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A Practical Extension to Microfacet Theory
for the Modeling of Varying Iridescence

LAURENT BELCOUR, Unity Technologies

PASCAL BARLA, Inria

Classical microfacets Iridescent microfacets Goniochromatic e�ects

Fig. 1. Material appearance such as that of leather is usually reproduced with microfacet models in computer graphics. A more realistic result is achieved by

adding a thin-film coating that produces iridescent colors [Akin 2014]. We replace the classic Fresnel reflectance term with a new Airy reflectance term that

accounts for iridescence due to thin-film interference. Our main contribution consists in an analytical integration of the high-frequency spectral oscillations

exhibited by Airy reflectance, which is essential for practical rendering in RGB. For the leather material on the chair model, we used a thin film of index

η2 = 1.3 and thickness d = 290nm, over a rough dielectric base material (α = 0.2, η3 = 1). When the scene is rotated, goniochromatic e�ects such as subtle

purple colors may be observed at grazing angles.

In this work, we introduce an extension to microfacet theory for the render-

ing of iridescent e�ects caused by thin-�lms of varying thickness (such as oil,

grease, alcohols, etc) on top of an arbitrarily rough base layer. Our material

model is the �rst to produce a consistent appearance between tristimulus

(e.g., RGB) and spectral rendering engines by analytically pre-integrating its

spectral response. The proposed extension works with any microfacet-based

model: not only on re�ection over dielectrics or conductors, but also on

transmission through dielectrics. We adapt its evaluation to work in multi-

scale rendering contexts, and we expose parameters enabling artistic control

over iridescent appearance. The overhead compared to using the classic

Fresnel re�ectance or transmittance terms remains reasonable enough for

practical uses in production.
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1 INTRODUCTION

A surface is called iridescent when its color changes when viewed or
lit from di�erent directions. Such goniochromatic e�ects are due to
interference between light waves that are scattered in a wavelength-
dependent way, hence yielding rich color variations. Iridescent ap-
pearance is common in nature, as with birds, insects, snakes, and
even some fruits; but it also occurs in man-made products such as
with oil leaks, window defects, soap bubbles or car paints. Some
iridescence e�ects are more subtle and may even go unnoticed to
the untrained eye: these include traces of grease or alcohol (e.g.,
�nger traces on kitchen appliance) or �nishes to protect base ma-
terials (e.g., leathers, metals). Yet such subtle details are essential
to reproduce the look and feel of real-world materials in computer
graphics imagery [Akin 2014].

Two causes of goniochromism are to be distinguished: di�raction
produced by light re�ection on microscopic structures at a scale
similar to the visible wavelengths; interferences produced by light
interaction with �lms of thickness close to the visible wavelengths.

In this paper we focus on iridescence due to thin-�lms of varying
thickness. In practice, thickness may be varied directly by artists
during editing sessions, or across a surface to reproduce the ap-
pearance of traces or irregular �nishes for instance. Formally, we
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model iridescence using a dielectric thin-�lm laid on top of a base
material (dielectric or conductor) of arbitrary roughness (Section 3).
The main issue with such a con�guration is that re�ected radiance
produces oscillations in the spectral domain, which require a dense
sampling of wavelengths to avoid spectral aliasing. This is illustrated
in Figure 2: the color fringes due to a dielectric thin-�lm on top
of a metallic base layer are well-reproduced only if the number of
spectral samples is large enough. However, such a numerical inte-
gration is impractical: for instance, when the �lm thickness varies
spatially, integration should be performed at each and every point
of the surface. Precomputing re�ectance colors for all possible vari-
ations of material parameters would not be a viable solution either:
as explained later on, this would require high-dimensional lookup
tables with very high resolutions.

Our main contribution is an analytical spectral integration for-
mula for re�ectance due to thin-�lm iridescence (Section 4). It works
as an extension of micro-facet theory, hence providing a modular
solution to the use of thin-�lms on arbitrarily rough base materials.
The resulting iridescent material model has many practical advan-
tages (Section 5): it is fast to evaluate in RGB space while providing
re�ectance very close to brute-force spectral rendering; it gives in-
teractive feedback for the exploration of physical parameters; and
it is easily adapted to multi-scale rendering.

Our approach relies on Airy summation, which correctly models
the re�ectance due to a thin-�lm, including multiple scattering, po-
larization and phase changes for both conductor and dielectric base
materials. Even though this equation has been known for decades
in the physics literature, its adaptation to the constraints and de-
mands of computer graphics requires a di�erent approach. We show
that our graphics-oriented model approximates the physical ground
truth with unprecedented accuracy across di�erent types of render-
ing engines (Section 6), which makes it particularly adapted to the
faithful previsualization of high-quality renderings.

2 RELATED WORK

Re�ectance models in computer graphics are often based on the
micro-facet theory [Cook and Torrance 1982] where color is solely
due to the wavelength-dependent Fresnel re�ectance term, which
itself depends on the (potentially complex) refractive index of thema-
terial. However, color may also emerge from the micro-structuration
of matter. Such structural colors require to study light as a wave
propagation phenomenon.

Wave Optics. Modeling the propagation of light waves is a di�-
cult endeavor in the general case; however, many speci�c models
for particular structurations of matter are readily found in the optics
literature, such as gratings, or thin-�lms for instance [Hecht 2001].
In particular, iridescence e�ects due to multiple scattering inside a
thin �lm have been characterized in closed form using Airy sum-
mation [Yeh 2005]. The formula is presented in detail in Section 3,
where it is shown that it is highly sensitive to phase shifts between
scattered light waves. Phase is also modi�ed on re�ection depend-
ing on polarization, with formula di�ering between dielectrics and
conductors as detailed by Born and Wolf [1999] (we reproduce and

illustrate their formula in Supplemental Material for completeness).
Such polarization-dependent phase shifts may be ignored when
interference e�ects can be safely neglected, as in geometric optics;
however, in the case of iridescence (due to either di�raction or thin-
�lms), they often have profound e�ects on re�ectance colors, and
hence cannot be avoided.

Di�raction Models. Early di�raction models in computer graph-
ics [He et al. 1991; Stam 1999] have relied on the Beckmann-Kirchho�
theory of scattering from statistically-de�ned rough surfaces [Beck-
mann and Spizzichino 1963], which assumes height variations of
the micro-surface to be small enough such that interferences do
not average out as in geometric optics models. Further work has
considered more complex micro-structures such as the ones aris-
ing in biological patterns [Dhillon et al. 2014], or mutual depen-
dencies of (wave-based) re�ectance between neighboring surface
patches [Cuypers et al. 2012]. In this paper, we altogether avoid
di�raction by assuming that micro-surface variations are much
larger than visible wavelengths, as in geometric optics models.

Thin-�lm Models. Goniochromatic e�ects in thin-�lms are due to
phase shifts between di�erent paths in a layered structure. One of the
earliest treatments of thin-�lm interference in computer graphics
is due to Smits and Meyer [1992]. Their model is the closest to our
goal as it permits to reproduce iridescent e�ects due to thin �lms
of varying thickness. However, their method is limited in several
ways: it is de�ned only for a perfectly smooth surface, it does not
account for polarization, it does not consider inter-re�ections inside
the thin-�lm, nor does it work with conductors as a base material.
Subsequent work has not addressed these limitations, but rather
consider di�erent types of layered structures. For instance, Icart
and Arquès [1999] combined di�raction and thin-�lms, expanding
on the Beckmann-Kirchho� theory. Granier and Heidrich [2003]
propose to model a thin-�lm with its interface not parallel to the
base surface. Sun [2006] models the stacking of multiple thin-�lms
to simulate natural patterns found in animals and insects, such as
on the Morpho butter�y wings. In this paper, we pursue the work
of Smits and Meyer, and focus on a single thin-�lm that may vary
in thickness over an arbitrary micro-surface.

Layered Materials. Our goal may seem related to layered ma-
terial models such as those of Ershov et al. [2001], Weidlich and
Wilkie [2007], Jakob et al. [2014], or Ergun et al. [2016]. However,
in all these models, the separation between layers is assumed to be
large enough such that a geometric optics approximation may be
taken, hence forbidding interference due to layers. Nevertheless,
car paint models [Ergun et al. 2016; Ershov et al. 2001] do incorpo-
rate goniochromatic e�ects by embedding iridescent �akes inside
layers. Iridescent e�ects may then be safely precomputed since all
�akes are assumed to have the same re�ectance independently of
their location on the surface. This workaround is not possible when
modeling variations in iridescence as we do.

Spectral Aliasing. Any spectral re�ectance model will at some
point require spectral integration over tristimulus sensitivity func-
tions to yield an RGB color, which is a resource-demanding process.
An alternative is to pick three representative wavelengths, one for
each of the R, G, and B channels. This approach has been taken by
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(a) 1 sample per spectral band (b) 8 spectral samples (c) 128 spectral samples
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Fig. 2. The addition of a thin film layer requires a dense spectral sampling to render colors properly. We show this in the top row: (a) with only one sample per

spectral band (as done in RGB rendering), colors appear unnaturally over-saturated; (b) 8 spectral samples produce di�erent color pa�erns; (c) a reference using

128 samples per spectral band shows the correct colors. These color artefacts are due to spectral aliasing, as shown in the bo�om row where spectral sampling

is visualized for one surface point. The colored curves correspond to reflected radiance multiplied by either the CIE X, Y, or Z sensitivity curve, in red, green

and blue respectively. They show oscillations that obviously cannot be captured with a single sample (a), or even 8 samples (b), hence yielding aliasing issues

in these two cases. The use of 128 samples correctly captures these oscillations but is impractical when thin-film thickness, and hence reflectance, varies.

Granier and Heidrich [2003], or for the real-time rendering of gem
stones by Guy and Soler [2004]. However in the case of thin-�lm
iridescence, this leads to severe aliasing issues in the spectral do-
main as shown in Figure 2. The correct number of spectral samples
is not �xed either: it will depend on the thin-�lm properties since
the number of oscillations increases with �lm thickness, requiring
an ever-increasing number of samples. An appealing solution has
been suggested by Smits and Meyer [1992]: pre-integrate spectral
re�ectance in a two-dimensional RGB texture indexed by �lm pa-
rameters and incidence angle. However, with the extensions we
introduce in this paper, this solution is not viable anymore: it would
require a nine-dimensional texture in the general case of an RGB
conductor base material and should be stored in a high resolution
lookup table due to the high-frequency color fringes produced by
thin-�lm interference (see Figure 9). In contrast, we perform pre-
integration of spectral re�ectance using an analytic method that
requires no material-dependent lookup table. Using pre-integrated
re�ectance may still produce over-saturated colors compared to
the ground truth in the presence of inter-re�ections. However, we
consider this to be a general limitation of tri-stimulus rendering
engines, for which a common solution is to reproject RGB colors
inside the reproducible gamut [Meng et al. 2015].

3 SPECTRAL BRDF MODEL

We begin by presenting the assumptions we make on the micro-
structuration of an iridescent material, and formally describe the
model as an extension of microfacet theory. We then highlight the
importance of phase shifts and state the main problem addressed in
this paper: the spectral integration of re�ectance due to thin-�lms.
Even though we focus on re�ectance throughout the exposition, our

model also applies to transmittance as detailed in the Appendix and
as demonstrated in Section 6 and in the supplemental video.

Assumptions. The structure of our model is illustrated in Figure 3.
The base material consists of a micro-facet surface with a complex
index of refraction η3 + iκ3. A single dielectric thin-�lm layer of
thickness d (in nanometers) and real index η2 is applied on top of the
base layer.We assumed to be constant on a single micro-facet, which
amounts to consider that spatial variations of d are of low frequency,
a reasonable assumption in practice. The exterior medium has an
index η1 = 1 for air unless speci�ed otherwise. In the following,
we will describe the Bidirectional Re�ectance Distribution Function
(BRDF) of such a con�guration.

Model. In micro-facet theory, a BRDF is de�ned as:

ρ (ωωωo ,ωωωi ; λ) =
D (h)G (ωωωo ,ωωωi )F (h ·ωωωi ; λ)

4(ωωωo · n) (ωωωi · n)
, (1)

Fig. 3. Our reflectance model is composed of a micro-facet surface of com-

plex index η3 + iκ3 with a thin dieletric film of index η2 on top of each

micro-facet. The small thickness d of the film requires to treat light interac-

tions at the surface using wave optics.
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whereωωωo ,ωωωi , and n are the outgoing, incoming and surface normal
vectors, λ is the wavelength, D is an arbitrary micro-facet distribu-
tion evaluated at the halfway vector h = ωωωo+ωωω i

‖ωωωo+ωωω i ‖ , G is the asso-

ciated geometric (masking/shadowing) term, and F is the Fresnel
re�ectance term evaluated at h ·ωωωi = cosθ1, with θ1 the di�erence
angle (see Figure 3). The Fresnel re�ectance is the only term that
depends on wavelength; in the general case, it also depends on
polarization. However, assuming natural (i.e., randomly polarized)

illumination, F = 1
2 (F
⊥
+ F ‖ ), with F⊥ (resp. F ‖ ) the Fresnel re-

�ectance for light waves polarized perpendicularly (resp. parallely)
to the plane of incidence containingωωωi and n.

Our extension consists in replacing the classic Fresnel re�ectance
term, F , by amore complex term,R accounting for all inter-re�ections
inside the thin-�lm layer, including constructive and destructive
interference e�ects. This requires to consider the wave nature of
light since interference e�ects are due to phase di�erences between
light waves.

Airy Re�ectance. For a given wavelength and polarization, re-

�ectance is de�ned as the ratio R =
Ao
Ai

with Ao,i the powers of

outgoing and incoming light waves, which are related to the wave
amplitudes ao,i by Ao,i ∝ |ao,i |2. We will follow the convention of
using lowercase symbols for amplitudes, and uppercase symbols

for powers. We thus write R = |ao |2
|ai |2 = |r|

2 where r is a complex

re�ection coe�cient. The thin-�lm re�ection coe�cient r for an
arbitrary polarization is obtained by adding the contributions of
all re�ected rays (see Section 4.2 in Yeh [2005]), as illustrated in
Figure 4:

r = r12 + t12r23t21e
i∆ϕ
+ t12r23r21r23t21e

2i∆ϕ
+ . . .

= r12 +

+∞
∑

k=1

t12r23[r21r23]
k−1t21eik∆ϕ (2)

= r12 +
t12r23t21e

i∆ϕ

1 − r21r23ei∆ϕ
, (3)

where rab = rabe
iϕab (resp. tab ) is a complex re�ection (resp. real

transmission) coe�cient when going from medium a to medium
b, ∆ϕ is the phase shift due to the optical path di�erence (OPD)
between the primary and secondary light paths, and k is the number
of inter-re�ections, or order. Equation 3 is due to Sir George Biddell
Airy and known as Airy summation in optics. Assuming a randomly

polarized illumination as before, we write R = 1
2 ( |r⊥ |2 + |r‖ |2).

We will denote this re�ectance by the term “Airy re�ectance” to
distinguish it from the Fresnel re�ectance term commonly used in
microfacet models. It takes into account the phase shifts coming not
only from OPD, but also due to re�ection.

Phase Shifts. Fresnel equations show that there is no phase shift
on transmission, which is whywe only consider real transmission co-
e�cients. However, phase shifts do occur on re�ection (and depend
on polarization), which is why we consider complex re�ection coef-
�cients. The phase shift ∆ϕ = 2πνD linearly depends on ν = 1/λ,
as well as on the �rst-order optical path di�erence D = 2η2d cosθ2,

with cosθ2 =

√

1 − η21
η22

(1 − cos2 θ1) according to Snell’s law. The

Fig. 4. The complex reflectance coe�icient r from Equation 2 is obtained

by summing the reflectance coe�icients of light paths of all orders (here

we show orders k = {0, 1, 2}), taking into account their interference due

to phase shi�s. For instance, at order k = 1, this corresponds to the phase

shi� between the path going from A to D , and the path going from A to B

to C .

OPD at an arbitrary order k is simply D (k ) = kD. For the sake of
completeness, formula for transmission and re�ection coe�cients
are reproduced in detail and illustrated in our supplemental mate-
rial, along with a derivation of the OPD at order k . The phase shifts
due to both re�ection and OPD play an important role in iridescent
appearance, since they impact the corresponding Airy re�ectance
R.

Spectral Integration. Rendering engines use a small discrete set
of spectral bands, most commonly three for RGB rendering, even
though some o�ine renderers may use around a dozen or even ran-
domly selected spectral bands for better color �delity. Each spectral
band j has a corresponding sensitivity function sj ; for instance, we
have three such functions sR , sG , and sB for RGB rendering engines.
We may now write the re�ected radiance equation [Kajiya 1986]
with an explicit mention of spectral bands using j subscripts:

L
↑
j (ωωωo ) =

∫

sj (λ)

‖sj ‖

∫

Ω
ρ (ωωωo ,ωωωi ; λ)L

↓(ωωωi ; λ) (ωωωi · n)dωωωi dλ,

with L
↑
j the re�ected radiance integrated over the jth spectral band,

L↓ the spectrally-dependent incoming radiance and Ω the upper
hemisphere of directions. The sensitivity function sj is normalized

to express L↑j in units of radiance (i.e.,W sr -1m-2). Each spectral

band is treated independently of others and integration is performed
over the support of each sensitivity function.

In most rendering engines, light sources are pre-integrated with
respect to spectral bands. The BRDF is similarly pre-integrated:

ρ j (ωωωo ,ωωωi ) =

∫

ρ (ωωωo ,ωωωi ; λ)
sj (λ)

‖sj ‖
dλ,

where we use the normalized sensitivity function as before to ex-
press ρ j in BRDF units (i.e., sr

-1). At the same time, it ensures energy
conservation, provided ρ is itself energy-conserving. The re�ected
radiance equation for the jth spectral band then becomes:

L
↑
j (ωωωo ) ≈

∫

Ω
ρ j (ωωωo ,ωωωi )L

↓
j (ωωωi ) (ωωωi · n) dωωωi ,

which assumes material and lighting are not spectrally correlated.
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Fig. 5. The spectral integration problem is illustrated in (a) for the CIE XYZ color space: the reflectances {RX , RY , RZ } (light colored areas) are obtained

by integrating the product of each sensitivity curve (sX in red, sY in green, sZ in blue) with the spectral Airy reflectance R (in black). In our approach,

the sensitivity functions are first re-expressed in terms of ν = 1/λ in (b), yielding {SX , SY , SZ }. They are then transformed in Fourier space: the moduli

{ |ŜX |, |ŜY |, |ŜZ | } are shown in (c). Since the Fourier transform R̂ of the Airy reflectance term is composed of diracs, the integral in Fourier becomes analytical

as shown in (d) for the evaluation of RZ . The dashed curves in (b) and (c) show Gaussian fits, which provide reasonable approximations in practice.

The dependency of micro-facet BRDF models on wavelength only
occurs in the re�ectance term R; hence the BRDF pre-integration
may be directly carried out to the this term:

Rj (h ·ωωωi ) =

∫

R (h ·ωωωi ; λ)
sj (λ)

‖sj ‖
dλ. (4)

This spectral integral is illustrated in Figure 5(a) where we use the
sensitivity functions of the CIE XYZ space.

The main issue with iridescent materials is that with variations
of either the thin-�lm or base layer properties, Rj will have to be
recomputed from scratch. This prevents its use in interactive editing
scenarios where the artist freely modi�es material parameters. It
also forbids spatial variations as they would require a costly spectral
integration at each and every surface point. The central problem is
thus to provide a fast and accurate evaluation of Equation 4.

4 ANALYTIC SPECTRAL INTEGRATION

Our solution is to perform integration in the Fourier domain: we
�rst derive an explicit formula for the spectral Airy re�ectance; we
then use a fast analytical spectral integration in Fourier space. The
di�erent steps of our method are illustrated in Figure 5. We validate
our approach against a ground truth obtained by numerical spectral
integration at the end of this section.

Spectral Airy re�ectance. We will rely on Equation 2, which de-
�nes the complex re�ection coe�cient of a thin-�lm as an in�nite
sum. It is easily reformulated as a sum of complex numbers of the

form r =
∑

+∞
k=0

cke
iϕk , where for k ≥ 1:

ck = t12r23[r21r23]
k−1t21,

ϕk = k (∆ϕ + ϕ23 + ϕ21) − ϕ21,

and we write c0 = −r21 and ϕ0 = ϕ21 for later convenience. Recall
that rab and ϕab denote the modulus and phase of rab .

Expressing the spectral Airy re�ectance using the ck and ϕk
yields:

|r|2 =

�������
+∞
∑

k=0

ck cosϕk

�������
2

+

�������
+∞
∑

k=0

ck sinϕk

�������
2

=

+∞
∑

k=0

c2
k
+ 2
+∞
∑

k=0

∑

l<k

ckcl cos(ϕk − ϕl ),

where we have used a multinomial expansion for each term of
the �rst line, then grouped terms using the trigonometric identity
cosϕk cosϕl + sinϕk sinϕl = cos(ϕk − ϕl ).

If we now write ϕk −ϕl =mΦ withm = k − l and Φ = ∆ϕ +ϕ23 +

ϕ21, then the spectral Airy re�ectance becomes:

|r|2 =
+∞
∑

k=0

c2
k
+ 2

+∞
∑

m=1

+∞
∑

k=0

ckck+m cos(mΦ),

More succinctly, using C0 =
∑

+∞
k=0

c2
k
and Cm =

∑

+∞
k=0

ckck+m :

R = C0 + 2
+∞
∑

m=1

Cm cos(mΦ). (5)

The Cm terms are illustrated in Figure 6 form ∈ {0, 1}, wherem
represents the o�set in orders between pairs of light paths. They
are derived in closed form in the Appendix, yielding:

C0 = R12 + R⋆; Cm =
(√

R23R21
)m (

R⋆ −
√

T12T21
)

, (6)

with Rab and Tab denoting Fresnel re�ectances and transmittances

between media a and b, and where R⋆ =
T12T21R23
1−R23R21

encapsulates all

inter-re�ections inside the thin-�lm layer.
We also rewrite Equation 5 in closed-form in the Appendix:

R = R12 + R⋆ +
2
(

Rl cosΦ − R2l
)

1 − 2Rl cosΦ + R2l

(

R⋆ −
√

T12T21
)

,

where we have used Rl =
√
R23R21. However, its interpretation

in Fourier is not straightforward; hence we will only use it for
computing ground-truth re�ectances in the following.
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Fig. 6. We illustrate the Cm terms of Equation 5. Le�: C0 is obtained by

summing interferences for all pairs of light paths of the same order. Right:

C1 is obtained by summing interferences for all pairs of light paths with an

o�set ofm = 1 in orders.

Spectral Integration in Fourier. In order to simplify the spectral
integration of Equation 4, we are now going to assume that all
Fresnel amplitude and phase coe�cients are constant per spectral
band (we will evaluate the pertinence of this approximation later).
A direct consequence is that the spectral dependence in R now
only occurs in the phase shift ∆ϕ = 2πνD, which is linear in ν =

1/λ, with D the optical path di�erence. We must now re-express
Equation 4 in terms of ν using a change of variables, yielding:

Rj =

∫

R (ν )
sj
(

1
ν

)

‖sj ‖ν2
dν . (7)

Writing Sj (ν ) =
sj

(

1
ν

)

‖sj ‖ν 2 and using Parseval’s theorem yields:

Rj =

∫

R̂ (µ ) Ŝj (µ )
⋆dµ, (8)

where R̂ (µ ) and Ŝj (µ ) are the Fourier transforms of R (ν ) and Sj (ν )
respectively, and ⋆ denotes the complex conjugate. The scaled sen-

sitivity functions Sj and the moduli of their Fourier transform |Ŝj |
are shown in Figures 5(b) and 5(c) respectively, for each of the CIE
X, Y, and Z bands.

The (unitary, ordinary frequency) Fourier transform of R follows
from Equation 5 by using Euler’s formula to separate the spectrally-
independent phase shift ϕ2 = ϕ21 + ϕ23 from ∆ϕ, yielding:

R̂ (µ ) = C0δ (µ ) +

+∞
∑

m=1

Cm
[
eimϕ2δ (µ−mD) + e−imϕ2δ (µ+mD)

]
, (9)

where δ is the dirac function. As shown in Figure 5(d), |R̂ | is a dis-
tribution of diracs each separated by D, with the amplitudes of the
DC term and themth harmonic given by C0 and Cm respectively.
Therefore Equation 8 may now be evaluated analytically.

Since Sj is a real function, the real part of Ŝj is symmetric, and its

imaginary part is anti-symmetric; hence Ŝj (−µ ) = Ŝj (µ )
⋆. Plugging

this formula and Equation 9 inside Equation 8 yields:

Rj = C0 +

+∞
∑

m=1

Cm
[
eimϕ2 Ŝj (−mD) + e−imϕ2 Ŝj (mD)

]
,

where we use the fact that Ŝj (0) = 1 by construction.

If we explicitly write Ŝj (±µ ) = ℜj (µ ) ± iℑj (µ ) withℜj and ℑj
the real and imaginary parts of Ŝj respectively, then after a few
straightforward simpli�cations, we obtain:

Rj = C0 + 2
+∞
∑

m=1

Cm

[
cos(mϕ2)

sin(mϕ2)

]T [
ℜj (mD)

ℑj (mD)

]
. (10)

It should be noted that sinceC0 andCm are de�ned in terms of Fres-
nel re�ectances and transmittances (see Equation 6), they depend
on indices of refraction that we assumed constant per spectral band.
For a given band, a natural choice is to take the refractive index for
which the sensitivity function is maximum (i.e., its mode). Strictly
speaking, theC0 andCm terms should be subscripted by the spectral
band index j; but we prefer to avoid this notation for clarity.

Equation 10 is our main result. If we choose a maximum value for
m, it provides a closed-form approximation to Airy’s re�ectance for
a given spectral band. Note that with a dielectric base, ϕ2 = 0 or π

meaning that only the real part of Ŝj needs to be evaluated. In this
case, we should also consider transmission through both layers. The
simplest approach is then to use energy conservation and de�ne
an Airy transmittance term by Tj = 1 − Rj , which may then be
plugged in any microfacet-based BTDF model. For completeness,
we also re-derive Airy transmittance from the corresponding Airy
summation formula in the Appendix.

Validation. We validated our pre-integration strategy using a pair
of datasets: one with constant indices for both layers, the other with
spectrally-varying indices. We used an integration step of 1nm to
generate the ground truth and performed comparisons in CIE XYZ
color space. For each band, the reference indices for theCm terms in
Equation 10 are those corresponding to the peak of each sensitivity
curve (i.e., at λX = 600nm, λY = 560nm and λZ = 450nm).

The constant-index dataset permits to speci�cally compare vari-
ous approximations of the Airy re�ectance term. We use a dielectric
thin-�lm of thickness comparable to visible wavelengths over a
smooth dielectric base (i.e., D is a dirac distribution in Equation 1).
Results are shown as curves parametrized by θ1 plotted in the CIE
xy chromaticity space, since we are mostly concerned by iridescent
color e�ects. Note that when θ1 → π/2, re�ectances for all bands
tend to 1 and the curves in chromaticity space tend toward the equi-

luminant point E = ( 13 ,
1
3 ). In Figure 7(a), we show that the naive

approach that uses one wavelength sample per sensitivity curve pro-
duces results far from the ground truth, even creating over-saturated
colors that run outside of the CIE RGB gamut. If instead we use a
large number of wavelength samples as with the ground truth but
then resort to the simpli�ed model of Smits and Meyer [1992] as
shown in Figure 7(b), we obtain less saturated colors, but the curve
still exhibits a signi�cant disparity compared to the reference curve.
We attribute these di�erences to the limitations of their model: no
multiple scattering, and no account of base conductors or polariza-
tion. In Figure 7(c) we show our result using the analytical spectral
integration of Equation 10. It shows that truncatingm at 3 or even
1 yields curves nearly indistinguishable from the reference curve.
We make the same comparison for each of the X , Y and Z spectral
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(a) Naive approach (b) Smits and Meyer (c) Our approach (d) Ours for X, Y, Z bands

Fig. 7. We compare di�erent approximations to a ground truth reflectance for a dielectric film (η2 = 1.5) of thickness d = 525nm over a dieletric base

(η3 = 1.09). In (a-c), reflectance curves parametrized by θ1 are plo�ed in CIE xy chromaticity space, with the ground truth in red and approximate solutions

in blue. The naive approach in (a) uses the exact Airy reflectance, but only one wavelength sample per spectral band, which yields poor results. The approach

of Smits and Meyer [Smits and Meyer 1992] in (b) makes several simplifications to the reflectance model (e.g., κ3 = 0); even with a dense spectral sampling

identical to the ground truth, it still shows significant disparities. Our approach is shown in (c) for di�erent truncations of the o�setm. Computationally, it is

only slightly more complex than the naive approach; yet it produces results nearly indistinguishable from the ground truth, as is also shown for each of the X,

Y, and Z spectral bands in (d).

bands separately in Figure 7(d).

Detailed comparisons using the varying-index dataset are pro-
vided in our supplemental material. For the sake of brevity, we only
provide visual comparisons on rendered spheres in Figure 8. The �g-
ure shows three examples of a dielectric thin-�lm (buthanol) applied
over a dielectric or conducting base, with both layers having refrac-
tive indices that vary with wavelength. This permits to evaluate the
impact of assuming that Fresnel phase and amplitude coe�cients
are constant per spectral band. We observe that our approximation
becomes slightly less accurate for a conducting base layer such as
copper, whose index of refraction varies non-monotonically with
wavelength. Of course, these di�erences would likely be reduced if
more spectral bands were available.

5 PRACTICAL CONSIDERATIONS

Having described and validated our BRDF model, we now discuss
practical issues one must consider when incorporating any material
model in modern rendering engines: how to evaluate and pre�lter

Ours Ref. Ours Ref. Ours Ref.

(a) Glass base (b) Mercury base (c) Copper base

Fig. 8. Comparisons between the ground-truth Airy reflectance and our

approximation, on spheres rendered in the Ufizzi environment lighting. A

thin-film of buthanol of thickness d = 666nm is laid on top of a base layer

made of either (a) glass, (b) mercurial, or (c) copper. Each image is split in

two, with our result on the le� and the ground truth on the right.

it e�ciently, especially for multi-scale rendering; which parameters
should be brought to artists to control iridescent appearance.

BRDF Evaluation. The most direct method for evaluating the pre-

integrated Airy re�ectance (or transmittance) term is to tabulate Ŝj ,
the Fourier transform of the scaled sensitivity curves.Whenworking
with a tristimulus rendering engine, the real and imaginary parts of

Ŝj may be stored in each row of a N ×2 three-channel texture, where
N is the resolution in the Fourier dimension. Evaluating Equation 10
would then normally require two texture fetches to get the real and
imaginary parts; however, a single fetch at texture location (mD,γ )
using bilinear interpolation is enough since:

[
cos(mϕ2)

sin(mϕ2)

]T [
ℜj (mD)

ℑj (mD)

]
= β lerp

(

ℜj (mD),ℑj (mD),γ
)

,

with β = cos(mϕ2) + sin(mϕ2) and γ = sin(mϕ2)/β .

Another method consists in approximating scaled sensitivity func-
tions (and their Fourier transforms) using Gaussians. This is shown
in Figure 5(b-c), where we have used two Gaussians for the X band,
and one Gaussian for each of the Y and Z bands. This approxima-
tion results in an appearance close to the ground-truth BRDF when
dealing with dielectric base layers. However, it tends to produce
slightly over-saturated colors for conducting base layers, or at graz-
ing angles. We attribute these di�erences to the subtle oscillations

in Ŝj (see Figure 5(c)) that are not captured by the Gaussian �ts.
The practical advantage of this approximation is that it requires
only a few input parameters for the Gaussians, as demonstrated
by the GLSL implementation provided in our supplemental material.

For importance sampling, we follow the approach of existing
techniques that uniquely rely on the microfacet distribution D of
Equation 1 and ignore the re�ectance term R.
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Fig. 9. We show 2D slices of the Airy reflectance term for a base material

of index η3 = 1.1, with either κ3 = 0 (top row) or κ3 = 1.5 (bo�om row).

In each slice, the horizontal axis maps to θ1, while the vertical axis maps

to η2 ∈ [1..2]. Airy reflectance is highly sensitive to variations of Dinc the

OPD at normal incidence.

Multi-scale Rendering. Our model is linearly dependent on the
thickness d of the thin-�lm, which makes it adapted to the pre�lter-
ing of spatial thickness variations. Formally this requires to integrate
our BRDF model against a distribution P of thickness values. We
make two simplifying assumptions: P is modeled as a Gaussian
distribution and is not correlated with the microfacet distribution
D (i.e., for every normal the associated distribution of thicknesses
is the same: P (d |h) = P (d ) ∀h). As a result of the latter, integration
only takes place in the re�ectance term, yielding:

R̄j (h ·ωωωi ) =

∫

Rj (h ·ωωωi )P (d ) dd .

Using Equation 10 and moving outside of the integral the terms that
are constant with respect to d , we obtain:

R̄j = C0 + 2
+∞
∑

m=1

Cm

[
cos(mϕ2)

sin(mϕ2)

]T ∫ [
ℜj (mD)

ℑj (mD)

]
P (d ) dd .

If we now explicitly writemD in term of d and perform a change
of variable t ←mD in the integral, we get:

∫ [
ℜj (mD)

ℑj (mD)

]
P (d ) dd =

∫ [
ℜj (t )

ℑj (t )

]
P
(

t
τ

)

τ
dt ,

with τ = m2η2 cosθ2. Speci�cally, P
′(t ) = P

(

t
τ

)

/τ is a Gauss-

ian distribution that is shifted and scaled with respect to P , since
E[P ′] = τ E[P] and Var[P ′] = τ 2 Var[P].

In practice, we �rst pre�lter the real and imaginary parts of Ŝj
with Gaussian kernels of increasing variance. The result is stored in
a dedicated mip-map, with the scale dimension being indexed by the
variance parameter of the Gaussian. Then, at run time, depending on
τ (which varies withm and local material parameters), the mip-map
is fetched at a di�erent location E[P ′] and scale Var[P ′].

η2 = 1.2 η2 = 1.5 η2 = 1.8

Fig. 10. The Airy reflectance term is directly visualized on spheres with

three values of η2 (one per column); other material parameters are held

fixed to Dinc = 1600nm, η3 = 1.1, and κ3 = 1.5. More color fringes are

obtained with smaller values of η2.

η
2
=
1
.2

η
2
=
1
.5

η
2
=
1
.8

Dinc

Fig. 11. The Airy reflectance term at normal incidence is visualized for

Dinc ∈ [0..6400]nm with three values of η2 (one per row); other material

parameters are held fixed to η3 = 1.1 and κ3 = 1.5. Color saturation and

intensity increase with larger values of η2.

Parametric Control. In our model, the thin-�lm layer is controlled
by a pair of physical parameters,d andη2. Sinced only appears in the
optical path di�erence (OPD), we rather provide a direct control over
the OPD at normal incidence, denoted by Dinc = 2η2d ; we then use
D = Dinc cosθ2. The parameter space of the Airy re�ectance term
is visualized using (cosθ1,η2)-slices at various values of Dinc in
Figure 9, for both dielectric and conducting base layers. First observe
that even with an achromatic base layer, it exhibits high-frequency
oscillations that would require a very high-resolution lookup table
if it were to be precomputed. This would be even more problematic
with a colored base layer, since the look up table would also increase
in dimensionality, up to nine dimensions for a conductor in RGB
(two for the thin-�lm, six for the base, and one for cosθ1). Second,
note that when Dinc is made large enough, iridescent e�ects begin

to vanish. This is because for large values of the OPD, the diracs of R̂
(see Figure 5(d)) will be distant enough so that only the DC term will
signi�cantly contribute to the spectral integral in Equation 9. We

thus de�ne a maximal OPDDmax such that ∀µ ≥ Dmax, |Ŝj (µ ) | ≤ ϵ :
beyond Dmax, iridescence is considered negligible. We use ϵ = 0.05
in our implementation, which yields Dmax ≈ 25 microns for the
CIE XYZ color space. Even though Dmax is a valid criterion only at
normal incidence, we use it at all incidence angles. This is justi�ed
by the observation that C0 dominates the Cm terms at all incidence
angles, the latter eventually vanishing at θ1 =

π
2 (see Figure 22).

Such a higher bound on the OPD permits to control iridescence as
a whole, since the latter only occurs when 0 < Dinc < Dmax. When
Dinc = Dmax, R ≈ C0, which is consistent with the re�ectance of
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thick layers (e.g., see [Jakob et al. 2014]). When Dinc = 0, R should
become equal to R13 since the thin-�lm then e�ectively vanishes.
Unfortunately, this con�guration is not physically-valid since it
yields a pair of superimposed interfaces with di�erent pairs of in-
dices on each side. A physically-realistic treatment would require
to model the case of extremely thin layers (below a few nm) with
quantum optics, which is clearly out of the scope of this paper. Our
alternative solution is to force η2 → η1 when Dinc → 0, hence
ensuring that we end up with a single e�ective interface.

The thin-�lm index η2 provides a more subtle control over ap-
pearance, with two main e�ects. First, assuming a constantDinc, η2
controls the number of color fringes swept by when θ1 varies from
0 to π/2. This is shown in Figure 10 using spheres rendered in a
white furnace environment. Second, assuming a constant incidence
angle θ1, variations in η2 modify the intensity and saturation of
color fringes. This is shown in Figure 11 where a fronto-parallel
surface is rendered with Dinc varying linearly from left to right.
Finally, the complex index η3 + iκ3 of the base layer may be

directly given for each spectral band, or it may be obtained from
more intuitive color input [Gulbrandsen 2014].

6 RESULTS

We have implemented our approach in GLSL shaders for Disney’s
BRDFExplorer [Disney 2011] and Gratin [Vergne and Barla 2015], us-
ing the GGX distribution [Walter et al. 2007] for the former, and the
Ward distribution [Ward 1992] for the latter. For global illumination
results, we have created a plugin for Mitsuba [Jakob 2010], using the
GGX distribution again. Note that our method is completely orthog-
onal to the choice of microfacet distribution. We obtained slightly
less saturated colors when using Mitsuba due to the choice of color
space in the API (sRGB instead of CIE RGB). As demonstrated in
our supplemental video, our GLSL implementation does not su�er
from this limitation since we fully control the spectral conversion.
The BRDFExplorer shader and the Mitsuba plugin are provided in
our supplemental code.

Direct Lighting. We demonstrate our GLSL shader in BRDFEx-
plorer through an editing session in our supplemental video. It
shows that our model reproduces the ground truth very accurately,
while permitting interactive manipulation. We highlight the arti-
facts produced by the naive approach with one wavelength sample
per color channel: it yields wrong colors and iridescent e�ects do
not vanish when Dinc → Dmax as they should.

Our approach is particularly useful when the thickness of the
thin-�lm is varied spatially, which is shown in Figure 12 and in our
supplemental video for two types of materials, on a speed shape

model. We add a red di�use base to the dielectric material on the left
column using a simple Lambertian model ρd . We also add a clear-
coat layer on top of both materials using the approach of Weidlich
and Wilkie [2007] (we set η1 = 1.1) to reproduce the appearance
of car paint. Thin-�lm variations are controlled with a texture that
remaps Dinc between 0 and a maximum OPD. When the maximum
OPD is increased, the iridescent e�ects sweep through a series of

In
cr
ea
si
n
g
th
ic
k
n
es
s

Fig. 12. The Speedshape model is rendered with a dielectric base in the

le� column (α = 0.1, η2 = 1.25, η3 = 1.72, ρd = {0.191, 0.015, 0.015})
and a rough conductor base in the right column (α = 0.18, η2 = 1.25,

η3 = 1.1, κ3 = 1.63). The thin-film of spatially-varying thickness is revealed

by remapping Dinc from 0 to 100nm (first row), to 200nm (second row), and

to 400nm (third row), controlled by the texture shown on top.

color fringes that provide a realistic look to the speed shape.

The texture map used to control the thin-�lm may be chosen for
aesthetic purposes, as shown in Figure 13. On the left side, we re-use
an ambient occlusion map to introduce subtle color variations in
cavities of the robot model. On the right side, we replace parts of
the texture with regular patterns to convey a futuristic look.

Spatial variations of iridescence also bring realism to the render-
ing of transparent objects. This is shown in Figure 14, where we
have created a thick transparent slab using a displacement map on
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Dinc map Dinc map

Fig. 13. The robot model is made of a metallic base (α = 0.07, η3 = 1.87,

κ3 = 1.182) to which we add a thin-film of index η2 = 1.42 and varying

thickness (Dinc ∈ [0..1125]nm). On the le�, we use an ambient occlusion

texture to guide thickness variations. On the right we add regular pa�erns

to give a futuristic look. The image on top is rendered without iridescence.

a plane, then added thin-�lm variations using a texture controlling
Dinc as before. We not only visualize the combination of re�ection
and transmission, but also transmission in isolation, which reveals
subtle color variations on close inspection (see insets).

Aliasing artifacts may occur when using highly detailed thin-�lm
variations. As shown in Figure 15, our pre�ltering solution reduces
these artifacts e�ciently, with visual results close to the reference.

Our model runs in real time when the base layer is perfectly
smooth: the distributionD in Equation 1 then becomes a dirac, hence
R becomes a function of n · ωi . A common approximation for real-
time rendering of rough materials is to pre�lter the environment
lighting [Kautz et al. 2000], which is then evaluated once in the
specular direction. We combine this technique with an evaluation
of R in the specular direction as well in Figure 16 (our supplemental
video shows this scene captured in real time). It gives satisfying
visual results when thematerial is smooth or evenmoderately rough,
but produces over-saturated colors with rougher materials.

Global Illumination. We illustrate the full range of appearances
achievable by our model in supplemental material for conductor
and dielectric materials.

We focus here on material parameters adapted to speci�c cases,
such as in Figure 1 where the thin-�lm is applied to a leather chair
model. This example is inspired by Akin [2014], where thin-�lm
iridescence is produced by a brute-force approach. Iridescent colors
indeed push the realism of the material: when rotating the object,
colors exhibit subtle changes in hue. Similarly subtle, yet important
color e�ects may be obtained by applying our model to the metallic

Disp. map

Dinc map

Orientation 1 Orientation 2

R
+
T

T
o
n
ly

Fig. 14. Our model works with transparent objects, here a transparent

slab obtained by applying a displacement map to a plane, with a rough

dielectric base (α = 0.2, η3 = 1.45). We control variations of the thin-

film (η2 = 2.0) using a texture that remaps Dinc to the [0..415]nm range,

mimicking a condensation e�ect that is more or less revealed depending on

the slab orientation. We also show the transmi�ed radiance in isolation in

the bo�om row.

no AA

with AA

ref. zoom

Fig. 15. A highly-detailed texture is mapped to a sphere to produce spatial

variations of the film thickness, here applied on a dielectric base layer

(α = 0.01, η2 = 1.68, η3 = 2.0, Dinc ∈ [0..1470] nm). When the sphere

is moved away from the camera (middle column), aliasing due to the Airy

reflectance term becomes visible, unless we use our dedicated anti-aliasing

(AA) technique. As shown in the zoomed insets, our method gives results

close to the reference zoomed image.

boar model, as seen in Figure 17.

Special e�ect pigments for car paints are usually less subtle. We
reproduce such an example in Figure 18, adding thin-�lm variations
on the doors to give a custom touch to the Beetle model. As with
the speed shape, we add a clear-coat layer to reproduce a car paint
appearance.

Our approach may be applied to transparent objects, as shown in
the classic example of a Soap bubble in Figure 19. In this case, both
re�ection and transmission at each interface (front and back) are
responsible for the rich color patterns observed in the result.
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Fig. 16. The Stag beetlemodel is rendered with a dielectric base (η2 = 1.21,

η3 = 2.0, Dinc = 1740nm) using progressive rendering in the top row, and a

real-time approximation in the bo�om row (see text). When the roughness

α of the base layer increases, the real-time approximation is less and less

accurate; in particular, color fringes become over-saturated.

Comparisons. Compared to themethod of Smits andMeyer [1992],
our approach approximates the ground truth much more accurately,
even when evaluated in RGB. This is not only demonstrated in Fig-
ure 7, but also shown in Figure 20, where we have used our Mitsuba
plugin on the mat preview scene. There are still slight di�erences
in color saturation between our method and the ground truth, which
are due to the choice of RGB color space in Mitsuba as previously
explained.

We compare our analytical micro-facetmodel to themore complex
micro-�ake model of Ergun et al. [Ergun et al. 2016] in supplemental
material. From a physical point of view, this amounts to consider
that micro-facets act as uncorrelated iridescent �akes, a condition
that is satis�ed when Smith’s geometric term is used forG in Equa-
tion 1. A couple example comparisons are given in Figure 21, where
the appearance obtained with their model is imitated by adjusting
the parameters of our model by hand. We achieve similar color
fringes overall, even though their results tend to yield slightly more
saturated colors, which we attribute to the e�ect of multi-layered
thin-�lm interferences. A clear advantage of our approach is its e�-
ciency: the material parameters can be modi�ed interactively with
our GLSL implementation. In comparison, their approach requires
a costly preprocess that takes several seconds and requires around
10mb of storage per material con�guration. However, their model
is not designed for the same usage: it permits to accurately predict
the appearance of speci�c car paints, while ours only imitate them.

Interactive implementation. As seen in the supplemental video,
our model is nearly as e�cient as the naive model (i.e., using one
wavelength sample per color channel) in our BRDFExplorer im-
plementation. More speci�cally, to render a sphere at 800spp in
1024 × 1024 resolution without the thin-�lm layer takes 1.1sec on a
NVidia GeForce GTX555. The naive model takes approximately 1.5

Classic microfacets Iridescent microfacets

Fig. 17. We reproduce the subtle iridescent appearance of oxide layers on

top metals with the boar model. Iridescence adds a touch of green and

purple (right inset) to a base ’white’ material (le� inset). The base layer

index is here given by η3 = 1.5 and κ3 = 3, and the thin film is d = 600nm

thick and has an index of η2 = 1.33.

Ours (RGB)

Reference

Naive RGB

Reference

Fig. 18. With the Beetle model we tried to reproduce the look of special

e�et car paints (see our supplemental video for an example). We show that

even for a configuration where the variation of colors is moderate and dense

sampling is probably not required, the naive RGB model still produces

inacurrate colors. Here we used a conducting base layer (η3 = 1.2, κ3 = 0.5)

with a thin-film of d = 505nm and index η2 = 1.39. We also added a clear

coat of η1 = 1.2 to further match the car paint appearance. The door-side

sticker is created by varying thickness using a texture.

R +TRT R +TRT +TRRT + · · ·
Fig. 19. With the Soap bubble model, we show how iridescence behaves

in transmission & reflections with multiple sca�ering. In this example,

the multiple transmissions and reflections (TRT , TRRT , etc) add to the

purely reflected signal to produce a convincing look. Here we use a film of

d = 400nm and η2 = 1.7, and a base layer of air (i.e., η1 = η3 = 1.0).
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Ours (RGB) Ref. (Spectral) Smits (Spectral) Ref. (Spectral)

Fig. 20. We use the mat preview scene to compare our approach both with

the ground truth, and with the model of Smits and Meyer, which here

exhibits incorrect green colors at grazing angles. We use a dielectric film

(η2 = 1.33, d = 550nm) on top of a conducting base (η3 = 1.9, κ3 = 1.5).

Ergun et al. Ours Ergun et al. Ours

Fig. 21. We have reproduced by hand the results of Ergun et al. (their Figure

7) by adjusting the parameters of our model. Here we show two out of the

eight materials presented in supplemental material: our approach permits

to reproduce very similar color fringes.

seconds, while ours takes 1.6, 1.9 and 2.2 seconds when we truncate
m to 1, 2, and 3 respectively in Equation 10 (we truncatem to 3 in
the video). The overhead of our approach compared to the naive
model (i.e., the simplest implementation of thin-�lm iridescence)
is thus very reasonable. In comparison, using the ground truth is
prohibitively slow: it takes 70 minutes using 94 wavelength samples
per color band (each separated by 5nm), which is likely due to the
poor performance of long loops in GLSL.

O�ine implementation. We report rendering times for the di�er-
ent o�ine scenes in the following table:

No irid RGB Naive RGB Spectral Ours (RGB)

Mat preview 2.0m 2.4m 11.8m 2.6m

Soap bubble 33s 55s 8.1m 57s

Chair 43s 50s 3.2m 53s

Beetle 3.2m 4.0m 16.6m 4.3m

Boar 3.1m 4.0m 23.4m 4.5m

In the �rst column, we report rendering times without inter-
ferences (by replacing the Airy re�ectance term R by the Fresnel
re�ectance term F ). We then provide rendering times when using
the naive RGB model with Airy re�ectance, a spectral rendering
(with 128 samples per spectral band), and our analytical model (cut-
ting o�m at 2, in blue). Since Airy re�ectance evaluates multiple
Fresnel re�ectances, it requires more time: between 20% and 30%
for the naive RGB model. Using our method adds less than 10% to

these timings, but achieves results very close to the ground truth
spectral model, which is much more expensive in comparison.

7 DISCUSSION

We have introduced an extension to microfacet theory that models
thin-�lm interference e�ects based on Airy summation, in practice
replacing the Fresnel term by a new Airy term. Our main contribu-
tion resides in an analytical spectral integration taking advantage
of the simple forms of Airy re�ectance and transmittance in Fourier
(a series of Diracs). As a result, the extended micro-facet model may
be edited with immediate feedback, used with surface-varying pa-
rameters with negligible overhead, and rendered at multiple scales
without producing aliasing artifacts.

Limitations. The assumptions we made in our approach forbid
some speci�c micro-structures. For instance, we assume the thin-
�lm to be �at and parallel to the underlying microfacet. If this is
not the case, re�ectance colors will likely appear desaturated and
might change in tint due to the average of di�erent optical path
di�erences. While the desaturation could be handled with our multi-
scale approach, we cannot account for the potential change in tint.
Parallelism with the microfacet will eventually be untenable for
�lms thicker than a few microns, in which case iridescence starts
to become irrelevant and other phenomena such as absorption and
scattering begin to matter. An interesting challenge would be to
model the transition from thick to thin �lms, as is the case of a liquid
drying on a rough surface for instance.

On the practical side, our model permits interactive editing in
progressive rendering for arbitrary material parameters. For real-
time rendering, the simple approximation presented in Section 6
remains limited to material of small roughness. A more promising
solution would be to pre-integrate the Airy term for each possi-
ble view direction, in essence yielding a color-varying directional
albedo. Such an integration will of course depend on the choice of
microfacet distribution.

The analytical spectral integration of Equation 10 assumes that
spectral bands are �xed throughout rendering. Some high-end ren-
dering engines rather perform spectral sampling from scratch at
each light-surface interaction to better account for complex lighting
e�ects [Wilkie et al. 2014]. The pre-integrated Airy term could still
be used as a control variate [Hammersley and Morton 1956] in such
cases, and hence serve as a guide to spectral sampling. This would
actually be bene�cial in the case of iridescence to get rid of spectral
aliasing; in particular, using 4 randomly shifted spectral samples as
in the original hero wavelength sampling technique is clearly not
su�cient to avoid spectral aliasing due to thin-�lm iridescence.

Future Work. Our model reproduces the iridescent e�ects occur-
ring with thin-�lms, which are due to the interference of parallel
waves. Interferences of non-parallel light waves are rather due to
di�raction, which not only modi�es the colors but also the angular
spread of scattering lobes. A challenge for future work is to model
the e�ect of di�raction in tristimulus engines while retaining physi-
cal plausibility, analytic formulation and parametric control.
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Finally, even though the design of material acquisition devices
has greatly improved in recent years, measuring goniochromatic
materials remains a challenge. Not only do they require a dense
sampling in angular and spatial dimensions, but also in the spectral
dimension owing to the complex iridescent colors they produce.
With a su�ciently rich database of measured goniochromatic ma-
terials, it would become possible to investigate the �tting of data
using our microfacet-based extension. Another interesting direction
of future work would be to study whether our parametric model
could be used to guide the material acquisition process directly in
RGB.
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APPENDIX

Derivation of Cm and R in Closed Form. C0 is given by:

C0 = c20 +

∞
∑

k=1

c2
k
= R12 +

T12T21R23

1 − R23R21
= R12 + R⋆,

with Rab = |rab |2 and Tab =
ηb cosθb
ηa cosθa

|tab |2 denoting Fresnel re-

�ectances and transmittances respectively. The derivation is similar
to that of Equation 3, and we have used T12T21 = |t12 |2 |t21 |2 to
express C0 uniquely in terms of re�ectances and transmittances.

ForCm , wemust �rst separate the 0th order terms from the others:

Cm = cmc0 +

+∞
∑

k=1

ckck+m

= cmc0 +
(√

R23R21
)m
+∞
∑

k=1

c2
k
,

with cmc0 = −
√
T12T21

(√
R23R21

)m
and
∑

+∞
k=1

c2
k
= R⋆. We may

now factorize by
(√

R23R21
)m

to obtain Cm in closed form:

Cm =
(√

R23R21
)m (

R⋆ −
√

T12T21
)

.

TheCm terms form ∈ {0..3} are shown as functions of the incidence
angle θ1 in Figure 22.

To derive R in closed form, we �rst explicitly write Equation 5 in
terms of Fresnel re�ectances/transmittances and phase shifts as:

R = R12 + R⋆ + 2(R⋆ −
√

T12T21)

+∞
∑

m=1

(Rl)
m cos(mΦ),
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where we have used Rl =
√
R21R23 as a short notation. Now, apply-

ing Euler’s formula cos(mΦ) = 1
2 (e

imΦ
+ e−imΦ), we obtain

+∞
∑

m=1

(Rl)
m cos(mΦ) =

P+ + P−
2
,

with P± =
∑

+∞
m=1 (Rle

±iΦ)m = Rle±iΦ

1−Rle±iΦ . The sum P+ + P− may be

further simpli�ed to yield:

R = R12 + R⋆ +
2
(

Rl cosΦ − R2l
)

1 − 2Rl cosΦ + R2l
(R⋆ −

√

T12T21).

Fig. 22. The Cm terms are visualized for both polarizations (S for perpen-

dicular, P for parallel), as a function of the incidence angle θ1, for a material

defined by η2 = 1.5, η3 = 1.2 and κ3 = 0.5. All terms but C0 vanish at

θ1 = π /2.

The Case of Transmission. Assuming a dielectric base layer of

real index η3, the spectral Airy transmittance T =
η3 cos θ3
η1 cos θ1

|t|2 is

computed using the following summation formula:

t = eiδϕ
∞
∑

k=0

t12 [r23r21]
k t23e

ik∆ϕ

where δϕ is the phase shift between the primary re�ected ray and
all transmitted rays (it will get simpli�ed later on).
As explained in our supplemental material, ∆ϕ has the same

expression in the re�ection and transmission cases. However, the
ck and ϕk terms take on di�erent forms:

ck = t12 [r23r21]
k t23

ϕk = δϕ + k (∆ϕ + ϕ23 + ϕ21) .

Following the same steps as in Section 4, we obtain:

T = C0 + 2
∞
∑

m=1

Cm cos(mΦ),

where Φ = ∆ϕ + ϕ23 + ϕ21 as before, since δϕ vanishes. However,
the Cm terms are now given (for allm ≥ 0) by:

Cm =
(√

R23R21
)m

T⋆ with T⋆ =
T12T23

1 − R23R21
,

where we have used T12T23 =
η3 cos θ3
η1 cos θ1

|t12 |2 |t23 |2.
Since the spectral Airy re�ectance and transmittance have the

same form, it follows that the analytic spectral integration of Equa-
tion 10 is also valid for the case of transmission. The resulting Airy

transmittance term may thus be used in place of the classic Fresnel
transmittance term in any microfacet-based BTDF model.

The spectral Airy transmittance is also given in closed form by:

T = T⋆
*...,
1 +

2
(

Rl cosΦ − R2l
)

1 − 2Rl cosΦ + R2l

+///-
,

following a derivation similar to the one used for the Airy re-
�ectance.
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