
Supplemental Material

Optics formula and additional results

1 Fresnel equations

We reproduce the Fresnel equations derived from Maxwell equations as given by Born and Wolf (Section
14.4.1). They correspond to the configuration of a dielectric layer of real index ηa over a conducting
layer of complex index ηb + iκb. In our model, we use them both for the thin-film/base interface (i.e.,
with a = 2 and b = 3) and the air/thin-film interface (i.e., with a = 1, b = 2 and κb = κ2 = 0). Born and
Wolf use a slightly different notation for the complex index: ηb(1 + ikb) (hence κb = ηbkb). We adapt
their equations to conform to our notations. The complex reflection coefficient depends on the angle of
incidence θa and is written rab = rabe

iφab , with:

|r⊥ab|
2 =

(ηa cos θa − ub)
2 + v2b

(ηa cos θa + ub)2 + v2b

tan(φ⊥
ab) =

2vbηa cos θa
u2
b + v2b − η2a cos

2 θa

for polarization perpendicular to the incidence plane; and

|r
‖
ab|

2 =
[(η2b − κ2

b) cos θa − ηaub]
2 + [2ηbκb cos θa − ηavb]

2

[(η2b − κ2
b) cos θa + ηaub]2 + [2ηbκb cos θa + ηavb]2

tan(φ
‖
ab) = 2ηa cos θa

2ηbκbub − (η2b − κ2
b)vb

(η2b + κ2
b)

2 cos2 θa − η2a(u
2
b + v2b )

for polarization parallel to the incidence plane, where

ub =
√
U+V
2

vb =
√
V−U
2

with

{

U = η2b − κ2
b − η2a sin

2 θa,

V =
√

U2 − 4κ2
b .

The amplitude coefficients r⊥ab and r
‖
ab are visualized in red and green colors respectively in Figure 1(a).

Each curve corresponds to a different value of κb, which is related to the conductivity of the base material.
The darker the color, the lower the value of κb, with the darkest curves corresponding to κb = 0 (i.e.,

a dielectric base layer). The phase shifts φ⊥
ab and φ

‖
ab are visualized with the same color convention in

Figure 1(b). For a dielectric base (darkest curves), φ⊥
ab equals 0 for all elevation angles, whereas φ

‖
ab

suddenly jumps from 0 to π at the so-called Brewster’s angle. This does not actually correspond to a

discontinuity in complex reflectances, since at this same angle, r
‖
ab = 0 as seen in Figure 1(a). This is

better visualized in Figure 1(c), which shows the complex reflectance coefficient rab in the complex plane.
When κb → 0 (darker colors), rab tends toward the real axis. In the limit where κb = 0, r⊥ab (in red)

remains on the positive side of the real axis, but r
‖
ab (in green) changes sign, which is accounted by the

phase shift of π. The blue curve corresponds to the complex reflection coefficient at normal incidence
(i.e., θa = 0), where we have:

|r⊥ab|
2 = |r

‖
ab|

2 =
(ηa − ηb)

2 + κ2
b

(ηa + ηb)2 + κ2
b

,

tan(φ⊥
ab) = tan(φ

‖
ab) =

2ηaκb

η2b + κ2
b − η2a

.
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This is also visible in Figure 1(a,b) where curves for a same κb but different polarizations start with
the same value at θa = 0. Ovserve that at θa = π/2 and irrespective of the value of κb, the amplitude
coefficients for both polarizations end up being equal to 1, whereas the phases differ by an angle of π

between polarizations; hence r
⊥
ab = 1 and r

‖
ab = −1, as seen in Figure 1(c).
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Figure 1: Visualization of Fresnel coefficients for perpendicular and parallel polarizations (in red
and green respectively) as a function of the incident angle θa. We use a dielectric layer of con-
stant index ηa = 1.4 over a conducting layer of constant index ηb = 1.8, with a varying κb ∈
{0.0, 0.138, 0.293, 0.469, 0.667, 0.897, 1.156, 1.450, 1.785, 2.165, 2.597, 3.088, 3.645, 4.279, 5.0} shown with
curves of different intensities (the darker the curve, the lower κb). In (a) we show the amplitude of
the Fresnel coefficients, which appears seemingly discontinuous for the parallel component when κb = 0,
at Brewster’s angle. As shown in (b), the corresponding phase is also discontinous, suddenly switching
from 0 to π. There is no actual discontinuity as shown in (c): when κb = 0, the curve lies on the real
axis and crosses 0 at Brewster’s angle for the parallel component. The complex reflection coefficients at
incidence are shown by the blue curve in (c).

Our method rely on computing separately the response to parallel and perpendicular polarizations.
We motivate this with Figure 2 where a real-life example is shown. The two orthogonal polarizations
have a different color pattern. Since the Fresnel coefficients are used nonlinearly in Airy’s summation,
we cannot use the average Fresnel coefficient and phase to compute the average color pattern.

Unpolarized Close-up polarized Close-up orthogonal polarization

Figure 2: Polarization impacts iridescent colors. In this real example, we photographed a thin-film
material with a polarization filter. Comparing one polarization to its orthogonal polarization, we ob-
serve changes in the color patterns. This example illustrates the need to compute both parallel and
perpendicular polarizations separately to obtain the correct average color fringe pattern.
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2 Optical path difference

The optical path difference (OPD) on reflection is classically computed by comparing a ray reflected at
the first interface, with a ray reflected once at the second interface. This is shown in Figure 3(a). The
OPD between the first and second rays (i.e., at order k = 1) is then given by D = η2(AB+BC)−η1AD,
where the refractive indices account for the difference of wavelength in different media. Since AB =
BC = d/ cos(θ2), and η1AD = 2d tan(θ2)η1 sin(θ1) = 2d tan(θ2)η2 sin(θ2) according to Snell’s law, we
obtain D = 2η2d cos θ2 after a few simplifications. At order k, the primary ray is compared to a ray
reflected k times at the second interface, hence exiting at a distance kAD from the incident location.
Hence the optical difference becomes D(k) = η2k(AB +BC)− η1kAD, yielding D(k) = kD.

The optical path difference (OPD) on transmission is computed by comparing a ray transmitted
through both interfaces, with a ray undergoing two additional reflections, one at each interface. This
is shown in Figure 3(b). The OPD is now given by D = η2(AB + BC) − η3AD. Interestingly, since
η3AD = 2d tan(θ2)η3 sin(θ3) = 2d tan(θ2)η2 sin(θ2) according to Snell’s law as before, the OPD on
transmission is actually identical to the OPD on reflection.

(a) OPD on reflection (b) OPD on transmission

Figure 3: The OPD on reflection (a) and transmission (b) are derived by comparing directly re-
flected/transmitted rays to rays that undergo additional reflections in the thin-film layer.
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3 Varying-index datasets

Here, we show three examples of dielectric thin-films applied over a dieletric or conducting base, with
both layers having refractive indices that vary with wavelength. In two examples (Glass and Silver bases
covered by a film of Butanol, first and second column respectively), the pre-integrated reflectance model
closely matches the chromatic curve of the ground truth. Observe that in both cases, the real part of
IOR is constant while the complex part is monotonous (as shown in the first line). In the third column,
where we use copper for the base material, the pre-integrated reflectance shows more difference with
the reference. This is probably due to the variation in IOR of the base material with respect to each
sentivity curve. These differences would likely be reduced if more spectral bands where available.

Butanol over Glass Butanol over Silver Butanol over Copper
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4 Comparison with Ergun et al.

We have reproduced below the results of Ergun et al. (their Figure 7) by adjusting the parameters
of our model by hand. Each vertical pair of images shows Ergun et al.’s approach on top and ours
below. Our method permits to produce very similar color fringes with a much simpler model. The
remaining differences mostly concern in color saturation. This which might be due to multi-layered
thin-film intereference effects, which we do not model. The parameters used for our model are detailed
in the table below (we set α = 0.07 throughout):

Dinc = 91 nm
η2 = 3.0
η3 = 1.43
κ3 = 0.0

Dinc = 570 nm
η2 = 1.8
η3 = 1.08
κ3 = 0.51

Dinc = 620 nm
η2 = 3.0
η3 = 1.49
κ3 = 0.95

Dinc = 620 nm
η2 = 2.83
η3 = 1.19
κ3 = 0.72

Dinc = 665 nm
η2 = 1.97
η3 = 1.12
κ3 = 0.0

Dinc = 1020 nm
η2 = 1.79
η3 = 1.79
κ3 = 0.0

Dinc = 1110 nm
η2 = 1.77
η3 = 1.77
κ3 = 0.09

Dinc = 1140 nm
η2 = 1.97
η3 = 1.97
κ3 = 0.1

5



5 Appearance Range

Here we display some achievable appearances for a thin-film with a constant index of refraction η2 = 1.33,
a thickness in the range [300..800]nm and a base with an index of refraction in {1, 1.28, 1.38, 1.85, 2.71}.

η3 = 1.0 η3 = 1.28 η3 = 1.38 η3 = 1.85 η3 = 2.71
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η3 = 1.0 η3 = 1.28 η3 = 1.38 η3 = 1.85 η3 = 2.71

d
=

6
0
0n

m
d
=

6
5
0n

m
d
=

7
0
0n

m
d
=

75
0n

m

We can see that, for a constant thickness d, we obtain very different appearances for η2 > η3 and
η2 < η3 but not for different values of η3 when η2 < η3. For η3 close to η2 we see a darkening of colors
as the reflectance R23 goes to one. However note that the reflectance still contains a subtle chromatic
effect that can be used to get effects such as leather coating.

We also give results for a conducting base with κ3 ∈ {0.0, 0.5, 1.0, 1.5, 2.0}.

κ3 = 0.0 κ3 = 0.5 κ3 = 1.0 κ3 = 1.5 κ3 = 2.0
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6 Steel tempering

We reproduce the appearance of tempered steel (an iron alloy) for different tempering temperatures. In
the following image (found on Wikipedia), different plates of the same steel have been tempered for an
hour at different temperatures (350◦F to 730◦F). The metallic parts have been roughned for the photo-
graph.

Source: https://en.wikipedia.org/wiki/Tempering_(metallurgy)

We reproduce the picture setup using a large rectangular light, and different steel rectangles using
the index of refraction of iron (roughly η = 2.7, κ = 2.8) and η = 2.9 for the index of refraction of
the oxide for all the bars1. As the thickness of the oxide increases with temperature, we monotonically
increase the thickness parameter from d = 10nm (second from the left) to d = 70nm (right most).

Rough
conductor
∼ Quenched

d = 10nm
∼ 350

◦F

d = 20nm
∼ 400

◦F

d = 25nm
∼ 440

◦F

d = 30nm
∼ 500

◦F

d = 37nm
∼ 540

◦F

d = 50nm
∼ 590

◦F

d = 70nm
∼ 650

◦F

1We have found those IORs on http://refractiveindex.info/?shelf=main&book=Fe&page=Werner and http://www.

filmetrics.com/refractive-index-database/Fe2O3/Iron-Oxide
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