ(e)] such that c(λ, e) = c.

Fix c ∈ (c * (e), v(e)). Denote λ c is the smallest solution in (0, λ(e)) of c(λ c , e) = c. Notice that by construction it is possible to obtain F λc,e integrable and bounded (bounded since c > c * (e)), the proof of [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF], Section 3.2, that constructs sub and super solutions for (1.1) is unchanged. From the construction of a pair of sub-and super-solutions, we deduce the existence of travelling wave solutions exactly as in [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF], by a monotonicity method when c > c * (e) and passing to the limit c → c * (e) to get the case c = c * (e).

The main difference between the mono-dimensional case of [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF] and the higher dimensional case comes here. It is rather non-standard and interesting that the function giving the speed of propagation could be singular at its minimum value.

To prove that c * is still the minimal speed of propagation, the arguments used in [11, Lemma 3.10] are not applicable. These arguments can be summarized as follows : in the one dimensional case when M ≥ δ > 0, the function λ → I(λ, c, e) (recall (3.28)) is analytic. Thus, we can not find λ > 0 such that I(λ, c, e) = 1 when c < c * . However, an argument using the Rouché Theorem states that we can solve this problem in C \ R. Assuming that there exists a travelling wave solution f for c < c * , we then can use such a λ ∈ C to construct a subsolution under f which dos not converge to 0 as x → ∞. In our framework, the function λ → I(λ, c, e) might not be analytic around λ * (e), which prevents us from using this technique. We thus choose to use the Hamilton-Jacobi framework combined to the comparaison principle.

We now prove the following lemma. Proof of Lemma 3.3. Let f be such a travelling wave solution with initial data f (x, v), i.e f (t, x, v) = f (x • ect, v). After Proposition 2.6, we deduce that f ε (t, x, v) = f 1 ε (x • ect) , v satisfies lim ε→0 f ε = M on x • ect < 0 and lim ε→0 f ε = 0 on x • ect > 0. Take 0 < γ < 1 and define g(x, v) = γM (v)1 [-1,1]×R n-1 (x) and g ε (x, v) = g(x/ε, v). We have

ψ ε (x) = -ε ln(g(x/ε, v)/M ) = -ε ln(γ) x ∈ [-ε, ε]e 0 + e ⊥ 0 +∞ else .
Since lim z→-∞ f (z, v) = M uniformly in v ∈ V , one can shift the profile sufficiently enough so that M ≥ f ≥ g ≥ 0. Thus, the comparison principle (see [START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF], Proposition 2.2 for a proof) yields that f ε ≥ g ε . Passing to the limit ε → 0, and recalling Theorem 1.3, Proposition 2.6 and Proposition 2.7, we deduce that e ⊥ 0 + c * (e 0 )te 0 • e 0ct ≤ 0, from which the result follows.

From the Hamilton-Jacobi formalism, we may also deduce the following.

Proof of Proposition 1.5. We start by proving (1.16). For this, we use the the super-solution naturally provided by the linearized problem. We have f (t, x, v) ≤ min{M (v), e -λ * (e 0 )(x•e 0 -c * (e 0 )t) F λ * (e 0 ),e 0 (v)} As a consequence, ρ(t, x) ≤ min{1, e -λ * (e 0 )(x•e 0 -c * (e 0 )t) }, and thus one has lim t→+∞ sup x•e 0 >ct ρ(t, x) = 0.

For (1.17), we use the Hamilton-Jacobi results in the following way. We first notice that since the initial data is invariant under any translation in e ⊥ 0 , and the the equation (1.12) invariant by translation, the solution f (t, x, v) depends only on x • e 0 . That is f (t, x, v) = f (t, (x • e 0 )e 0 , v) = f (t, x • e 0 , v). 

Proof of Proposition 1.6 : spreading of a compactly supported initial data

We finally prove Proposition 1.6. The spreading result (1.18) goes as for the Fisher-KPP equation in an heterogeneous media [START_REF] Berestycki | Spreading speeds for one-dimensional monostable reaction-diffusion equations[END_REF]. It can be found by using the super solution

f (t, x, v) = inf e∈S n-1
e -λ * (e)(x•e-c * (e)t) Q λ * (e)e (v)

By the comparison principle, and since the initial data is compactly supported, the function f lies above f (multiplying f by a big constant if necessary). We deduce that for any given e 0 ∈ S n-1 , and any fixed x ∈ R n , f (t, x + ce 0 t, v) ≤ inf e -λ * (e)(x•e+ce 0 •et-c * (e)t) Q λ * (e)e (v).

Moreover, the domain of Q λ * (e)e contains V \{v max e} and Q λ * (e)e is bounded on all compact sets of V \ {v max e}. Hence, for fixed v ∈ V , we can choose e ∈ S n-1 such that v ∈ V \ {v max e}. Then, as soon as c > w * (e 0 ), we have c(e • e 0 ) > c * (e) for any e, and thus lim t→∞ f (t, x + ce 0 t, v) = 0.

Moreover, we shall prove (1.19) as follows. For any c < c * (e 0 ), recalling Theorem 1.3, Proposition 2.6 and Proposition 2.8, we have

lim t→∞ f (t, cte 0 , v) = lim t→∞ f (t, ct, v) = lim ε→0 f ε (1, ce 0 , v) = M (v),
since c < w * (e 0 ).

Theorem 1 . 4 .

 14 Let e ∈ S n-1 . For all c ∈ [c * (e), v(e)), there exists a travelling wave solution of (1.1) with speed c and direction e. Moreover, there exists no positive travelling wave solution of speed c ∈ [0, c * (e)).

  |q|c(|q|, e 0 )) ,

  Then the nullset of ϕ propagates at speed w * (e 0 ) in the direction e 0 :∀t ≥ 0, {x ∈ R, ϕ(t, x e 0 ) = 0} = {x ∈ R, |x| ≤ w * (e 0 )t} .Proof of Proposition 2.8. The Lagrangian is by definition

  e 0 • e)c e (λ)t] ≤ 0, ⇐⇒ ∀e ∈ S n-1 , x(e 0 • e) ≤ c * (e)t ⇐⇒ |x| ≤ min e∈S n-1 e 0 •e>0 c * (e) e 0 • e t = w * (e 0 )t.

Remark 3 . 1 .

 31 One can get a criterion to check which case holds. The dispersion relation defining c(λ, e) on (0, λ(e)) is I(λ, c(λ, e), e) = 1, where I(λ, c, e) := ˆV

4 Figure 1 :

 41 Figure 1: Various cases of speed functions λ → c(λ, e). Red plain line: λ → c(λ, e). Black dotted line: λ→ v(e) -1 λ . (a) n = 1, V = [-1, 1], e = 1, M ≡ 1 2 and r = 1.In this case, Sing(M ) = ∅ so that the function λ → c(λ, 1) is regular. This is the case discussed in[START_REF] Bouin | Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts[END_REF]. (b) n = 2, V = D(0, 1), M ≡ 1 π and r = 1. In this case, Sing(M ) = ∅ but the minimum of c(λ, e 1 ) is attained for λ < λ(e 1 ) = 4.(c) n = 1, V = [-1, 1], M (v) = 3 2 (1 -|v|) 2 and r = -1 + l(1) -2´1 -1

Lemma 3 . 3 .

 33 Let f be a travelling wave solution to (1.1) in the direction e ∈ S n-1 , with speed c. Then c ≥ c * (e).

  For any c < c * (e 0 ), recalling Theorem 1.3, Proposition 2.6 and Proposition 2.7, we have limt→∞ f (t, e ⊥ 0 + cte 0 , v) = lim t→∞ f (t, ct, v) = lim ε→0 f ε (1, c, v) = M (v),since c < c * (e 0 ).

e∈S n- 1 e

 1 -λ * (e)((x+ce 0 t)•e-c * (e)t) Q λ * (e)e (v) = inf e∈S n-1

To avoid too many notation, we identify Q p ′ to its density when relevant.
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