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A Practical Extension to Microfacet Theory for the Modeling of Varying Iridescence

Fig. 1. Material appearance such as that of leather is usually reproduced with microfacet models in computer graphics. A more realistic result is achieved by adding a thin-film coating that produces iridescent colors [START_REF] Akin | Pushing the limits of realism of materials[END_REF]]. We replace the classic Fresnel reflectance term with a new Airy reflectance term that accounts for iridescence due to thin-film interference. Our main contribution consists in an analytical integration of the high-frequency spectral oscillations exhibited by Airy reflectance, which is essential for practical rendering in RGB. For the leather material on the model, we used a thin film of index η 2 = 1.3 and thickness d = 290nm, over a rough dielectric base material (α = 0.2, η 3 = 1). When the scene is rotated, goniochromatic e ects such as subtle purple colors may be observed at grazing angles.

In this work, we introduce an extension to microfacet theory for the rendering of iridescent e ects caused by thin-lms of varying thickness (such as oil, grease, alcohols, etc) on top of an arbitrarily rough base layer. Our material model is the rst to produce a consistent appearance between tristimulus (e.g., RGB) and spectral rendering engines by analytically pre-integrating its spectral response. The proposed extension works with any microfacet-based model: not only on re ection over dielectrics or conductors, but also on transmission through dielectrics. We adapt its evaluation to work in multiscale rendering contexts, and we expose parameters enabling artistic control over iridescent appearance. The overhead compared to using the classic Fresnel re ectance or transmittance terms remains reasonable enough for practical uses in production.
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INTRODUCTION

A surface is called iridescent when its color changes when viewed or lit from di erent directions. Such goniochromatic e ects are due to interference between light waves that are scattered in a wavelengthdependent way, hence yielding rich color variations. Iridescent appearance is common in nature, as with birds, insects, snakes, and even some fruits; but it also occurs in man-made products such as with oil leaks, window defects, soap bubbles or car paints. Some iridescence e ects are more subtle and may even go unnoticed to the untrained eye: these include traces of grease or alcohol (e.g., nger traces on kitchen appliance) or nishes to protect base materials (e.g., leathers, metals). Yet such subtle details are essential to reproduce the look and feel of real-world materials in computer graphics imagery [START_REF] Akin | Pushing the limits of realism of materials[END_REF]].

Two causes of goniochromism are to be distinguished: di raction produced by light re ection on microscopic structures at a scale similar to the visible wavelengths; interferences produced by light interaction with lms of thickness close to the visible wavelengths.

In this paper we focus on iridescence due to thin-lms of varying thickness. In practice, thickness may be varied directly by artists during editing sessions, or across a surface to reproduce the appearance of traces or irregular nishes for instance. Formally, we model iridescence using a dielectric thin-lm laid on top of a base material (dielectric or conductor) of arbitrary roughness (Section 3). The main issue with such a con guration is that re ected radiance produces oscillations in the spectral domain, which require a dense sampling of wavelengths to avoid spectral aliasing. This is illustrated in Figure 2: the color fringes due to a dielectric thin-lm on top of a metallic base layer are well-reproduced only if the number of spectral samples is large enough. However, such a numerical integration is impractical: for instance, when the lm thickness varies spatially, integration should be performed at each and every point of the surface. Precomputing re ectance colors for all possible variations of material parameters would not be a viable solution either: as explained later on, this would require high-dimensional lookup tables with very high resolutions.

Our main contribution is an analytical spectral integration formula for re ectance due to thin-lm iridescence (Section 4). It works as an extension of micro-facet theory, hence providing a modular solution to the use of thin-lms on arbitrarily rough base materials. The resulting iridescent material model has many practical advantages (Section 5): it is fast to evaluate in RGB space while providing re ectance very close to brute-force spectral rendering; it gives interactive feedback for the exploration of physical parameters; and it is easily adapted to multi-scale rendering.

Our approach relies on Airy summation, which correctly models the re ectance due to a thin-lm, including multiple scattering, polarization and phase changes for both conductor and dielectric base materials. Even though this equation has been known for decades in the physics literature, its adaptation to the constraints and demands of computer graphics requires a di erent approach. We show that our graphics-oriented model approximates the physical ground truth with unprecedented accuracy across di erent types of rendering engines (Section 6), which makes it particularly adapted to the faithful previsualization of high-quality renderings.

RELATED WORK

Re ectance models in computer graphics are often based on the micro-facet theory [START_REF] Cook | A Re ectance Model for Computer Graphics[END_REF] where color is solely due to the wavelength-dependent Fresnel re ectance term, which itself depends on the (potentially complex) refractive index of the material. However, color may also emerge from the micro-structuration of matter. Such structural colors require to study light as a wave propagation phenomenon.

Wave Optics. Modeling the propagation of light waves is a dicult endeavor in the general case; however, many speci c models for particular structurations of matter are readily found in the optics literature, such as gratings, or thin-lms for instance [START_REF] Hecht | [END_REF]]. In particular, iridescence e ects due to multiple scattering inside a thin lm have been characterized in closed form using Airy summation [START_REF] Yeh | Optical Waves in Layered Media[END_REF]]. The formula is presented in detail in Section 3, where it is shown that it is highly sensitive to phase shifts between scattered light waves. Phase is also modi ed on re ection depending on polarization, with formula di ering between dielectrics and conductors as detailed by Born and Wolf [1999] (we reproduce and illustrate their formula in Supplemental Material for completeness). Such polarization-dependent phase shifts may be ignored when interference e ects can be safely neglected, as in geometric optics; however, in the case of iridescence (due to either di raction or thinlms), they often have profound e ects on re ectance colors, and hence cannot be avoided.

Di raction Models. Early di raction models in computer graphics [START_REF] He | A Comprehensive Physical Model for Light Re ection[END_REF][START_REF] Stam | Di raction Shaders[END_REF]] have relied on the Beckmann-Kirchho theory of scattering from statistically-de ned rough surfaces [START_REF] Beckmann | The scattering of electromagnetic waves from rough surfaces[END_REF], which assumes height variations of the micro-surface to be small enough such that interferences do not average out as in geometric optics models. Further work has considered more complex micro-structures such as the ones arising in biological patterns [START_REF] Dhillon | Interactive Di raction from Biological Nanostructures[END_REF], or mutual dependencies of (wave-based) re ectance between neighboring surface patches [START_REF] Cuypers | Re ectance Model for Di raction[END_REF]. In this paper, we altogether avoid di raction by assuming that micro-surface variations are much larger than visible wavelengths, as in geometric optics models.

Thin-lm Models. Goniochromatic e ects in thin-lms are due to phase shifts between di erent paths in a layered structure. One of the earliest treatments of thin-lm interference in computer graphics is due to [START_REF] Smits | Newton's Colors: Simulating Interference Phenomena in Realistic Image Synthesis[END_REF]. Their model is the closest to our goal as it permits to reproduce iridescent e ects due to thin lms of varying thickness. However, their method is limited in several ways: it is de ned only for a perfectly smooth surface, it does not account for polarization, it does not consider inter-re ections inside the thin-lm, nor does it work with conductors as a base material. Subsequent work has not addressed these limitations, but rather consider di erent types of layered structures. For instance, Icart and Arquès [1999] combined di raction and thin-lms, expanding on the Beckmann-Kirchho theory. [START_REF] Granier | A simple layered RGB BRDF model[END_REF] propose to model a thin-lm with its interface not parallel to the base surface. [START_REF] Sun | Rendering Biological Iridescences with RGB-based Renderers[END_REF] models the stacking of multiple thin-lms to simulate natural patterns found in animals and insects, such as on the Morpho butter y wings. In this paper, we pursue the work of Smits and Meyer, and focus on a single thin-lm that may vary in thickness over an arbitrary micro-surface.

Layered Materials. Our goal may seem related to layered material models such as those of [START_REF] Ershov | Rendering Pearlescent Appearance Based On Paint-Composition Modelling[END_REF], Weidlich andWilkie [2007], Jakob et al. [2014], or [START_REF] Ergun | A General Micro-ake Model for Predicting the Appearance of Car Paint[END_REF]. However, in all these models, the separation between layers is assumed to be large enough such that a geometric optics approximation may be taken, hence forbidding interference due to layers. Nevertheless, car paint models [START_REF] Ergun | A General Micro-ake Model for Predicting the Appearance of Car Paint[END_REF][START_REF] Ershov | Rendering Pearlescent Appearance Based On Paint-Composition Modelling[END_REF]] do incorporate goniochromatic e ects by embedding iridescent akes inside layers. Iridescent e ects may then be safely precomputed since all akes are assumed to have the same re ectance independently of their location on the surface. This workaround is not possible when modeling variations in iridescence as we do.

Spectral Aliasing. Any spectral re ectance model will at some point require spectral integration over tristimulus sensitivity functions to yield an RGB color, which is a resource-demanding process. An alternative is to pick three representative wavelengths, one for each of the R, G, and B channels. This approach has been taken by 
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Fig. 2. The addition of a thin film layer requires a dense spectral sampling to render colors properly. We show this in the top row: (a) with only one sample per spectral band (as done in RGB rendering), colors appear unnaturally over-saturated; (b) 8 spectral samples produce di erent color pa erns; (c) a reference using 128 samples per spectral band shows the correct colors. These color artefacts are due to spectral aliasing, as shown in the bo om row where spectral sampling is visualized for one surface point. The colored curves correspond to reflected radiance multiplied by either the CIE X, Y, or Z sensitivity curve, in red, green and blue respectively. They show oscillations that obviously cannot be captured with a single sample (a), or even 8 samples (b), hence yielding aliasing issues in these two cases. The use of 128 samples correctly captures these oscillations but is impractical when thin-film thickness, and hence reflectance, varies. [START_REF] Granier | A simple layered RGB BRDF model[END_REF], or for the real-time rendering of gem stones by [START_REF] Guy | Graphics Gems Revisited: Fast and Physicallybased Rendering of Gemstones[END_REF]. However in the case of thin-lm iridescence, this leads to severe aliasing issues in the spectral domain as shown in Figure 2. The correct number of spectral samples is not xed either: it will depend on the thin-lm properties since the number of oscillations increases with lm thickness, requiring an ever-increasing number of samples. An appealing solution has been suggested by [START_REF] Smits | Newton's Colors: Simulating Interference Phenomena in Realistic Image Synthesis[END_REF]: pre-integrate spectral re ectance in a two-dimensional RGB texture indexed by lm parameters and incidence angle. However, with the extensions we introduce in this paper, this solution is not viable anymore: it would require a nine-dimensional texture in the general case of an RGB conductor base material and should be stored in a high resolution lookup table due to the high-frequency color fringes produced by thin-lm interference (see Figure 9). In contrast, we perform preintegration of spectral re ectance using an analytic method that requires no material-dependent lookup table. Using pre-integrated re ectance may still produce over-saturated colors compared to the ground truth in the presence of inter-re ections. However, we consider this to be a general limitation of tri-stimulus rendering engines, for which a common solution is to reproject RGB colors inside the reproducible gamut [START_REF] Meng | Physically Meaningful Rendering using Tristimulus Colours[END_REF]].

SPECTRAL BRDF MODEL

We begin by presenting the assumptions we make on the microstructuration of an iridescent material, and formally describe the model as an extension of microfacet theory. We then highlight the importance of phase shifts and state the main problem addressed in this paper: the spectral integration of re ectance due to thin-lms. Even though we focus on re ectance throughout the exposition, our model also applies to transmittance as detailed in the Appendix and as demonstrated in Section 6 and in the supplemental video.

Assumptions. The structure of our model is illustrated in Figure 3. The base material consists of a micro-facet surface with a complex index of refraction η 3 + iκ 3 . A single dielectric thin-lm layer of thickness d (in nanometers) and real index η 2 is applied on top of the base layer. We assume d to be constant on a single micro-facet, which amounts to consider that spatial variations of d are of low frequency, a reasonable assumption in practice. The exterior medium has an index η 1 = 1 for air unless speci ed otherwise. In the following, we will describe the Bidirectional Re ectance Distribution Function (BRDF) of such a con guration.

Model. In micro-facet theory, a BRDF is de ned as: where ω ω ω o , ω ω ω i , and n are the outgoing, incoming and surface normal vectors, λ is the wavelength, D is an arbitrary micro-facet distribution evaluated at the halfway vector h = ω ω ω o +ω ω ω i ω ω ω o +ω ω ω i , G is the associated geometric (masking/shadowing) term, and F is the Fresnel re ectance term evaluated at h • ω ω ω i = cos θ 1 , with θ 1 the di erence angle (see Figure 3). The Fresnel re ectance is the only term that depends on wavelength; in the general case, it also depends on polarization. However, assuming natural (i.e., randomly polarized) illumination, F = 1 2 (F ⊥ + F ), with F ⊥ (resp. F ) the Fresnel reectance for light waves polarized perpendicularly (resp. parallely) to the plane of incidence containing ω ω ω i and n.

ρ (ω ω ω o ,ω ω ω i ; λ) = D (h)G (ω ω ω o ,ω ω ω i )F (h • ω ω ω i ; λ) 4(ω ω ω o • n)(ω ω ω i • n) , (1) 
Our extension consists in replacing the classic Fresnel re ectance term, F , by a more complex term, R accounting for all inter-re ections inside the thin-lm layer, including constructive and destructive interference e ects. This requires to consider the wave nature of light since interference e ects are due to phase di erences between light waves.

Airy Re ectance. For a given wavelength and polarization, reectance is de ned as the ratio R = A o A i with A o,i the powers of outgoing and incoming light waves, which are related to the wave amplitudes a o,i by A o,i ∝ |a o,i | 2 . We will follow the convention of using lowercase symbols for amplitudes, and uppercase symbols for powers. We thus write

R = |a o | 2 |a i | 2 = |r| 2
where r is a complex re ection coe cient. The thin-lm re ection coe cient r for an arbitrary polarization is obtained by adding the contributions of all re ected rays (see Section 4.2 in [START_REF] Yeh | Optical Waves in Layered Media[END_REF]), as illustrated in Figure 4: r = r 12 + t 12 r 23 t 21 e i ∆ϕ + t 12 r 23 r 21 r 23 t 21 e 2i ∆ϕ + . . .

= r 12 + +∞ k =1 t 12 r 23 [r 21 r 23 ] k -1 t 21 e ik ∆ϕ
(2)

= r 12 + t 12 r 23 t 21 e i ∆ϕ 1 -r 21 r 23 e i ∆ϕ , (3) 
where r ab = r ab e iϕ ab (resp. t ab ) is a complex re ection (resp. real transmission) coe cient when going from medium a to medium b, ∆ϕ is the phase shift due to the optical path di erence (OPD) between the primary and secondary light paths, and k is the number of inter-re ections, or order. Equation 3 is due to Sir George Biddell Airy and known as Airy summation in optics. Assuming a randomly polarized illumination as before, we write

R = 1 2 (|r ⊥ | 2 + |r | 2
). We will denote this re ectance by the term "Airy re ectance" to distinguish it from the Fresnel re ectance term commonly used in microfacet models. It takes into account the phase shifts coming not only from OPD, but also due to re ection.

Phase Shifts. Fresnel equations show that there is no phase shift on transmission, which is why we only consider real transmission coe cients. However, phase shifts do occur on re ection (and depend on polarization), which is why we consider complex re ection coefcients. The phase shift ∆ϕ = 2πν D linearly depends on ν = 1/λ, as well as on the rst-order optical path di erence

D = 2η 2 d cos θ 2 , with cos θ 2 = 1 - η 2 1 η 2 2
(1 -cos 2 θ 1 ) according to Snell's law. The 2is obtained by summing the reflectance coe icients of light paths of all orders (here we show orders k = {0, 1, 2}), taking into account their interference due to phase shi s. For instance, at order k = 1, this corresponds to the phase shi between the path going from A to D, and the path going from A to B to C.

OPD at an arbitrary order k is simply D (k ) = kD. For the sake of completeness, formula for transmission and re ection coe cients are reproduced in detail and illustrated in our supplemental material, along with a derivation of the OPD at order k. The phase shifts due to both re ection and OPD play an important role in iridescent appearance, since they impact the corresponding Airy re ectance R.

Spectral Integration. Rendering engines use a small discrete set of spectral bands, most commonly three for RGB rendering, even though some o ine renderers may use around a dozen or even randomly selected spectral bands for better color delity. Each spectral band j has a corresponding sensitivity function s j ; for instance, we have three such functions s R , s G , and s B for RGB rendering engines. We may now write the re ected radiance equation [START_REF] Kajiya | The Rendering Equation[END_REF]] with an explicit mention of spectral bands using j subscripts:

L ↑ j (ω ω ω o ) = s j (λ) s j Ω ρ (ω ω ω o ,ω ω ω i ; λ)L ↓ (ω ω ω i ; λ)(ω ω ω i • n)dω ω ω i dλ,
with L ↑ j the re ected radiance integrated over the jth spectral band, L ↓ the spectrally-dependent incoming radiance and Ω the upper hemisphere of directions. The sensitivity function s j is normalized to express L ↑ j in units of radiance (i.e., W sr -1 m -2 ). Each spectral band is treated independently of others and integration is performed over the support of each sensitivity function.

In most rendering engines, light sources are pre-integrated with respect to spectral bands. The BRDF is similarly pre-integrated:

ρ j (ω ω ω o ,ω ω ω i ) = ρ (ω ω ω o ,ω ω ω i ; λ) s j (λ) s j dλ,
where we use the normalized sensitivity function as before to express ρ j in BRDF units (i.e., sr -1 ). At the same time, it ensures energy conservation, provided ρ is itself energy-conserving. The re ected radiance equation for the jth spectral band then becomes:

L ↑ j (ω ω ω o ) ≈ Ω ρ j (ω ω ω o ,ω ω ω i )L ↓ j (ω ω ω i )(ω ω ω i • n) dω ω ω i ,
which assumes material and lighting are not spectrally correlated. The dependency of micro-facet BRDF models on wavelength only occurs in the re ectance term R; hence the BRDF pre-integration may be directly carried out to the this term:

R j (h • ω ω ω i ) = R(h • ω ω ω i ; λ) s j (λ) s j dλ. (4) 
This spectral integral is illustrated in Figure 5(a) where we use the sensitivity functions of the CIE XYZ space.

The main issue with iridescent materials is that with variations of either the thin-lm or base layer properties, R j will have to be recomputed from scratch. This prevents its use in interactive editing scenarios where the artist freely modi es material parameters. It also forbids spatial variations as they would require a costly spectral integration at each and every surface point. The central problem is thus to provide a fast and accurate evaluation of Equation 4.

ANALYTIC SPECTRAL INTEGRATION

Our solution is to perform integration in the Fourier domain: we rst derive an explicit formula for the spectral Airy re ectance; we then use a fast analytical spectral integration in Fourier space. The di erent steps of our method are illustrated in Figure 5. We validate our approach against a ground truth obtained by numerical spectral integration at the end of this section.

Spectral Airy re ectance. We will rely on Equation 2, which denes the complex re ection coe cient of a thin-lm as an in nite sum. It is easily reformulated as a sum of complex numbers of the form r = +∞ k =0 c k e iϕ k , where for k ≥ 1:

c k = t 12 r 23 [r 21 r 23 ] k -1 t 21 , ϕ k = k (∆ϕ + ϕ 23 + ϕ 21 ) -ϕ 21 ,
and we write c 0 = -r 21 and ϕ 0 = ϕ 21 for later convenience. Recall that r ab and ϕ ab denote the modulus and phase of r ab .

Expressing the spectral Airy re ectance using the c k and ϕ k yields:

|r| 2 = +∞ k =0 c k cos ϕ k 2 + +∞ k =0 c k sin ϕ k 2 = +∞ k =0 c 2 k + 2 +∞ k=0 l <k c k c l cos(ϕ k -ϕ l ),
where we have used a multinomial expansion for each term of the rst line, then grouped terms using the trigonometric identity cos ϕ k cos ϕ l + sin ϕ k sin ϕ l = cos(ϕ kϕ l ).

If we now write ϕ kϕ l = mΦ with m = k -l and Φ = ∆ϕ + ϕ 23 + ϕ 21 , then the spectral Airy re ectance becomes:

|r| 2 = +∞ k =0 c 2 k + 2 +∞ m=1 +∞ k =0 c k c k +m cos(mΦ), More succinctly, using C 0 = +∞ k =0 c 2 k and C m = +∞ k =0 c k c k +m : R = C 0 + 2 +∞ m=1 C m cos(mΦ). (5) 
The C m terms are illustrated in Figure 6 for m ∈ {0, 1}, where m represents the o set in orders between pairs of light paths. They are derived in closed form in the Appendix, yielding:

C 0 = R 12 + R ⋆ ; C m = R 23 R 21 m R ⋆ -T 12 T 21 , (6) 
with R ab and T ab denoting Fresnel re ectances and transmittances between media a and b, and where R ⋆ = T 12 T 21 R 23 1-R 23 R 21 encapsulates all inter-re ections inside the thin-lm layer.

We also rewrite Equation 5 in closed-form in the Appendix:

R = R 12 + R ⋆ + 2 R cos Φ -R 2 1 -2R cos Φ + R 2 R ⋆ -T 12 T 21 ,
where we have used R = √ R 23 R 21 . However, its interpretation in Fourier is not straightforward; hence we will only use it for computing ground-truth re ectances in the following. Spectral Integration in Fourier. In order to simplify the spectral integration of Equation 4, we are now going to assume that all Fresnel amplitude and phase coe cients are constant per spectral band (we will evaluate the pertinence of this approximation later). A direct consequence is that the spectral dependence in R now only occurs in the phase shift ∆ϕ = 2πν D, which is linear in ν = 1/λ, with D the optical path di erence. We must now re-express Equation 4 in terms of ν using a change of variables, yielding:

R j = R(ν ) s j 1 ν s j ν 2 dν . (7) 
Writing S j (ν ) = s j 1 ν s j ν 2 and using Parseval's theorem yields: The (unitary, ordinary frequency) Fourier transform of R follows from Equation 5 by using Euler's formula to separate the spectrallyindependent phase shift ϕ 2 = ϕ 21 + ϕ 23 from ∆ϕ, yielding:

R j = R(µ) Ŝj (µ) ⋆ dµ, (8) 
R(µ) = C 0 δ (µ ) + +∞ m=1 C m e imϕ 2 δ (µ-m D) + e -imϕ 2 δ (µ+m D) , (9)
where δ is the dirac function. As shown in Figure 5(d), | R| is a distribution of diracs each separated by D, with the amplitudes of the DC term and the mth harmonic given by C 0 and C m respectively. Therefore Equation 8 may now be evaluated analytically.

Since S j is a real function, the real part of Ŝj is symmetric, and its imaginary part is anti-symmetric; hence Ŝj (-µ) = Ŝj (µ) ⋆ . Plugging this formula and Equation 9 inside Equation 8 yields:

R j = C 0 + +∞ m=1 C m e imϕ 2 Ŝj (-mD) + e -imϕ 2 Ŝj (mD) ,
where we use the fact that Ŝj (0) = 1 by construction.

If we explicitly write Ŝj (±µ) = ℜ j (µ) ± iℑ j (µ) with ℜ j and ℑ j the real and imaginary parts of Ŝj respectively, then after a few straightforward simpli cations, we obtain:

R j = C 0 + 2 +∞ m=1 C m cos(mϕ 2 ) sin(mϕ 2 ) T ℜ j (mD) ℑ j (mD) . ( 10 
)
It should be noted that since C 0 and C m are de ned in terms of Fresnel re ectances and transmittances (see Equation 6), they depend on indices of refraction that we assumed constant per spectral band. For a given band, a natural choice is to take the refractive index for which the sensitivity function is maximum (i.e., its mode). Strictly speaking, the C 0 and C m terms should be subscripted by the spectral band index j; but we prefer to avoid this notation for clarity.

Equation 10 is our main result. If we choose a maximum value for m, it provides a closed-form approximation to Airy's re ectance for a given spectral band. Note that with a dielectric base, ϕ 2 = 0 or π meaning that only the real part of Ŝj needs to be evaluated. In this case, we should also consider transmission through both layers. The simplest approach is then to use energy conservation and de ne an Airy transmittance term by T j = 1 -R j , which may then be plugged in any microfacet-based BTDF model. For completeness, we also re-derive Airy transmittance from the corresponding Airy summation formula in the Appendix.

Validation. We validated our pre-integration strategy using a pair of datasets: one with constant indices for both layers, the other with spectrally-varying indices. We used an integration step of 1nm to generate the ground truth and performed comparisons in CIE XYZ color space. For each band, the reference indices for the C m terms in Equation 10 are those corresponding to the peak of each sensitivity curve (i.e., at λ X = 600nm, λ Y = 560nm and λ Z = 450nm).

The constant-index dataset permits to speci cally compare various approximations of the Airy re ectance term. We use a dielectric thin-lm of thickness comparable to visible wavelengths over a smooth dielectric base (i.e., D is a dirac distribution in Equation 1). Results are shown as curves parametrized by θ 1 plotted in the CIE x chromaticity space, since we are mostly concerned by iridescent color e ects. Note that when θ 1 → π /2, re ectances for all bands tend to 1 and the curves in chromaticity space tend toward the equiluminant point E = ( 1 3 , 1 3 ). In Figure 7(a), we show that the naive approach that uses one wavelength sample per sensitivity curve produces results far from the ground truth, even creating over-saturated colors that run outside of the CIE RGB gamut. If instead we use a large number of wavelength samples as with the ground truth but then resort to the simpli ed model of [START_REF] Smits | Newton's Colors: Simulating Interference Phenomena in Realistic Image Synthesis[END_REF] as shown in Figure 7(b), we obtain less saturated colors, but the curve still exhibits a signi cant disparity compared to the reference curve. We attribute these di erences to the limitations of their model: no multiple scattering, and no account of base conductors or polarization. In Figure 7(c) we show our result using the analytical spectral integration of Equation 10. It shows that truncating m at 3 or even 1 yields curves nearly indistinguishable from the reference curve. We make the same comparison for each of the X , Y and Z spectral . We compare di erent approximations to a ground truth reflectance for a dielectric film (η 2 = 1.5) of thickness d = 525nm over a dieletric base (η 3 = 1.09). In (a-c), reflectance curves parametrized by θ 1 are plo ed in CIE x chromaticity space, with the ground truth in red and approximate solutions in blue. The naive approach in (a) uses the exact Airy reflectance, but only one wavelength sample per spectral band, which yields poor results. The approach of Smits and Meyer [START_REF] Smits | Newton's Colors: Simulating Interference Phenomena in Realistic Image Synthesis[END_REF] in (b) makes several simplifications to the reflectance model (e.g., κ 3 = 0); even with a dense spectral sampling identical to the ground truth, it still shows significant disparities. Our approach is shown in (c) for di erent truncations of the o set m. Computationally, it is only slightly more complex than the naive approach; yet it produces results nearly indistinguishable from the ground truth, as is also shown for each of the X, Y, and Z spectral bands in (d).

bands separately in Figure 7(d).

Detailed comparisons using the varying-index dataset are provided in our supplemental material. For the sake of brevity, we only provide visual comparisons on rendered spheres in Figure 8. The gure shows three examples of a dielectric thin-lm (buthanol) applied over a dielectric or conducting base, with both layers having refractive indices that vary with wavelength. This permits to evaluate the impact of assuming that Fresnel phase and amplitude coe cients are constant per spectral band. We observe that our approximation becomes slightly less accurate for a conducting base layer such as copper, whose index of refraction varies non-monotonically with wavelength. Of course, these di erences would likely be reduced if more spectral bands were available.

PRACTICAL CONSIDERATIONS

Having described and validated our BRDF model, we now discuss practical issues one must consider when incorporating any material model in modern rendering engines: how to evaluate and pre lter it e ciently, especially for multi-scale rendering; which parameters should be brought to artists to control iridescent appearance.

BRDF Evaluation. The most direct method for evaluating the preintegrated Airy re ectance (or transmittance) term is to tabulate Ŝj , the Fourier transform of the scaled sensitivity curves. When working with a tristimulus rendering engine, the real and imaginary parts of Ŝj may be stored in each row of a N ×2 three-channel texture, where N is the resolution in the Fourier dimension. Evaluating Equation 10 would then normally require two texture fetches to get the real and imaginary parts; however, a single fetch at texture location (mD, γ ) using bilinear interpolation is enough since: cos(mϕ 2 ) sin(mϕ 2 )

T ℜ j (mD)

ℑ j (mD) = β lerp ℜ j (mD), ℑ j (mD), γ , with β = cos(mϕ 2 ) + sin(mϕ 2 ) and γ = sin(mϕ 2 )/β.

Another method consists in approximating scaled sensitivity functions (and their Fourier transforms) using Gaussians. This is shown in Figure 5(b-c), where we have used two Gaussians for the X band, and one Gaussian for each of the Y and Z bands. This approximation results in an appearance close to the ground-truth BRDF when dealing with dielectric base layers. However, it tends to produce slightly over-saturated colors for conducting base layers, or at grazing angles. We attribute these di erences to the subtle oscillations in Ŝj (see Figure 5(c)) that are not captured by the Gaussian ts. The practical advantage of this approximation is that it requires only a few input parameters for the Gaussians, as demonstrated by the GLSL implementation provided in our supplemental material. For importance sampling, we follow the approach of existing techniques that uniquely rely on the microfacet distribution D of Equation 1 and ignore the re ectance term R.

Dielectric

Conductor

D inc = 800nm D inc = 1600nm D inc = 3200nm θ 1 η 2
Fig. 9. We show 2D slices of the Airy reflectance term for a base material of index η 3 = 1.1, with either κ 3 = 0 (top row) or κ 3 = 1.5 (bo om row).

In each slice, the horizontal axis maps to θ 1 , while the vertical axis maps to η 2 ∈ [1..2]. Airy reflectance is highly sensitive to variations of D inc the OPD at normal incidence.

Multi-scale Rendering. Our model is linearly dependent on the thickness d of the thin-lm, which makes it adapted to the pre ltering of spatial thickness variations. Formally this requires to integrate our BRDF model against a distribution P of thickness values. We make two simplifying assumptions: P is modeled as a Gaussian distribution and is not correlated with the microfacet distribution D (i.e., for every normal the associated distribution of thicknesses is the same: P (d |h) = P (d ) ∀h). As a result of the latter, integration only takes place in the re ectance term, yielding:

Rj (h • ω ω ω i ) = R j (h • ω ω ω i )P (d ) dd.
Using Equation 10 and moving outside of the integral the terms that are constant with respect to d, we obtain:

Rj = C 0 + 2 +∞ m=1 C m cos(mϕ 2 ) sin(mϕ 2 ) T ℜ j (mD) ℑ j (mD) P (d ) dd.
If we now explicitly write mD in term of d and perform a change of variable t ← mD in the integral, we get:

ℜ j (mD) ℑ j (mD) P (d ) dd = ℜ j (t ) ℑ j (t ) P t τ τ dt,
with τ = m2η 2 cos θ 2 . Speci cally, P ′ (t ) = P t τ /τ is a Gaussian distribution that is shifted and scaled with respect to P, since

E[P ′ ] = τ E[P] and Var[P ′ ] = τ 2 Var[P].
In practice, we rst pre lter the real and imaginary parts of Ŝj with Gaussian kernels of increasing variance. The result is stored in a dedicated mip-map, with the scale dimension being indexed by the variance parameter of the Gaussian. Then, at run time, depending on τ (which varies with m and local material parameters), the mip-map is fetched at a di erent location E[P ′ ] and scale Var[P ′ ]. Parametric Control. In our model, the thin-lm layer is controlled by a pair of physical parameters, d and η 2 . Since d only appears in the optical path di erence (OPD), we rather provide a direct control over the OPD at normal incidence, denoted by D inc = 2η 2 d; we then use D = D inc cos θ 2 . The parameter space of the Airy re ectance term is visualized using (cos θ 1 , η 2 )-slices at various values of D inc in Figure 9, for both dielectric and conducting base layers. First observe that even with an achromatic base layer, it exhibits high-frequency oscillations that would require a very high-resolution lookup table if it were to be precomputed. This would be even more problematic with a colored base layer, since the look up table would also increase in dimensionality, up to nine dimensions for a conductor in RGB (two for the thin-lm, six for the base, and one for cos θ 1 ). Second, note that when D inc is made large enough, iridescent e ects begin to vanish. This is because for large values of the OPD, the diracs of R (see Figure 5(d)) will be distant enough so that only the DC term will signi cantly contribute to the spectral integral in Equation 9. We thus de ne a maximal OPD D max such that ∀µ ≥ D max , | Ŝj (µ)| ≤ ϵ: beyond D max , iridescence is considered negligible. We use ϵ = 0.05 in our implementation, which yields D max ≈ 25 microns for the CIE XYZ color space. Even though D max is a valid criterion only at normal incidence, we use it at all incidence angles. This is justi ed by the observation that C 0 dominates the C m terms at all incidence angles, the latter eventually vanishing at θ 1 = π 2 (see Figure 22).

Such a higher bound on the OPD permits to control iridescence as a whole, since the latter only occurs when 0 < D inc < D max . When D inc = D max , R ≈ C 0 , which is consistent with the re ectance of thick layers (e.g., see [START_REF] Wenzel | A comprehensive framework for rendering layered materials[END_REF]). When D inc = 0, R should become equal to R 13 since the thin-lm then e ectively vanishes. Unfortunately, this con guration is not physically-valid since it yields a pair of superimposed interfaces with di erent pairs of indices on each side. A physically-realistic treatment would require to model the case of extremely thin layers (below a few nm) with quantum optics, which is clearly out of the scope of this paper. Our alternative solution is to force η 2 → η 1 when D inc → 0, hence ensuring that we end up with a single e ective interface.

The thin-lm index η 2 provides a more subtle control over appearance, with two main e ects. First, assuming a constant D inc , η 2 controls the number of color fringes swept by when θ 1 varies from 0 to π /2. This is shown in Figure 10 using spheres rendered in a white furnace environment. Second, assuming a constant incidence angle θ 1 , variations in η 2 modify the intensity and saturation of color fringes. This is shown in Figure 11 where a fronto-parallel surface is rendered with D inc varying linearly from left to right.

Finally, the complex index η 3 + iκ 3 of the base layer may be directly given for each spectral band, or it may be obtained from more intuitive color input [START_REF] Gulbrandsen | Artist Friendly Metallic Fresnel[END_REF]].

RESULTS

We have implemented our approach in GLSL shaders for Disney's BRDFExplorer [START_REF] Disney | BRDF Explorer[END_REF]] and Gratin [START_REF] Vergne | Designing Gratin, A GPU-Tailored Node-Based System[END_REF], using the GGX distribution [START_REF] Walter | Microfacet Models for Refraction Through Rough Surfaces[END_REF] for the former, and the Ward distribution [START_REF] Ward | Measuring and Modeling Anisotropic Re ection[END_REF]] for the latter. For global illumination results, we have created a plugin for Mitsuba [Jakob 2010], using the distribution again. Note that our method is completely orthogonal to the choice of microfacet distribution. We obtained slightly less saturated colors when using Mitsuba due to the choice of color space in the API (sRGB instead of CIE RGB). As demonstrated in our supplemental video, our GLSL implementation does not su er from this limitation since we fully control the spectral conversion. The BRDFExplorer shader and the Mitsuba plugin are provided in our supplemental code. Direct Lighting. We demonstrate our GLSL shader in BRDFExplorer through an editing session in our supplemental video. It shows that our model reproduces the ground truth very accurately, while permitting interactive manipulation. We highlight the artifacts produced by the naive approach with one wavelength sample per color channel: it yields wrong colors and iridescent e ects do not vanish when D inc → D max as they should.

Our approach is particularly useful when the thickness of the thin-lm is varied spatially, which is shown in Figure 12 and in our supplemental video for two types of materials, on a model. We add a red di use base to the dielectric material on the left column using a simple Lambertian model ρ d . We also add a clearcoat layer on top of both materials using the approach of [START_REF] Weidlich | Arbitrarily Layered Micro-facet Surfaces[END_REF] (we set η 1 = 1.1) to reproduce the appearance of car paint. Thin-lm variations are controlled with a texture that remaps D inc between 0 and a maximum OPD. When the maximum OPD is increased, the iridescent e ects sweep through a series of Increasing thickness color fringes that provide a realistic look to the .

The texture map used to control the thin-lm may be chosen for aesthetic purposes, as shown in Figure 13. On the left side, we re-use an ambient occlusion map to introduce subtle color variations in cavities of the model. On the right side, we replace parts of the texture with regular patterns to convey a futuristic look. Spatial variations of iridescence also bring realism to the rendering of transparent objects. This is shown in Figure 14, where we have created a thick transparent slab using a displacement map on a plane, then added thin-lm variations using a texture controlling D inc as before. We not only visualize the combination of re ection and transmission, but also transmission in isolation, which reveals subtle color variations on close inspection (see insets).

Aliasing artifacts occur when using highly detailed thin-lm variations. As shown in Figure 15, our pre ltering solution reduces these artifacts e ciently, with visual results close to the reference. Our model runs in real time when the base layer is perfectly smooth: the distribution D in Equation 1 then becomes a dirac, hence R becomes a function of n • ω i . A common approximation for realtime rendering of rough materials is to pre lter the environment lighting [START_REF] Kautz | Uni ed Approach to Pre ltered Environment Maps[END_REF], which is then evaluated once in the specular direction. We combine this technique with an evaluation of R in the specular direction as well in Figure 16 (our supplemental video shows this scene captured in real time). It gives satisfying visual results when the material is smooth or even moderately rough, but produces over-saturated colors with rougher materials.

Global Illumination. We illustrate the full range of appearances achievable by our model in supplemental material for conductor and dielectric materials.

We focus here on material parameters adapted to speci c cases, such as in Figure 1 where the thin-lm is applied to a leather model. This example is inspired by [START_REF] Akin | Pushing the limits of realism of materials[END_REF], where thin-lm iridescence is produced by a brute-force approach. Iridescent colors indeed push the realism of the material: when rotating the object, colors exhibit subtle changes in hue. Similarly subtle, yet important color e ects may be obtained by applying our model to the metallic model, as seen in Figure 17.

Special e ect pigments for car paints are usually less subtle. We reproduce such an example in Figure 18, adding thin-lm variations on the doors to give a custom touch to the B model. As with the , we add a clear-coat layer to reproduce a car paint appearance.

Our approach may be applied to transparent objects, as shown in the classic example of a S in Figure 19. In this case, both re ection and transmission at each interface (front and back) are responsible for the rich color patterns observed in the result. Comparisons. Compared to the method of [START_REF] Smits | Newton's Colors: Simulating Interference Phenomena in Realistic Image Synthesis[END_REF], our approach approximates the ground truth much more accurately, even when evaluated in RGB. This is not only demonstrated in Figure 7, but also shown in Figure 20, where we have used our Mitsuba plugin on the scene. There are still slight di erences in color saturation between our method and the ground truth, which are due to the choice of RGB color space in Mitsuba as previously explained.

We compare our analytical micro-facet model to the more complex micro-ake model of [START_REF] Ergun | A General Micro-ake Model for Predicting the Appearance of Car Paint[END_REF]] in supplemental material. From a physical point of view, this amounts to consider that micro-facets act as uncorrelated iridescent akes, a condition that is satis ed when Smith's geometric term is used for G in Equation 1. A couple example comparisons are given in Figure 21, where the appearance obtained with their model is imitated by adjusting the parameters of our model by hand. We achieve similar color fringes overall, even though their results tend to yield slightly more saturated colors, which we attribute to the e ect of multi-layered thin-lm interferences. A clear advantage of our approach is its eciency: the material parameters can be modi ed interactively with our GLSL implementation. In comparison, their approach requires a costly preprocess that takes several seconds and requires around 10mb of storage per material con guration. However, their model is not designed for the same usage: it permits to accurately predict the appearance of speci c car paints, while ours only imitate them.

Interactive implementation. As seen in the supplemental video, our model is nearly as e cient as the naive model (i.e., using one wavelength sample per color channel) in our BRDFExplorer implementation. More speci cally, to render a sphere at 800spp in 1024 × 1024 resolution without the thin-lm layer takes 1.1sec on a NVidia GeForce GTX555. The naive model takes approximately 1.5

Classic microfacets

Iridescent microfacets model we tried to reproduce the look of special e et car paints (see our supplemental video for an example). We show that even for a configuration where the variation of colors is moderate and dense sampling is probably not required, the naive RGB model still produces inacurrate colors. Here we used a conducting base layer (η 3 = 1.2, κ 3 = 0.5) with a thin-film of d = 505nm and index η 2 = 1.39. We also added a clear coat of η 1 = 1.2 to further match the car paint appearance. The door-side sticker is created by varying thickness using a texture. Fig. 20. We use the scene to compare our approach both with the ground truth, and with the model of Smits and Meyer, which here exhibits incorrect green colors at grazing angles. We use a dielectric film (η 2 = 1.33, d = 550nm) on top of a conducting base (η 3 = 1.9, κ 3 = 1.5). seconds, while ours takes 1.6, 1.9 and 2.2 seconds when we truncate m to 1, 2, and 3 respectively in Equation 10 (we truncate m to 3 in the video). The overhead of our approach compared to the naive model (i.e., the simplest implementation of thin-lm iridescence) is thus very reasonable. In comparison, using the ground truth is prohibitively slow: it takes 70 minutes using 94 wavelength samples per color band (each separated by 5nm), which is likely due to the poor performance of long loops in GLSL.

O ine implementation. We report rendering times for the di erent o ine scenes in the following table: In the rst column, we report rendering times without interferences (by replacing the Airy re ectance term R by the Fresnel re ectance term F ). We then provide rendering times when using the naive RGB model with Airy re ectance, a spectral rendering (with 128 samples per spectral band), and our analytical model (cutting o m at 2, in blue). Since Airy re ectance evaluates multiple Fresnel re ectances, it requires more time: between 20% and 30% for the naive RGB model. Using our method adds less than 10% to these timings, but achieves results very close to the ground truth spectral model, which is much more expensive in comparison.

DISCUSSION

We have introduced an extension to microfacet theory that models thin-lm interference e ects based on Airy summation, in practice replacing the Fresnel term by a new Airy term. Our main contribution resides in an analytical spectral integration taking advantage of the simple forms of Airy re ectance and transmittance in Fourier (a series of Diracs). As a result, the extended micro-facet model may be edited with immediate feedback, used with surface-varying parameters with negligible overhead, and rendered at multiple scales without producing aliasing artifacts.

Limitations. The assumptions we made in our approach forbid some speci c micro-structures. For instance, we assume the thinlm to be at and parallel to the underlying microfacet. If this is not the case, re ectance colors will likely appear desaturated and might change in tint due to the average of di erent optical path di erences. While the desaturation could be handled with our multiscale approach, we cannot account for the potential change in tint. Parallelism with the microfacet will eventually be untenable for lms thicker than a few microns, in which case iridescence starts to become irrelevant and other phenomena such as absorption and scattering begin to matter. An interesting challenge would be to model the transition from thick to thin lms, as is the case of a liquid drying on a rough surface for instance.

On the practical side, our model permits interactive editing in progressive rendering for arbitrary material parameters. For realtime rendering, the simple approximation presented in Section 6 remains limited to material of small roughness. A more promising solution would be to pre-integrate the Airy term for each possible view direction, in essence yielding a color-varying directional albedo. Such an integration will of course depend on the choice of microfacet distribution.

The analytical spectral integration of Equation 10 assumes that spectral bands are xed throughout rendering. Some high-end rendering engines rather perform spectral sampling from scratch at each light-surface interaction to better account for complex lighting e ects [START_REF] Wilkie | Hero Wavelength Spectral Sampling[END_REF]]. The pre-integrated Airy term could still be used as a control variate [START_REF] Hammersley | A new Monte Carlo technique: antithetic variates[END_REF] in such cases, and hence serve as a guide to spectral sampling. This would actually be bene cial in the case of iridescence to get rid of spectral aliasing; in particular, using 4 randomly shifted spectral samples as in the original hero wavelength sampling technique is clearly not su cient to avoid spectral aliasing due to thin-lm iridescence.

Future Work. Our model reproduces the iridescent e ects occurring with thin-lms, which are due to the interference of parallel waves. Interferences of non-parallel light waves are rather due to di raction, which not only modi es the colors but also the angular spread of scattering lobes. A challenge for future work is to model the e ect of di raction in tristimulus engines while retaining physical plausibility, analytic formulation and parametric control.

Finally, even though the design of material acquisition devices has greatly improved in recent years, measuring goniochromatic materials remains a challenge. Not only do they require a dense sampling in angular and spatial dimensions, but also in the spectral dimension owing to the complex iridescent colors they produce. With a su ciently rich database of measured goniochromatic materials, it would become possible to investigate the tting of data using our microfacet-based extension. Another interesting direction of future work would be to study whether our parametric model could be used to guide the material acquisition process directly in RGB.

APPENDIX

Derivation of C m and R in Closed Form. C 0 is given by: 1-R e ±i Φ . The sum P + + P -may be further simpli ed to yield: where δϕ is the phase shift between the primary re ected ray and all transmitted rays (it will get simpli ed later on).

C 0 = c 2 0 + ∞ k =1 c 2 k = R 12 + T 12 T 21 R 23 1 -R 23 R 21 = R 12 + R
R = R 12 + R ⋆ + 2 R cos Φ -R 2 1 -2R cos Φ + R 2 (R ⋆ -T 12 T 21 ).
As explained in our supplemental material, ∆ϕ has the same expression in the re ection and transmission cases. However, the c k and ϕ k terms take on di erent forms:

c k = t 12 [r 23 r 21 ] k t 23 ϕ k = δϕ + k (∆ϕ + ϕ 23 + ϕ 21 ) .
Following the same steps as in Section 4, we obtain:

T = C 0 + 2 ∞ m=1 C m cos(mΦ),
where Φ = ∆ϕ + ϕ 23 + ϕ 21 as before, since δϕ vanishes. However, the C m terms are now given (for all m ≥ 0) by:

C m = R 23 R 21 m T ⋆ with T ⋆ = T 12 T 23 1 -R 23 R 21 ,
where we have used T 12 T 23 = η 3 cos θ 3 η 1 cos θ 1 |t 12 | 2 |t 23 | 2 . Since the spectral Airy re ectance and transmittance have the same form, it follows that the analytic spectral integration of Equation 10 is also valid for the case of transmission. The resulting Airy transmittance term may thus be used in place of the classic Fresnel transmittance term in any microfacet-based BTDF model.

The spectral Airy transmittance is also given in closed form by:

T = T ⋆ 1 + 2 R cos Φ -R 2 1 -2R cos Φ + R 2 ,
following a derivation similar to the one used for the Airy reectance.

Fig. 3 .

 3 Fig. 3. Our reflectance model is composed of a micro-facet surface of complex index η 3 + iκ 3 with a thin dieletric film of index η 2 on top of each micro-facet. The small thickness d of the film requires to treat light interactions at the surface using wave optics.

Fig. 4 .

 4 Fig.4. The complex reflectance coe icient r from Equation 2 is obtained by summing the reflectance coe icients of light paths of all orders (here we show orders k = {0, 1, 2}), taking into account their interference due to phase shi s. For instance, at order k = 1, this corresponds to the phase shi between the path going from A to D, and the path going from A to B to C.

  Fig. 5. The spectral integration problem is illustrated in (a) for the CIE XYZ color space: the reflectances {R X , R Y , R Z } (light colored areas) are obtained by integrating the product of each sensitivity curve (s X in red, s Y in green, s Z in blue) with the spectral Airy reflectance R (in black). In our approach, the sensitivity functions are first re-expressed in terms of ν = 1/λ in (b), yielding {S X , S Y , S Z }. They are then transformed in Fourier space: the moduli { | ŜX |, | ŜY |, | ŜZ | } are shown in (c). Since the Fourier transform R of the Airy reflectance term is composed of diracs, the integral in Fourier becomes analytical as shown in (d) for the evaluation of R Z . The dashed curves in (b) and (c) show Gaussian fits, which provide reasonable approximations in practice.

Fig. 6 .

 6 Fig. 6. We illustrate the C m terms of Equation 5. Le : C 0 is obtained by summing interferences for all pairs of light paths of the same order. Right: C 1 is obtained by summing interferences for all pairs of light paths with an o set of m = 1 in orders.

  where R(µ) and Ŝj (µ) are the Fourier transforms of R(ν ) and S j (ν ) respectively, and ⋆ denotes the complex conjugate. The scaled sensitivity functions S j and the moduli of their Fourier transform | Ŝj | are shown in Figures5(b) and 5(c) respectively, for each of CIE X, Y, and Z bands.

  Fig.7. We compare di erent approximations to a ground truth reflectance for a dielectric film (η 2 = 1.5) of thickness d = 525nm over a dieletric base (η 3 = 1.09). In (a-c), reflectance curves parametrized by θ 1 are plo ed in CIE x chromaticity space, with the ground truth in red and approximate solutions in blue. The naive approach in (a) uses the exact Airy reflectance, but only one wavelength sample per spectral band, which yields poor results. The approach of Smits and Meyer[START_REF] Smits | Newton's Colors: Simulating Interference Phenomena in Realistic Image Synthesis[END_REF] in (b) makes several simplifications to the reflectance model (e.g., κ 3 = 0); even with a dense spectral sampling identical to the ground truth, it still shows significant disparities. Our approach is shown in (c) for di erent truncations of the o set m. Computationally, it is only slightly more complex than the naive approach; yet it produces results nearly indistinguishable from the ground truth, as is also shown for each of the X, Y, and Z spectral bands in (d).

Fig. 8 .

 8 Fig. 8. Comparisons between the ground-truth Airy reflectance and our approximation, on spheres rendered in the Ufizzi environment lighting. A thin-film of buthanol of thickness d = 666nm is laid on top of a base layer made of either (a) glass, (b) mercurial, or (c) copper. Each image is split in two, with our result on the le and the ground truth on the right.

Fig. 10 .Fig. 11 .

 1011 Fig. 10. The Airy reflectance term is directly visualized on spheres with three values of η 2 (one per column); other material parameters are held fixed to D inc = 1600nm, η 3 = 1.1, and κ 3 = 1.5. More color fringes are obtained with smaller values of η 2 .

Fig. 12

 12 Fig. 12. The S model is rendered with a dielectric base in the le column (α = 0.1, η 2 = 1.25, η 3 = 1.72, ρ d = {0.191, 0.015, 0.015}) and a rough conductor base in the right column (α = 0.18, η 2 = 1.25, η 3 = 1.1, κ 3 = 1.63). The thin-film of spatially-varying thickness is revealed by remapping D inc from 0 to 100nm (first row), to 200nm (second row), and to 400nm (third row), controlled by the texture shown on top.

D

  Fig. 13. The model is made of a metallic base (α = 0.07, η 3 = 1.87, κ 3 = 1.182) to which we add a thin-film of index η 2 = 1.42 and varying thickness (D inc ∈ [0..1125]nm). On the le , we use an ambient occlusion texture to guide thickness variations. On the right we add regular pa erns to give a futuristic look. The image on top is rendered without iridescence.

Fig. 14 .

 14 Fig.14. Our model works with transparent objects, here a transparent slab obtained by applying a displacement map to a plane, with a rough dielectric base (α = 0.2, η 3 = 1.45). We control variations of the thinfilm (η 2 = 2.0) using a texture that remaps D inc to the [0..415]nm range, mimicking a condensation e ect that is more or less revealed depending on the slab orientation. We also show the transmi ed radiance in isolation in the bo om row.

  Fig. 16. The S model is rendered with a dielectric base (η 2 = 1.21, η 3 = 2.0, D inc = 1740nm) using progressive rendering in the top row, and a real-time approximation in the bo om row (see text). When the roughness α of the base layer increases, the real-time approximation is less and less accurate; in particular, color fringes become over-saturated.

Fig. 17 .

 17 Fig.17. We reproduce the subtle iridescent appearance of oxide layers on top metals with the model. Iridescence adds a touch of green and purple (right inset) to a base 'white' material (le inset). The base layer index is here given by η 3 = 1.5 and κ 3 = 3, and the thin film is d = 600nm thick and has an index of η 2 = 1.33.

R

  Fig. 19. With the S model, we show how iridescence behaves in transmission & reflections with multiple sca ering. In this example, the multiple transmissions and reflections (T RT , T RRT , etc) add to the purely reflected signal to produce a convincing look. Here we use a film of d = 400nm and η 2 = 1.7, and a base layer of air (i.e., η 1 = η 3 = 1.0).

Fig. 21 .

 21 Fig. 21. We have reproduced by hand the results of Ergun et al. (their Figure7) by adjusting the parameters of our model. Here we show two out of the eight materials presented in supplemental material: our approach permits to reproduce very similar color fringes.

  ⋆ , with R ab = |r ab | 2 and T ab = η b cos θ b η a cos θ a |t ab | 2 denoting Fresnel reand transmittances respectively. The derivation is similar to that of Equation 3, and we have used T 12 T 21 = |t 12 | 2 |t 21 | 2 to express C 0 uniquely in terms of re ectances and transmittances.For C m , we must rst separate the 0th order terms from the others:C m = c m c 0 + +∞ k =1 c k c k +m = c m c 0 + R 23 R 21 21 m and +∞ k =1 c 2 k = R ⋆ . We may now factorize by √ R 23 R 21 m to obtain C m in closed form: C m = R 23 R 21 m R ⋆ -T 12 T 21 .The C m terms for m ∈ {0..3} are shown as functions of the incidence angle θ 1 in Figure22.To derive R in closed form, we rst explicitly write Equation 5 in terms of Fresnel re ectances/transmittances and phase shifts as:R = R 12 + R ⋆ + 2(R ⋆ -T 12 T 21 ) +∞ m=1 (R ) m cos(mΦ),where we have used R = √ R 21 R 23 as a short notation. Now, applying Euler's formula cos(mΦ) = 1 2 (e imΦ + e -imΦ ), we obtain +∞ m=1 (R ) m cos(mΦ) = P + + P - 2 , with P ± = +∞ m=1 (R e ±iΦ ) m = R e ±i Φ

Fig. 22 .

 22 Fig.22. The C m terms are visualized for both polarizations (S for perpendicular, P for parallel), as a function of the incidence angle θ 1 , for a material defined by η 2 = 1.5, η 3 = 1.2 and κ 3 = 0.5. All terms but C 0 vanish at θ 1 = π /2.
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