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Spreading in kinetic reaction-transport equations

in higher velocity dimensions

Emeric Bouin ∗ Nils Caillerie †

July 10, 2017

Abstract

In this paper, we extend and complement previous works about propagation in kinetic
reaction-transport equations. The model we study describes particles moving according to a
velocity-jump process, and proliferating according to a reaction term of monostable type. We
focus on the case of bounded velocities, having dimension higher than one. We extend previ-
ous results obtained by the first author with Calvez and Nadin in dimension one. We study
the large time/large scale hyperbolic limit via an Hamilton-Jacobi framework together with
the half-relaxed limits method. We deduce spreading results and the existence of travelling
wave solutions. A crucial difference with the mono-dimensional case is the resolution of the
spectral problem at the edge of the front, that yields potential singular velocity distributions.
As a consequence, the minimal speed of propagation may not be determined by a first order
condition.

Key-words: Kinetic equations, travelling waves, dispersion relation
AMS Class. No: 35Q92, 45K05, 35C07

1 Introduction

The model.

In this paper, we are interested in propagation phenomena occuring in the following reaction-
transport equation





∂tf(t, x, v) + v · ∇xf(t, x, v) =M(v)ρ(t, x) − f(t, x, v) + rρ(t, x) (M(v) − f(t, x, v)) ,

(t, x, v) ∈ R+ × R
n × V ,

f(0, x, v) = f0(x, v) , (x, v) ∈ R
n × V ,

(1.1)

where r > 0. The mesoscopic density f depends on time t ∈ R
+, position x ∈ R

n and velocity v ∈ V
and describes a population of individuals. The macroscopic density is ρ(t, x) =

´

V
f(t, x, v) dv. The

subset V ⊂ R
n is the set of all possible velocities. From now on, we assume
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(H0) The velocity set V ⊂ R
n is compact.

For any given direction e ∈ S
n−1, we define

v(e) = max {v · e, v ∈ V } , µ(p) = |p|v
(
p

|p|

)
, Argµ(p) = {v ∈ V | v · p = µ(p)} .

We set

vmax := sup
v∈V

|v|, |V | :=
ˆ

V

dv.

Individuals move following a so-called velocity-jump process. That is, they alternate successively
a run phase, with velocity v ∈ V , and a change of velocity at rate 1, which we call the tumbling.
The new velocity is chosen according to the probability distribution M . Throughout the paper, we
assume

(H1) M ∈ L1(V ), and

〈v〉M :=

ˆ

V

vM(v)dv = 0. (1.2)

Note that it is challenging to replace the linear BGK operator Mρ− f by a more general collision
operator of the form P (f) − Σf where P is a positive operator. However, to remain consistent
with [11], we will stick to their framework and leave this question for future work.

Remark 1.1. In fact, our analysis can easily be extended to the case 〈v〉M ∈ R
n \ 0. Setting

V := V − 〈v〉M , M(w) := M(w + 〈v〉M ) and F(t, x, w) := f(t, x + 〈v〉M t, w + 〈v〉M ), for all
(t, x, w) ∈ R+ × R

n ×V, we recover our assumptions in the new framework.

The reproduction of individuals is taken into account through a reaction term of monostable
type. The constant r > 0 is the growth rate in absence of any saturation. New individuals start with
a velocity chosen at random with the same probability distribution M . The quadratic saturation
term accounts for local competition between individuals, regardless of their speed.

We assume that initially 0 ≤ f0 ≤M , so that this remains true for all times, see [11, 19].

Earlier works and related topics

It is relatively natural to address the question of spreading for (1.1) since there is a strong link
between (1.1) and the classical Fisher-KPP equation [23,30]. Indeed, a suitable parabolic rescaling

ε2∂tgε + εv · ∇xgε = (M(v)ρgε − gε) + ε2rρgε (M(v)− gε) , (1.3)

leads to the Fisher-KPP equation (see [19] for example) in the limit ε→ 0,

∂tρ
0 −

〈
v2
〉
M
∂xxρ

0 = rρ0
(
1− ρ0

)
, (1.4)

g0 := lim
ε→0

gε =Mρ0,

assuming that the two following conditions on M hold:
ˆ

V

vM(v)dv = 0,
〈
v2
〉
M

:=

ˆ

V

v2M(v)dv > 0.
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We recall that for nonincreasing initial data decaying sufficiently fast at x = +∞, the solution of
(1.4) behaves asymptotically as a travelling front moving at the minimal speed c∗ = 2

√
r 〈v2〉M [1,

30]. However, even though the philosophy of the results will be the same in spirit, we emphasize that
nothing related to this parabolic limit will be used in the present paper. Our argumentation does
not rely on any perturbative analysis. Hence, we obtain results without any smallness assumption
on the parameters. This will yield significant differences, regarding both the results and the methods
of proof.

A short review of earlier results is now in order. Hadeler has worked on propagation for reaction-
telegraph equations [26, 27], that can be seen as two-speeds kinetic models. Morever, a similar
type of result was obtained by Cuesta, Hittmeir and Schmeiser [19] in the diffusive regime (i.e.
for sufficiently small ε in (1.1)). Using a micro-macro decomposition, they constructed possibly
oscillatory travelling waves of speed c ≥ 2

√
rD for ε small enough (depending on c). In addition,

when the set of admissible speeds V is bounded, c > 2
√
rD, and ε is small enough, they prove that

the travelling wave constructed in this way is indeed nonnegative.
Propagation for the full kinetic model (1.1) has then been investigated by the first author with

Calvez and Nadin in [11]. In one dimension of velocities, and when the velocities are bounded,
they proved the existence and stability of travelling waves solutions to (1.1). The minimal speed
of propagation of the waves is determined by the resolution of a spectral problem in the velocity
variable. In particular, it is not related with the KPP speed, except that the speeds coincide in the
diffusive regime. It is worth mentioning that the case of unbounded velocities is significantly different
as the front spreads with arbitrarily large speed [11]. This case shall not be discussed further in this
paper. This phenomenon was newly appearing for this type of equations and unexpected from the
macroscopic limit. One aim of this paper is to extend the construction of travelling waves solutions
to any velocity dimension, which was left open after [11].

There is a strong link between this KPP type propagation phenomena and large deviations for
the underlying velocity-jump process. Indeed, it is well known that fronts in Fisher-KPP equations
are so-called pulled fronts, that is, are triggered by very small populations at the edge that are able
to reproduce almost exponentially. Thus, studying large deviations for these type of processes at the
kinetic level is an interesting problem in itself. In [7,8], the authors have combined Hamilton-Jacobi
equations and kinetic equations to study large deviations (and propagation) from a PDE point of
view. These works show that he asymptotics of large deviations in the kinetic equation do not
coincide with the asymptotic of large deviations obtained after a diffusive approximation.

As a side note, the Hamilton-Jacobi technique (that will be described in the next subsection)
has also much been used recently to study long time dynamics in all sorts of stuctured mod-
els. An interested reader could describe the evolution of dominant phenotypical traits in a given
population reading [4, 12, 31] and the references therein), study different adaptative dynamics is-
sues [20], describe propagation in reaction-diffusion models of kinetic types [10] but also in age
renewal equations [16]. This approach has also recently been used to study large deviations of
velocity jump-processes [8, 9, 15] or slow-fast systems [13, 14, 22, 29, 32].

The Hamilton-Jacobi limit

After the seminal paper by Evans and Souganidis [21, 24], an important technique to derive the
propagating behavior in reaction-diffusion equations is to revisit the WKB expansion to study
hyperbolic limits. We will directly present the technique on our problem for conciseness but one
can find the original framework for the Fisher-KPP equation in [21] and complements in [2,3,18,34].
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We perform the hyperbolic scaling (t, x, v) →
(
t
ε
, x
ε
, v
)

in (1.1). Importantly, the velocity vari-
able is not rescaled (it cannot be rescaled since it lies in a bounded set). The kinetic Hopf-Cole
transformation (already used in [8, 15]) is written

∀(t, x, v) ∈ R
+ × R

n × V, f ε(t, x, v) =M(v)e−
ϕε(t,x,v)

ε . (1.5)

Thanks to the maximum principle [19], ϕε is well defined and remains nonnegative for all times.
Plugging (1.5) in (1.1), one obtains the following equation for ϕε:

∂tϕ
ε + v · ∇xϕ

ε + r = (1 + r)

ˆ

V

M(v′)

(
1− e

ϕε(v)−ϕε(v′)
ε

)
dv′ + rρε. (1.6)

Our aim is to pass to the limit in (1.6). To make the convergence result appear naturally,
we shall start by providing formal arguments. Assuming Lipschitz bounds on ϕε, and since ρε is
uniformly bounded, the boundedness of

´

V
M(v′)(1 − exp((ϕε(v) − ϕε(v′))/ε)dv′ implies that we

expect the limit ϕ0 to be independent of v. To identify the limit ϕ0, we shall thus perform the
following expansion

ϕε(t, x, v) = ϕ0(t, x) + εη(t, x, v). (1.7)

Plugging the latter into (1.7) yields

∂tϕ
0 + v · ∇xϕ

0 + r = (1 + r)

ˆ

V

M(v′)
(
1− eη(v)−η(v

′ )
)
dv′ + re−

ϕ0

ε

ˆ

V

e−η(v
′)dv′.

As a consequence, for any (t, x) ∈
{
ϕ0 > 0

}
, we have

∂tϕ
0 + v · ∇xϕ

0 = 1− eη(v)(1 + r)

ˆ

V

M(v′)e−η(v
′)dv′. (1.8)

One should read this equation as an eigenvalue problem in the velocity variable. Indeed, setting

p(t, x) = ∇xϕ
0(t, x), η(t, x, v) := − ln

(
Qp(t,x)

M(v)

)
, H(p(t, x)) := −∂tϕ0(t, x),

we see that (H,Q) are the principal eigenelements of the following spectral problem

(1 + r)M(v)

ˆ

V

Qp(v
′) dv′ − (1− v · p)Qp(v) = H(p)Qp(v).

The dependency with respect to r can be identified by setting p′ := p
1+r , H(·) := H((1+r)·)−r

1+r and

Q̃p′ = Qp. Indeed, we have then that ∂tϕ0 +(r+1)H( p
r+1 )+ r = 0 and the Hamiltonian H is given

by
(
1 +H

(
p′
)
− v · p′

)
Q̃p′(v) =M(v)

ˆ

V

Q̃p′(v
′) dv′. (1.9)

After these heuristics, we are now ready to define properly the Hamiltonian H involved.

Definition 1.2. We define, for e ∈ S
n−1,

l(e) =

ˆ

V

M(v)

v(e)− v · edv.
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The so-called singular set is defined by

Sing (M) :=

{
p ∈ R

n,

ˆ

V

M(v)

µ(p)− v · pdv ≤ 1

}
=

{
p ∈ R

n, l

(
p

|p|

)
≤ |p|

}
. (1.10)

Then, the Hamiltonian H involved in this paper is given as follows:

• If p /∈ Sing (M), then H is uniquely defined by the following implicit relation :

ˆ

V

M(v)

1 +H(p)− v · pdv = 1, (1.11)

• else, H(p) = µ (p)− 1.

The relevancy of such a definition, i.e. the resolution of (1.9), will be discussed in Section 2
below. With this definition in hand, the convergence result for the sequence of functions ϕε is as
follows.

Theorem 1.3. Suppose that (H0) and (H1) hold, and that the initial data satisfies

∀(x, v) ∈ R
n × V, ϕε(0, x, v) = ϕ0(x, v).

Then, (ϕε)ε converges uniformly on all compacts of R∗
+ × R

n × V towards ϕ0, where ϕ0 does not
depend on v. Moreover ϕ0 is the unique viscosity solution of the following Hamilton-Jacobi equation:





min
{
∂tϕ

0 + (1 + r)H
(
∇xϕ

0

1+r

)
+ r, ϕ0

}
= 0, (t, x) ∈ R

∗
+ × R

n,

ϕ0(0, x) = min
v∈V

ϕ0(x, v), x ∈ R
n.

(1.12)

Let us now emphasize the differences between the result presented here and the very related
works [7,8,15]. First, the results from [8] and [7] only hold for n = 1 and for M ≥ δ > 0. In [7], the
first author successfully proved a convergence result in the case r > 0. It is worth mentioning that
a much wider class of collision operators was considered in [7], but under the condition of existence
of a L1 eigenvector. We believe that the ideas of the present work could be used there, but with
technicalities inherent from the spectral problem that would require a special study.

As explained before, the multidimensional case (n > 1) is more delicate since the relation (1.11)
may not have a solution. We refer to our Example 2.3 for a situation where this happens. In [15],
the second author generalized the convergence result of [8] in the multidimensional case, with no
reaction term. However, the proof we design in this paper is simpler and more adaptable. For this
we manage to use the half-relaxed limits of Barles and Perthame [5] in the spirit of [12]. We point
out that an asymptotic preserving scheme has been developed by Hivert in [28] to numerically solve
(1.6) using the Hamilton-Jacobi framework developed in [7]. We present the proof of Theorem 1.3
in Section 2 below.

Travelling wave solutions and spreading of planar like initial data

We then investigate the existence of travelling wave solutions of (1.1). As in the mono-dimensional
case treated in [11], we will prove that there exists a minimal speed c∗ for which travelling wave
solutions exist. We will use the following definition throughout the paper.
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Definition 1.1. A function f is a travelling wave solution of speed c ∈ R+ and direction e ∈ S
n−1

of equation (1.1) if it can be written f(t, x, v) = f̃ (x · e− ct, v), where the profile f̃ ∈ C2
(
R, L1(V )

)

solves
(v · e− c) ∂ξ f̃ =M(v)ρ̃− f̃ + rρ̃

(
M(v) − f̃

)
(1.13)

and satisfies

∀(z, v) ∈ R× V , 0 ≤ f̃(z, v) ≤M(v) , lim
z→−∞

f̃(z, v) =M(v) , lim
z→+∞

f̃(z, v) = 0 . (1.14)

It is well known for this kind of Fisher-KPP type problems that propagation fronts are so-called
pulled fronts, that is the speed of propagation is given by seeking exponentially decaying solutions
of the linearized problem in a moving frame. As a consequence, for any λ > 0, one can define c(λ, e)
using the spectral problem solved in Definition 1.2. Indeed, we set

c(λ, e) = (1 + r)H
(

λe

1 + r

)
+ r. (1.15)

Then we have the formula for the minimal speed in the direction e ∈ S
n−1.

c∗(e) = inf
λ>0

c(λ, e) .

We obtain the following existence result.

Theorem 1.4. Let e ∈ S
n−1. For all c ∈ [c∗(e), v(e)), there exists a travelling wave solution of

(1.1) with speed c and direction e. Moreover, there exists no positive travelling wave solution of
speed c ∈ [0, c∗(e)).

Following very closely the proof used in the mono-dimensional case, we shall prove this Theorem
using sub and super-solution and a comparison principle satisfied by (1.1). We shall construct
these sub- and super-solution using travelling wave solutions of the linearized problem. The main
difference concerning the travelling wave result is the way we prove the minimality of the speed
c∗(e). Indeed, it might happen that c(λ, e) is singular at its minimum λ∗ so that one can not
reproduce the same argument as for the mono-dimensional case used in [11], that was based on the
Rouché Theorem. Using the Hamilton-Jacobi framework above, in a similar fashion as in [?], we
prove the following result.

Proposition 1.5. Let f0 be a non-zero initial data, compactly supported in some direction e0, such
that there exists γ < 1 such that

γM(v)1[−xm,xm]·e0+e⊥0
(x) ≤ f0(x, v) ≤M(v)1[−xM ,xM ]·e0+e⊥0

(x),

for all (x, v) ∈ R
n × V . Let f be the solution of the Cauchy problem (1.1) associated to this initial

data. Then we have
lim

t→+∞
sup

x·e0>ct
ρ(t, x) = 0, if c > c∗(e0), (1.16)

lim
t→+∞

f(t, e⊥0 + cte0, v) =M(v) , if c < c∗(e0), (1.17)

uniformly in v ∈ V .
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Spreading of compactly supported initial data

Finally, we also deduce from the Hamilton-Jacobi framework a spreading result for initial conditions
that are compactly supported. To this aim, let us first define the speed w∗(e0) associated to any
direction e0 ∈ S

n−1 via the following Freidlin-Gärtner formula (see [25] for its first derivation).

w∗(e0) = min
e∈Sn−1

e0·e>0

(
c∗(e)

e0 · e

)
.

We obtain the following result.

Proposition 1.6. Let f0 be a non-zero compactly supported initial data such that 0 ≤ f0(x, v) ≤
M(v) for all (x, v) ∈ R

n × V . Let f be the solution of the Cauchy problem (1.1) associated to this
initial data. Then for any e0 ∈ S

n−1 and all x ∈ R
n, we have

lim
t→∞

f(t, x+ cte0, v) = 0, if c > w∗(e0), (1.18)

pointwise and
lim
t→∞

f(t, cte0, v) =M(v), if 0 ≤ c < w∗(e0), (1.19)

for all v ∈ V .

This result is interesting since contrary to the case of the usual Fisher-KPP equation in heteroge-
neous domains, where the Freidlin-Gärtner formula holds, see [33], here there is no heterogeneity in
space. The heterogeneity coming potentially from the velocity set, this would not be present in the
macroscopic limit (the Fisher-KPP equation, see above). Of course, if V is rotationally symmetric,
the speed w∗ is independent of the direction, and the propagation is radial.

One could wonder how the shape of V (e.g. its topological properties or its convexity) influences
the shape of the front and the speed of propagation. We will investigate this question in a future
work.

The rest of this paper is organized as follows. In Section 2, we prove the Hamilton-Jacobi limit.
We discuss the construction of travelling waves and the spreading results in Section 3.
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2 The Hamilton-Jacobi limit

In this Section, we present the proof of the convergence result Theorem 1.3. We then prove a
convergence result for ρε in the region {ϕ0 = 0}. This result will help us to show that the speed of
propagation is still the minimal speed of existence of travelling waves, despite the singularity of H.

2.1 The spectral problem

In this Section, we discuss the resolution of the spectral problem given by (1.9). We also provide
examples for which the singular set of M is not empty.

2.1.1 The resolution

For any p′ > 0, we look for an eigenvalue H(p′) associated to a positive eigenvector Q̃p such that

(
1 +H(p′)− v · p′

)
Q̃p′(v) =M(v)

ˆ

V

Q̃p′(v
′) dv′, v ∈ V.

Note that it may happen that Q̃p′ has a singular part. Since the problem is linear, one can always
assume that Q̃p′ is a probability measure. We are thus led to find an eigenvalue H(p′) such that
there exists a probability measure Q̃p′1 such that

(
1 +H(p′)− v · p′

)
Q̃p′(v) =M(v), v ∈ V.

To make the singular set Sing (M) appear naturally, let us first investigate the case when Q̃p′ ∈
L1(V ). If a solution exists, then the profile Q̃p′ necessarily satisfies the following equation:

Q̃p′(v) =
M(v)

1 +H(p′)− v · p′ , v ∈ V. (2.20)

This is only possible if such an expression defines a probability measure. As a consequence, one
shall look for conditions under which there exists H(p′) such that

I
(
H(p′), p′

)
:=

ˆ

V

M(v′)

1 +H(p′)− v′ · p′dv
′ = 1,

with 1 +H(p′)− v′ · p > 0 for all v′ ∈ V , that is H(p′) > µ(p′)− 1.
For any p′ /∈ Sing(M), since the function ξ 7→ I(ξ, p′) is decreasing over (µ(p′)− 1,+∞), H(p′)

exists and is unique in this interval since I(µ(p′)− 1, p′) > 1, by the definition of p′ not being in the
singular set.

However, for any p′ ∈ Sing(M), it is not possible to solve I (H(p′), p′) = 1 since I(µ(p′)−1, p′) ≤
1. After Theorem 1.2 in [17], there exists a solution to (1.9), given by the couple (H(p′), Q̃p′) where
H(p′) = µ(p′)− 1 and Q̃p′ is a positive measure given by:

Q̃p′ :=
M(v)

µ(p′)− v · p′dv +
(
1−
ˆ

V

M(v)

µ(p′)− v · p′dv
)
δw,

where δw is the dirac mass located at w ∈ Arg µ(p′).
From [15], we know that the set Sing(M)c is convex and contains 0. To identify the different

cases where such a singularity set may occur, we detail three examples hereafter.

1To avoid too many notation, we identify Q̃p′ to its density when relevant.
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2.1.2 Examples

Example 2.1. In the one-dimensional case (n = 1), we have Sing(M) = ∅ when inf
v∈V

M(v) > 0

since
ˆ v

−v

M(v′)

µ(p′)− vp′
dv =

ˆ v

−v

M(v)

|p′|vmax − vp′
dv ≥ infM(v)

|p′|v ·
ˆ 1

−1

dv

1− v
= +∞. (2.21)

By monotone convergence we have

lim
H→µ(p′)−1

ˆ v

−v

M(v)

1 +H − vp′
dv = +∞,

hence, for all p′ ∈ R, there exists a unique H(p′) that solves the spectral problem in L1(V ).

This latter framework is the one used in [11]. In fact, we can only require that M does not
cancel in a neighborhood of v = v in order to get Sing(M) = ∅. Indeed, the integral in (2.21) will
also diverge in that scenario. If M(v) = 0, this argument may not work out. Consider for example:

Example 2.2. Let n = 1, V = [−1, 1] and M(v) = 3
2 (1− |v|)2. Then,

l(1) =

ˆ 1

−1

M(v)

1− v
dv =

3

2

ˆ 1

−1

(1− |v|)2
1− v

dv = 3

ˆ 1

0

(1− v)2

(1− v)(1 + v)
dv

= 3

ˆ 1

0

1− v

1 + v
dv = 3

ˆ 1

0

2− (1 + v)

1 + v
dv

= 3

(
ˆ 1

0

2

1 + v
dv − 1

)
= 3(2 ln(2)− 1).

Hence, |p′| ≥ 3(2 ln(2) − 1) if and only if

ˆ 1

−1

M(v)

µ(p′)− vp′
dv =

3

2|p′|

ˆ 1

−1

(1− |v|)2
1− v

dv ≤ 1,

therefore, Sing(M) = (−3(2 ln(2) − 1), 3(2 ln(2)− 1))c. Let us also notice that

ˆ

V

M(v)

(v(1)− v)2
dv =

3

2

ˆ 1

−1

(1− |v|)2
(1− v)2

dv = 3

ˆ 1

0

1 + v2

(1 + v)2
dv

= 3

ˆ 1

0

(1 + v)2 − 2(1 + v) + 2

(1 + v)2
dv

= 3

ˆ 1

0

(
1− 2

1 + v
+

2

(1 + v)2

)
dv

= 3(1 − 2 ln(2) + 1) = 6(1 − ln(2)) < +∞.

We will make a use of this result later.

In the multi-dimensional case, we may encounter a singular set, even when inf
v∈V

M(v) > 0. These

singularities can occur in the simplest cases.
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Example 2.3. Let n ≥ 1, let V = B(0, 1) be the n-dimensional unit ball. Let e = e1 and M =
ω−1
n .1

B(0,1)
, where ωn is the Lebesgue measure of V . For n = 1, since M > 0 we have Sing(M) = ∅

(recall example 2.1). Suppose now that n > 1. Then,

l(e1) =

ˆ

B(0,1)

M(v)

v(e1)− v · e1
dv

=
1

ωn

ˆ

B(0,1)

1

1− v1
dv

=
1

ωn

ˆ 1

−1

1

1− v1

(
ˆ

1{v21+v22+...+v2n≤1}(v2, . . . , vn)dv2 . . . dvn
)
dv1.

Now, for fixed v1, the quantity
´

1{v21+v22+...+v2n≤1}(v2, . . . , vn)dv2 . . . dvn is the Lebesgue measure of

the (n− 1)-dimensional ball of radius
√

1− v21, hence

ˆ

1{v21+v22+...+v2n≤1}(v2, . . . , vn)dv2 . . . dvn = ωn−1 ×
(√

1− v21

)n−1

.

Finally,

l(e1) =
ωn−1

ωn

ˆ 1

−1

(
1− v21

)n−1
2

1− v1
dv1

=
2ωn−1

ωn

ˆ 1

0

(
1− v21

)n−3
2 dv1

=
2ωn−1

ωn

ˆ π
2

0
(cos(θ))n−2 dθ,

=
n

n− 1
,

where we have used, for example, the relationship between the volume of the unit ball and the Wallis
integrals. By rotational invariance, Sing(M) = B

(
0, n−1

n

)c
.

2.2 Proof of Theorem 1.3

In this Section, we now prove Theorem 1.3. We will use the half-relaxed limits method of Barles
and Perthame [5]. In addition to that, and similarly to the papers [8, 15], we need to use the
perturbed test-function method. We emphasize that the corrected test function is defined thanks
to the spectral problem (1.9), keeping only the regular part of the eigenfunction (recall that it may
have singularities).

Since the sequence ϕε is uniformly bounded by the maximum principle (check Proposition 5
in [7]), we can define its upper- and lower- semi continuous envelopes by the following formulas

ϕ∗(t, x, v) = lim sup
ε→0

(s,y,w)→(t,x,v)

ϕε(s, y, w), ϕ∗(t, x, v) = lim inf
ε→0

(s,y,w)→(t,x,v)

ϕε(s, y, w)

Recall that ϕ∗ is upper semi-continuous, ϕ∗ is lower semi-continuous and that from their definition,
one has ϕ∗ ≤ ϕ∗. We have the following:
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Proposition 2.4. Let ϕε be a solution to (1.6).

(i) The upper semi-limit ϕ∗ is constant with respect to the velocity variable on R
∗
+ × R

n.

(ii) The function (t, x) 7→ ϕ∗(t, x) is a viscosity sub-solution to (1.12) on R
∗
+ × R

n.

(iii) The function (t, x) 7→ minw∈V ϕ∗(t, x, w) is a viscosity super-solution to (1.12) on R
∗
+ × R

n.

We recall that for all (t, x), the minimum minw∈V ϕ∗(t, x, w) is attained since V is bounded and
ϕ∗ is lower semi-continuous. We point out here that if r = 0, that is, the case of [8, 15], it is not
necessary to prove that ϕ∗ is constant in the velocity variable. One can replace this by proving
that maxw∈V ϕ

∗ is a sub-solution to (1.12). The fact that ϕ∗ is constant in the velocity variable is
needed to control the limit of ρε.

Proof of Proposition 2.4. We start with the proof of (i). Take (t0, x0, v0) ∈ R
∗
+ × R

n × V . Let
ψ be a test function such that ϕ∗ − ψ has a strict local maximum at (t0, x0, v0). Then there exists
a sequence (tε, xε, vε) of maximum points of ϕε − ψ satisfying (tε, xε, vε) → (t0, x0, v0). From this
we deduce that limε→0ϕ

ε(tε, xε, vε) = ϕ∗(t, x, v). Recalling (1.6), we have at (tε, xε, vε):

∂tψ + vε · ∇xψ + r = (1 + r)

(
1−
ˆ

V

M(v′)e
ϕε−ϕε′

ε dv′
)
+ rρε.

From this, we deduce that
ˆ

V ′

M(v′)e
ϕε(tε,xε,vε)−ϕε(tε,xε,v′)

ε dv′

is uniformly bounded for any V ′ ⊂ V . By the Jensen inequality,

exp

(
1

ε |V ′|M

ˆ

V ′

(
ϕε(tε, xε, vε)− ϕε(tε, xε, v′)

)
M(v′)dv′

)
≤ 1

|V ′|M

ˆ

V ′

M(v′)e
ϕε(tε,xε,vε)−ϕε(tε,xε,v′)

ε dv′,

where |V ′|M :=
´

V ′ M(v)dv. Thus,

lim sup
ε→0

(
ˆ

V ′

(
ϕε(tε, xε, vε)− ϕε(tε, xε, v′)

)
M(v′)dv′

)
≤ 0.

We write
ˆ

V ′

(
ϕε(vε)− ϕε(v′)

)
M(v′)dv′ =

ˆ

V ′

[
(ϕε(vε)− ψ(vε))−

(
ϕε(v′)− ψ(v′)

)
+

(
ψ(vε)− ψ(v′)

)]
M(v′)dv′

=

ˆ

V ′

[
(ϕε(vε)− ψ(vε))−

(
ϕε(v′)− ψ(v′)

)]
M(v′)dv′

+

ˆ

V ′

(
ψ(vε)− ψ(v′)

)
M(v′)dv′

11



We can thus use the Fatou Lemma, together with − lim supε→0ϕ
ε(tε, xε, v′) ≥ −ϕ∗(t0, x0, v′) to get

(
ˆ

V ′

M(v′)dv′
)
ϕ∗(v0)−

ˆ

V ′

ϕ∗(v′)M(v′)dv′ =

ˆ

V ′

(
ϕ∗(v0)− ϕ∗(v′)

)
M(v′)dv′

≤
ˆ

V ′

lim inf
ε→0

(
ϕε(vε)− ϕε(v′)

)
M(v′)dv′

≤ lim inf
ε→0

(
ˆ

V ′

(
ϕε(vε)− ϕε(v′)

)
M(v′)dv′

)

≤ lim sup
ε→0

(
ˆ

V ′

(
ϕε(vε)− ϕε(v′)

)
M(v′)dv′

)

≤ 0,

We shall deduce, since the latter is true for any |V ′| that

ϕ∗(t0, x0, v0) ≤ inf
V
ϕ∗(t0, x0, ·)

and thus ϕ∗ is constant in velocity.
We now continue with the proof of (ii). We have to prove that on {ϕ∗ > 0} ∩ (R∗

+ × R
n),

the function ϕ∗ is a viscosity subsolution of (1.12). To this aim, let ψ ∈ C2(R∗
+ × R

n) be a test
function such that ϕ∗ − ψ has a local maximum in (t0, x0) ∈ (R∗

+ × R
n) ∩ {ϕ∗ > 0}. We denote by

p0(t0, x0) = ∇xψ(t0,x0)
1+r .

# First case : p0(t0, x0) /∈ SingM .

We define a corrector η according to the following formula:

η(v) = ln
(
1 +H

(
p0(t0, x0)

)
− v · p0(t0, x0)

)

Let us define the perturbed test function ψε := ψ + εη. We recall the fact that in this case
´

V
M(v′) exp(−η(v′))dv′ = 1. The function ψε converges uniformly to ψ since η is bounded on

V . As a consequence, there exists a sequence (tε, xε, vε) of maximum points of ϕε − ψε satisfying
(tε, xε) → (t0, x0) and such that limε→0 ϕ

ε(tε, xε, vε) = ϕ∗(t0, x0). Recalling (1.6), we have at
(tε, xε, vε):

∂tψ
ε + vε · ∇xψ

ε + r = (1 + r)

(
1−
ˆ

V

M(v′)e
ϕε−ϕε′

ε dv′
)
+ rρε.

Since (tε, xε, vε) is a maximum point, we may rearrange the r.h.s. of the latter so that the previous
equation may be rewritten as follows

∂tψ
ε + vε · ∇xψ

ε + r ≤ (1 + r)

(
1−
ˆ

V

M(v′) exp
(
η(vε)− η(v′)

)
dv′

)
+ rρε,

= (1 + r)

(
1−

(
ˆ

V

M(v′) exp
(
−η(v′)

)
dv′

)
exp (η(vε))

)
+ rρε,

= (1 + r) (1− exp (η(vε))) + rρε,

= −(1 + r)H
(
p0(t0, x0)

)
+ vε · ∇xψ

0(t0, x0) + rρε.

Since (t0, x0) ∈ {ϕ∗ > 0} and limε→0 ϕ
ε(tε, xε, vε) = ϕ∗(t0, x0), we have that, eventually,

ϕε(tε, xε, vε) > ϕ∗(t0, x0)/2 > 0 for ε sufficiently small. Since

rρε
(
e

ϕε

ε − 1
)
=

(
1−
ˆ

V

M(v′)e
ϕε−ϕε′

ε dv′
)
− (∂tψ

ε + vε · ∇xψ
ε) ,
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and the latter r.h.s. is uniformly bounded from above in ε, we deduce that limε→0 ρ
ε(tε, xε) = 0.

Taking the limit ε→ 0, we get

∂tψ
(
t0, x0

)
+ (1 + r)H

(∇xψ(t
0, x0)

1 + r

)
+ r ≤ 0.

# Second case : p0(t0, x0) ∈ SingM .

Let v∗ ∈ Argµ(p0(t0, x0)). The function (t, x) 7→ ϕε(t, x, v∗) − ψ(t, x) has a local maximum at a
point (tε, xε) satisfying (tε, xε) → (t0, x0) as ε→ 0. We then have:

∂tψ(t
ε, xε) + v∗ · ∇xψ(t

ε, xε) + r = ∂tϕ
ε(tε, xε, v∗) + v∗ · ∇xϕ

ε(tε, xε, v∗) + r

= (1 + r)

ˆ

V

M(v′)

(
1− e

ϕε(v∗)−ϕε(v′)
ε

)
dv′ + rρε

≤ (1 + r) + rρε.

Since (t0, x0) ∈ {ϕ∗ > 0}, we have ρε(tε, xε) → 0. As a consequence, taking the limit ε→ 0, we get

∂tψ(t
0, x0) + µ(∇xψ(t

0, x0)) ≤ 1.

We finally turn to the proof of (iii). That is, the fact that on R
∗
+ × R

n, the function
minw∈V ϕ∗(·, w) is a viscosity supersolution of (1.12).

Let ψ ∈ C1(R∗
+ × R

n) be a test function such that minw∈V ϕ∗ − ψ has a local minimum in

(t0, x0) ∈ R
∗
+. We denote by p0(t0, x0) = ∇xψ(t0,x0)

1+r . We define the truncated corrector ηδ,

η(v) = ln
(
1 +H

(
p0(t, x)

)
− v · p0(t, x)

)
,

ηδ(v) = max (η(v),−1/δ) .

Let us define the perturbed test function ψε := ψ + εηδ . For any δ > 0, the function ψε converges
uniformly to ψ as ε → 0 since ηδ is bounded on V . Since ϕ∗(t

0, x0, ·) attains its minimum at, say,
v0, we have, for all v ∈ V and locally in the (t, x) variables,

ϕ∗(t
0, x0, v0)−ψ(t0, x0) = min

w∈V
ϕ∗(t

0, x0)− ψ(t0, x0) ≤ min
w∈V

ϕ∗(t, x)− ψ(t, x) ≤ ϕ∗(t, x, v)−ψ(t, x),

and thus (t0, x0, v0) is a local minimum of ϕ∗ − ψ, strict in the (t, x) variables. By the definition
of the lower semi-limit, there exists a sequence (tεδ, x

ε
δ, v

ε
δ) of minimum points of ϕε − ψε satisfying

(tεδ, x
ε
δ) → (t0, x0). We obtain, after (1.6), at the point (tεδ, x

ε
δ, v

ε
δ) ,

∂tψ
ε + vεδ · ∇xψ

ε + r ≥ (1 + r)

(
1−
ˆ

V

M(v′) exp
(
ηδ(v

ε)− ηδ(v
′)
)
dv′

)
,

= (1 + r)

(
1−

(
ˆ

V

M(v′) exp
(
−ηδ(v′)

)
dv′

)
exp (ηδ(v

ε
δ))

)
.

Since the sequence vεδ lies in a compact set, taking the limit ε→ 0 (up to extraction), we obtain v0δ
such that

∂tψ + v0δ · ∇xψ + r ≥ (1 + r)

(
1−

(
ˆ

V

M(v′)e−ηδ(v
′)dv′

)
eηδ(v

0
δ )

)
.
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By construction, ηδ ≥ η. As a consequence,
´

V
M(v′)e−ηδ(v

′)dv′ ≤
´

V
M(v′)e−η(v

′)dv′ ≤ 1. Thus,

∂tψ + v0δ · ∇xψ + r ≥ (1 + r)
(
1− eηδ(v

0
δ
)
)
.

We now pass to the limit δ → 0. By compactness of V , one can extract a converging subsequence
from (v0δ )δ, we denote by v∗ the limit.

# First case : p0(t0, x0) /∈ SingM .

In this case, since η is bounded, ηδ = η for δ sufficiently small. Thus, passing to the limit δ → 0,
one gets

∂tψ + v∗ · ∇xψ + r ≥ (1 + r) (1− exp (η(v∗))) ,

= −(1 + r)H
(
p0(t0, x0)

)
+ v∗ · ∇xψ(t

0, x0),

from which we deduce

∂tψ
(
t0, x0

)
+ (1 + r)H

(∇xψ(t
0, x0)

1 + r

)
+ r ≥ 0.

# Second case : p0(t0, x0) ∈ SingM .

In this case, the corrector ηδ is

ηδ(v) = max
(
ln

(
µ
(
∇xψ(t

0, x0)
)
− v · ∇xψ(t

0, x0)
)
,−1/δ

)
.

If v∗ /∈ Argµ(p0(t0, x0)), since η is bounded on all compacts of V \ Arg µ(p0(t0, x0)), ηδ(v0δ ) =
η(v0δ ) for δ sufficiently small and we recover the first case.

If v∗ ∈ Arg µ(p0(t0, x0)), then take δ′ > 0, one has when δ < δ′ is sufficiently small,

− 1

δ′
= ηδ′(v

0
δ ) ≥ ηδ(v

0
δ ),

and thus limδ→0 ηδ(v
0
δ ) = −∞. From that we conclude

∂tψ + µ
(
∇xψ(t

0, x0)
)
≥ 1.

We now conclude with the proof of the convergence result. For this, we need to input initial
conditions. Obviously, one cannot get any uniqueness result for the Hamilton-Jacobi equation (1.12)
without imposing any initial condition. We now check the initial condition of (1.12) in the viscosity
sense.

Proposition 2.5. If one assumes that ϕε0 = ϕ0, the sequence ϕε converges uniformly on compact
subsets of R∗

+ × R
n to ϕ0, the unique viscosity solution of





min
{
∂tϕ

0 + (1 + r)H
(
∇xϕ

0

1+r

)
+ r, ϕ0

}
= 0, (t, x) ∈ R

∗
+ × R

n,

ϕ0(0, x) = min
v∈V

ϕ0(x, v), x ∈ R
n.
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Proof of Proposition 2.5. We extend the definition of ϕ∗ to {t = 0} × R
n by the formula

ϕ∗(0, x) = lim sup
tց0+

x′→x

ϕ∗(t, x′).

One has to prove the following

min

(
min

{
∂tϕ

∗ + (1 + r)H
(∇xϕ

∗

1 + r

)
+ r, ϕ∗

}
, ϕ∗ −min

v∈V
ϕ0(·, v)

)
≤ 0, (2.22)

on {t = 0} × R
n in the viscosity sense.

Let ψ ∈ C1 (R+ × R) be a test function such that ϕ∗ − ψ has a strict local maximum at (t0 =
0, x0). We now prove that either

ϕ∗(0, x0) ≤ min
v∈V

ϕ0(x, v),

or

∂tψ + (1 + r)H
(∇xψ

1 + r

)
+ r ≤ 0 when ϕ∗(0, x0) > 0.

Suppose then that
ϕ∗(0, x0) > min

v∈V
ϕ0(x, v).

We shall now prove that

∂tψ + (1 + r)H
(∇xψ

1 + r

)
+ r ≤ 0,

since then ϕ∗(0, x0) > 0. We now go through the same steps as for the proof of Proposition 2.4,
but with slight changes due to the present situation. We keep the same notations.

# First case : p0(t0, x0) /∈ SingM .

The function ψε converges uniformly to ψ since η is bounded on V . Adding this fact to the
definition of ϕ∗(0, x0), we get the existence of a sequence (tε, xε, vε) of maximum points of ϕε − ψε

satisfying tε > 0, (tε, xε) → (0, x0) and such that limε→0 ϕ
ε(tε, xε, vε) = ϕ∗(0, x0). The rest of the

proof is similar.

# Second case : p0(t0, x0) ∈ SingM .

Let v∗ ∈ Argµ(p0(t0, x0)). As for the previous case, due to the definition of ϕ∗, the function
(t, x) 7→ ϕε(t, x, v∗)−ψ(t, x) has a local maximum at a point (tε, xε) satisfying (tε > 0, xε) → (t0, x0)
as ε→ 0. The conclusion is the same.

We shall now prove that the initial condition for minw ϕ∗ is given by

max

(
min

{
∂t

(
min
w
ϕ∗

)
+ (1 + r)H

(∇x (minw ϕ∗)

1 + r

)
+ r,min

w
ϕ∗

}
,min
w
ϕ∗ −min

v∈V
ϕ0

)
≥ 0,

(2.23)
on {t = 0} × R

n in the viscosity sense.
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Let us prove (2.23). Let ψ ∈ C1 (R+ × R) be a test function such that minw∈V ϕ∗ − ψ has a
strict local minimum at (t0 = 0, x0). We now prove that either

min
w∈V

ϕ∗(0, x
0, w) ≥ min

v∈V
ϕ0(x

0, v),

or

∂tψ + (1 + r)H
(∇xψ

1 + r

)
+ r ≥ 0 and min

w∈V
ϕ∗(0, x

0, w) ≥ 0.

Suppose that minw∈V ϕ∗(0, x
0, w) < minv∈V ϕ0(x

0, v). The argument now starts similarly as in
the proof above. Let us define the perturbed test function ψε := ψ+εηδ. For any δ > 0, the function
ψε converges uniformly to ψ since ηδ is bounded on V . Since ϕ∗(0, x

0, ·) attains its minimum at,
say, v0, we have, for all v ∈ V and locally in the (t, x) variables,

ϕ∗(0, x
0, v0)− ψ(0, x0) ≤ min

w∈V
ϕ∗(0, x

0)− ψ(0, x0) ≤ min
w∈V

ϕ∗(t, x)− ψ(t, x) ≤ ϕ∗(t, x, v) − ψ(t, x),

and thus (0, x0, v0) is a local minimum of ϕ∗−ψ, strict in the (t, x) variables. By the definition of the
lower semi-limit, there exists a sequence (tεδ, x

ε
δ, v

ε
δ) of minimum points of ϕε−ψε satisfying (tεδ, x

ε
δ) →

(0, x0). We first claim that there exists a subsequence (tεk , xεk , vεk)k of the above sequence, with
εk → 0 as k → ∞, such that tεk > 0, for all k.

Suppose that this is not true. Then, take a sequence (x
εk′
δ , v

εk′
δ )k′ such that (εk′ , x

εk′
δ ) → (0, x0)

and that ϕεk′ − ψεk′ has a local minimum at
(
0, x

εk′
δ , v

εk′
δ

)
. It follows that, for all (t, x, v) in some

neighborhood of (0, xεk′δ , v
εk′
δ ), we have

min
v∈V

ϕ0(x
εk′
δ , v)− ψεk′

(
0, x

εk′
δ , v

εk′
δ

)
≤ ϕ0(x

εk′
δ , v

εk′
δ )− ψεk′

(
0, x

εk′
δ , v

εk′
δ

)

≤ ϕεk′
(
0, x

εk′
δ , v

εk′
δ

)
− ψεk′

(
0, x

εk′
δ , v

εk′
δ

)

≤ ϕεk′ (t, x, v)− ψεk′ (t, x, v) .

Taking lim inf
k′→∞

(t,x,v)→(0,x0,v0)

at the both sides of the inequality, one obtains

min
v∈V

ϕ0(x
0, v) − ψ

(
0, x0

)
≤ min

w∈V
ϕ∗(0, x

0)− ψ
(
0, x0

)
.

However, this is in contradiction with minw∈V ϕ∗(0, x
0, w) < minv∈V ϕ0(x

0, v). Now having in hand
that this sequence of times tεn > 0, one can reproduce the same argument as from the proof above
along the subsequence (tεn , xεn , vεn).

By the strong uniqueness principle satisfied by (1.12) (that is, a comparison principle for dis-
continuous sub- and super- solutions), we deduce that for all (t, x, v) ∈ R

∗
+ × R

n × V ,

min
w∈V

ϕ∗(t, x, w) ≤ ϕ∗(t, x, v) ≤ ϕ∗(t, x, v) = ϕ∗(t, x) ≤ min
w∈V

ϕ∗(t, x, w)

We deduce that necessarily all these inequalities are equalities, and thus that ϕε converges locally
uniformly towards ϕ0, independent of v, on any subcompact of R∗

+ × R
n.
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2.3 Convergence of the macroscopic density ρ
ε

We prove a convergence result for ρε in the region {ϕ0 = 0}. Namely

Proposition 2.6. Let ϕε be the solution of (1.6). Then, uniformly on compact subsets of
Int

{
ϕ0 = 0

}
,

lim
ε→0

ρε = 1, lim
ε→0

f ε (·, v) =M(v).

Proof of Proposition 2.6. We develop similar arguments as in [21]. Let K be a compact set of
{ϕ0 = 0}. Note that it suffices to prove the result when K is a cylinder. Let (t0, x0) ∈ Int (K) and
the test function

∀(t, x) ∈ K, ψ0(t, x) = |x− x0|2 +
(
t− t0

)2
.

Since ϕ0 = 0 on K, the function ϕ0 − ψ0 admits a strict maximum in (t0, x0). The locally uniform
convergence of ϕε − ψ0 gives a sequence (tε, xε, vε) of maximum points with (tε, xε) → (t0, x0) and
a bounded sequence vε such that at the point (tε, xε, vε) one has:

∂tψ
0 + vε · ∇xψ

0 + r ≤ rρε. (2.24)

As a consequence, one has, since r > 0,

ρε(tε, xε) ≥ 1 + o(1), as ε→ 0, (2.25)

and then limε→0 ρ
ε(tε, xε) = 1 if one recalls ρε ≤ 1 (which, again, is a consequence of the maximum

principle).
However, we need an extra argument to get limε→0 ρ

ε(t0, x0) = 1. Since (tε, xε, vε) maximizes
ϕε − ψ0, we deduce that for all v ∈ V , we have

ϕε (tε, xε, vε)− ψ0(tε, xε) ≥ ϕε
(
t0, x0, v

)
− ψ0(t0, x0).

Since ψ0(tε, xε) ≥ 0, ψ0(t0, x0) = 0, we find

f ε(t0, x0, v) =M(v)e−
ϕε(t0,x0,v)

ε ≥M(v)e−
ϕε(tε,xε,vε)

ε . (2.26)

We shall now prove that limε→0 ε
−1ϕε(tε, xε, vε) = 0. Let us rewrite (1.6) at the point (tε, xε, vε)

in the form

rρε(tε, xε)
(
e

ϕε(tε,xε,vε)
ε − 1

)
=

(
1−
ˆ

V

M(v′)e
ϕε(tε,xε,vε)−ϕε(tε,xε,v′)

ε dv′
)
−
(
∂tψ

0 + v · ∇xψ
0
)
(tε, xε, vε)

We finally deduce using the maximum principle in the latter r.h.s. that

0 ≤ rρε(tε, xε)
(
e

ϕε(tε,xε,vε)
ε − 1

)
≤ oε→0(1)

and thus limε→0

(
ε−1ϕε(tε, xε, vε)

)
= 0. This implies limε→0 f

ε(t, x, v) = M(v) locally uniformly
on K × V .
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2.4 Speed of expansion

To be self-contained, we recall here how to study the propagation of the front after deriving the limit
variational equation, in the case r > 0. From Evans and Souganidis [21], we are able to identify
the solution of the variational Hamilton-Jacobi equation (1.12) using the Lagrangian duality. We
emphasize that, in this context, one may assume that our initial condition is well-prepared, i.e.
ϕ(0, x, v) = ϕ0(x). We recall the equation:




min

{
∂tϕ+ (1 + r)H

(
∇xϕ
1+r

)
+ r, ϕ

}
= 0, ∀(t, x) ∈ R

∗
+ × R

n,

ϕ(0, x) = ϕ0(x).

We recall from [8,15] that the Hamiltonian H is convex. For any e0 ∈ S
n−1, we define the minimal

speed in that direction by the formula

c∗(e) = inf
λ>0

c(λ, e), c(λ, e) =
1

λ

(
(1 + r)H

(
λe

1 + r

)
+ r

)
. (2.27)

We first discuss the speed of propagation of a front-like initial data.

Proposition 2.7. Assume that

ϕ0(x) :=

{
0 x ∈ e⊥0
+∞ else

.

Then the nullset of ϕ propagates at speed c∗(e0) :

∀t ≥ 0, {ϕ(t, ·) = 0} = e⊥0 + c∗(e0)t e0.

Proof of Proposition 2.7. We first notice that since the initial data is invariant under any trans-
lation in e⊥0 , and the the equation (1.12) invariant by translation, the solution ϕ depends only on
x · e0. That is ϕ(t, x) = ϕ(t, (x · e0)e0) = ϕ(t, x · e0). The function ϕ satisfies




min

{
∂tϕ+ (1 + r)H

(
∂ξϕ

1+re0

)
+ r, ϕ

}
= 0, ∀(t, ξ) ∈ R

∗
+ × R,

ϕ(0, ξ) = ϕ0(ξ).

where

ϕ0(ξ) :=

{
0 ξ = 0,
+∞ else

.

The Lagrangian associated to the latter Hamilton-Jacobi equation is by definition

L(p) = sup
q∈R

(
pq − (1 + r)H

(
q

1 + r
e0

)
− r

)
,

= sup
q∈R

(
pq − (1 + r)H

( |q|
1 + r

e0

)
− r

)
,

= sup
q∈R

(pq − |q|c(|q|, e0)) ,

18



To solve the variational Hamilton-Jacobi equation, let us define

J(x, t) = inf
x∈X

{
ˆ t

0
[L(ẋ)] ds

∣∣x(0) = x, x(t) = 0

}

the minimizer of the action associated to the Lagrangian. Thanks to the so-called Freidlin condition,
see [21, 24] we deduce that the solution of (1.12) is

ϕ(t, ξ) = max (J(ξ, t), 0) .

The Hopf-Lax formula gives J(ξ, t) = tL
(
t−1ξ

)
thanks to the assumption on the initial condition.

Hence,

ξ ∈ {ϕ(t, ·) = 0} ⇐⇒ L
(
t−1ξ

)
≤ 0 ⇐⇒ sup

q∈R
(qξ − |q|c(|q|, e0)t) ≤ 0,

⇐⇒ ∀q ∈ R, qξ − |q|c(|q|, e0)t ≤ 0,

⇐⇒ |ξ| ≤ c∗(e0)t.

We deduce the result for ϕ by changing the variables back.

For a compactly supported initial data, the issue of the speed of propagation in general is more
involved, since different directions may have different speeds of propagation. Namely, the following
Freidlin-Gärtner formula holds:

Proposition 2.8. Assume that

ϕ0(x) :=

{
0 x = 0
+∞ else

.

Define

w∗(e0) = min
e∈Sn−1

e0·e>0

(
c∗(e)

e0 · e

)
.

Then the nullset of ϕ propagates at speed w∗(e0) in the direction e0 :

∀t ≥ 0, {x ∈ R, ϕ(t, x e0) = 0} = {x ∈ R, |x| ≤ w∗(e0)t} .

Proof of Proposition 2.8. The Lagrangian is by definition

L(p) = sup
q∈Rn

(
p · q − (1 + r)H

(
q

1 + r

)
− r

)
,

= sup
e∈Sn−1

sup
λ∈R+

(
λp · e−

[
(1 + r)H

(
λe

1 + r

)
+ r

])
,

= sup
e∈Sn−1

sup
λ∈R+

(λ [p · e− c(λ, e)]) ,

To solve the variational Hamilton-Jacobi equation, let us define

J(x, t) = inf
x∈X

{
ˆ t

0
[L(ẋ)] ds

∣∣x(0) = x, x(t) = 0

}
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the minimizer of the action associated to the Lagrangian. Thanks to the so-called Freidlin condition,
see [21, 24] we deduce that the solution of (1.12) is

ϕ(x, t) = max (J(x, t), 0) .

The Lax formula gives

J(x, t) = min
y∈Rn

{
tL

(
x− y

t

)
+ ϕ0(y)

}
= tL

(x
t

)

thanks to the assumption on the initial condition. Hence,

ϕ(t, xe0) = 0 ⇐⇒ L
(x
t
e0

)
≤ 0 ⇐⇒ sup

e∈Sn−1

sup
λ∈R+

(λ [x(e0 · e)− ce(λ)t]) ≤ 0,

⇐⇒ ∀λ ∈ R
+,∀e ∈ S

n−1, λ [(x · e0)(e0 · e)− ce(λ)t] ≤ 0,

⇐⇒ ∀e ∈ S
n−1, x(e0 · e) ≤ c∗(e)t

⇐⇒ |x| ≤ min
e∈Sn−1

e0·e>0

(
c∗(e)

e0 · e

)
t = w∗(e0)t.

3 Existence of travelling waves and spreading result

In this Section, we now explain how to construct travelling wave solutions to (1.1). We will follow
closely the construction in [11]. As is classical in this type of Fisher-KPP problems, the speeds of
propagation are given by studying the linearized problem at infinity. As we will see later on, the
main difference that has motivated this paper is the possible singularity of c(λ, e) at λ∗(e).

3.1 Proof of Theorem 1.4 : Travelling wave solutions

Given a direction e ∈ S
n−1, looking for exponential solutions to the linearized problem of the form

e−λ(x·e−c(λ,e)t)Fλ,e(v) for any positive λ is exactly looking for solutions to

[1 + λ(c(λ, e) − v · e)]Fλ,e(v) = (1 + r)M(v)

ˆ

V

Fλ,e(v
′)dv′, v ∈ V.

In view of earlier computations, it boils down to setting c(λ, e) as in (2.27) and Fλ,e := Q̃ λe
1+r

as in

(2.20).
Recall that λe

1+r ∈ Sing(M) if and only if l(e) ≤ λ
1+r , that is λ ≥ λ̃(e) := (1 + r)l(e). Thus, for

λ ≤ λ̃(e), the function c(λ, e) is convex and regular, and the profile is explicitly given by

Fλ,e (v) =
(1 + r)M (v)

1 + λ(c(λ, e) − v · e) > 0.

For λ ≥ λ̃(e), that is to say λe
1+r ∈ Sing(M) one has c(λ, e) = v(e) − 1

λ
which is concave and

increasing. As such, the infimum of λ 7→ c(λ, e) is attained for a λ ≤ λ̃(e), which we denote λ∗(e).
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As a consequence, the minimal speed c∗(e) is always associated to an integrable eigenvector, since
if λ∗(e) = λ̃(e), one has

F
λ̃(e),e (v) =

(1 + r)M (v)

λ̃(e) (v̄(e)− v · e)
,

with
´

V
F
λ̃(e),e (v) dv = 1 thanks to the definition of λ̃(e).

Given a direction e ∈ S
n−1, we shall now discuss the type of functions λ 7→ c(λ, e) that may

arise from this problem. Qualitatively, four situations may happen. The first possibility is the one
already appearing in [11] in the mono-dimensional case, that is λ̃(e) = +∞ and thus Sing(M) = ∅.
We plot an exemple of this case in Figure 3.1, case 1. If λ̃(e) < +∞, three supplementary situations
can occur. Either the infimum of λ 7→ c(λ, e) is attained for λ < λ̃(e), as shown in Figure 3.1, case
2, either it is attained for λ = λ̃(e). In the latter case, the infimum can either be attained at a point
where the left derivative of c(λ, e) is zero (Figure 3.1, case 3), or where it is negative (Figure 3.1,
case 4).

Remark 3.1. One can get a criterion to check which case holds. The dispersion relation defining
c(λ, e) on (0, λ̃(e)) is

I(λ, c(λ, e), e) = 1,

where

I(λ, c, e) :=
ˆ

V

(1 + r)M (v)

1 + λ(c− v · e)dv. (3.28)

Differentiating with respect to λ, we find

ˆ

V

λc′(λ, e)M (v)

[1 + λ(c(λ, e) − v · e)]2
dv +

ˆ

V

(c(λ, e) − v · e)M (v)

[1 + λ(c(λ, e) − v · e)]2
dv = 0

Recalling
´

V
M(v)

1+λ(c(λ,e)−v·e)dv = (1 + r)−1 and defining

J (λ, e) =

ˆ

V

M (v)

[1 + λ(c(λ, e) − v · e)]2
dv,

we get

c′(λ, e) =

(
1− (1 + r)−1

J(λ, e)

)
1

λ2
.

As such, computing the value of lim
λ→λ̃(e)− J (λ, e) allows to know in which case one falls. Indeed,

the function λ 7→ c(λ) attains its minimum at λ̃(e) if and only if c′
(
λ̃−(e)

)
≤ 0, which is equivalent

to J (λ̃(e)) ≤ (1 + r)−1 which is in turn equivalent to

ˆ

V

M (v)

(v̄(e)− v · e)2
dv ≤ (1 + r)l(e)2, (3.29)

which can be checked case by case. Note that one has always, given the Cauchy-Schwarz inequality,
l(e)2 ≤

´

V
M(v)

(v̄(e)−v·e)2
dv.
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0.64

0.68

(d) Case 4

Figure 1: Various cases of speed functions λ 7→ c(λ, e). Red plain line: λ 7→ c(λ, e). Black
dotted line: λ 7→ v̄(e) − 1

λ
. (a) n = 1, V = [−1, 1], e = 1, M ≡ 1

2 and r = 1. In this case,
Sing(M) = ∅ so that the function λ 7→ c(λ, 1) is regular. This is the case discussed in [11].
(b) n = 2, V = D(0, 1), M ≡ 1

π
and r = 1. In this case, Sing(M) 6= ∅ but the minimum

of c(λ, e1) is attained for λ < λ̃(e1) = 4. (c) n = 1, V = [−1, 1], M(v) = 3
2 (1 − |v|)2 and

r = −1+ l(1)−2
´ 1
−1

M(v)
(1−v)2 dv ≈ 0.37. In this case, the minimum of c(λ, e1) is attained for λ = λ̃(e1),

with a zero left derivative. Numerically λ̃(1) ≈ 1.58. (d) n = 1, V = [−1, 1], M(v) = 3
2(1−|v|)2 and

r = 1. In this case, the minimum of c(λ, 1) is attained for λ = λ̃(1), with a negative left derivative.
Numerically, λ̃(1) ≈ 2.31.
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Example 3.2. Let us look back at Example 2.2. As was stated, l(1) = 3(2 ln(2) − 1) and
´

V
M(v)
(1−v)2

dv = 6(1 − ln(2)) < +∞. Thus, for r > −1 + l(1)−2
´ M(v)

(1−v)2
dv > 0, the condition (3.29)

is satisfied so the minimum of λ 7→ c(λ, e) is attained at λ̃(e). For r = −1 + l(1)−2
´

V
M(v)
(1−v)2

dv

the minimum has its left derivative equal to 0 (i.e. λ∗(1) = λ̃(1)). We illustrate those results in
section 3.1, case 3 and 4.

Since c(λ, e) tends to infinity when λ tends to 0, for any c ≥ c∗(e) one can find λ ∈ (0, λ̃(e)]
such that c(λ, e) = c.

Fix c ∈ (c∗(e), v(e)). Denote λc is the smallest solution in (0, λ̃(e)) of c(λc, e) = c. Notice that
by construction it is possible to obtain Fλc,e integrable and bounded (bounded since c > c∗(e)),
the proof of [11], Section 3.2, that constructs sub and super solutions for (1.1) is unchanged. From
the construction of a pair of sub- and super-solutions, we deduce the existence of travelling wave
solutions exactly as in [11], by a monotonicity method when c > c∗(e) and passing to the limit
c→ c∗(e) to get the case c = c∗(e).

The main difference between the mono-dimensional case of [11] and the higher dimensional
case comes here. It is rather non-standard and interesting that the function giving the speed of
propagation could be singular at its minimum value.

To prove that c∗ is still the minimal speed of propagation, the arguments used in [11, Lemma
3.10] are not applicable. These arguments can be summarized as follows : in the one dimensional
case when M ≥ δ > 0, the function λ 7→ I(λ, c, e) (recall (3.28)) is analytic. Thus, we can not find
λ > 0 such that I(λ, c, e) = 1 when c < c∗. However, an argument using the Rouché Theorem states
that we can solve this problem in C \R. Assuming that there exists a travelling wave solution f for
c < c∗, we then can use such a λ ∈ C to construct a subsolution under f which dos not converge
to 0 as x→ ∞. In our framework, the function λ 7→ I(λ, c, e) might not be analytic around λ∗(e),
which prevents us from using this technique. We thus choose to use the Hamilton-Jacobi framework
combined to the comparaison principle.

We now prove the following lemma.

Lemma 3.3. Let f be a travelling wave solution to (1.1) in the direction e ∈ S
n−1, with speed c.

Then c ≥ c∗(e).

Proof of Lemma 3.3. Let f be such a travelling wave solution with initial data f̃(x, v), i.e
f(t, x, v) = f̃(x · e − ct, v). After Proposition 2.6, we deduce that f ε(t, x, v) = f̃

(
1
ε
(x · e− ct) , v

)

satisfies limε→0 f
ε = M on x · e− ct < 0 and limε→0 f

ε = 0 on x · e − ct > 0. Take 0 < γ < 1 and
define g(x, v) = γM(v)1[−1,1]×Rn−1(x) and gε(x, v) = g(x/ε, v). We have

ψε(x) = −ε ln(g(x/ε, v)/M) =

{
−ε ln(γ) x ∈ [−ε, ε]e0 + e⊥0
+∞ else

.

Since limz→−∞ f̃(z, v) =M uniformly in v ∈ V , one can shift the profile sufficiently enough so that
M ≥ f ≥ g ≥ 0. Thus, the comparison principle (see [11], Proposition 2.2 for a proof) yields that
f ε ≥ gε. Passing to the limit ε→ 0, and recalling Theorem 1.3, Proposition 2.6 and Proposition 2.7,
we deduce that (

e⊥0 + c∗(e0)te0

)
· e0 − ct ≤ 0,

from which the result follows.
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From the Hamilton-Jacobi formalism, we may also deduce the following.

Proof of Proposition 1.5. We start by proving (1.16). For this, we use the the super-solution
naturally provided by the linearized problem. We have

f(t, x, v) ≤ min{M(v), e−λ
∗(e0)(x·e0−c∗(e0)t)Fλ∗(e0),e0(v)}

As a consequence,
ρ(t, x) ≤ min{1, e−λ∗(e0)(x·e0−c∗(e0)t)},

and thus one has limt→+∞ supx·e0>ct ρ(t, x) = 0.
For (1.17), we use the Hamilton-Jacobi results in the following way. We first notice that since

the initial data is invariant under any translation in e⊥0 , and the the equation (1.12) invariant by
translation, the solution f(t, x, v) depends only on x · e0. That is f(t, x, v) = f(t, (x · e0)e0, v) =
f̃(t, x · e0, v). For any c < c∗(e0), recalling Theorem 1.3, Proposition 2.6 and Proposition 2.7, we
have

lim
t→∞

f(t, e⊥0 + cte0, v) = lim
t→∞

f̃(t, ct, v) = lim
ε→0

f̃ ε(1, c, v) =M(v),

since c < c∗(e0).

3.2 Proof of Proposition 1.6 : spreading of a compactly supported initial data

We finally prove Proposition 1.6. The spreading result (1.18) goes as for the Fisher-KPP equation
in an heterogeneous media [6]. It can be found by using the super solution

f(t, x, v) = inf
e∈Sn−1

e−λ
∗(e)(x·e−c∗(e)t)Qλ∗(e)e(v)

By the comparison principle, and since the initial data is compactly supported, the function f lies
above f (multiplying f by a big constant if necessary). We deduce that for any given e0 ∈ S

n−1,
and any fixed x ∈ R

n,

f(t, x+ce0t, v) ≤ inf
e∈Sn−1

e−λ
∗(e)((x+ce0t)·e−c∗(e)t)Qλ∗(e)e(v) = inf

e∈Sn−1
e−λ

∗(e)(x·e+ce0·et−c∗(e)t)Qλ∗(e)e(v).

Moreover, the domain of Qλ∗(e)e contains V \{vmaxe} and Qλ∗(e)e is bounded on all compact sets
of V \ {vmaxe}. Hence, for fixed v ∈ V , we can choose e ∈ S

n−1 such that v ∈ V \ {vmaxe}. Then,
as soon as c > w∗(e0), we have c(e · e0) > c∗(e) for any e, and thus limt→∞ f(t, x+ ce0t, v) = 0.

Moreover, we shall prove (1.19) as follows. For any c < c∗(e0), recalling Theorem 1.3, Proposi-
tion 2.6 and Proposition 2.8, we have

lim
t→∞

f(t, cte0, v) = lim
t→∞

f̃(t, ct, v) = lim
ε→0

f̃ ε(1, ce0, v) =M(v),

since c < w∗(e0).

�
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