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High speed data transmission for wireless communication in orthogonal frequency division multiplexing (OFDM) system requires eective channel state information (CSI). CSI should be precisely estimated with low consumption of spectral resources and acceptable computational cost. To realize this goal, an eective compressed sensing (CS) based channel estimation scheme is proposed for sparse channels with large delay spreads, without prior knowledge of channel statistics and noise standard deviation. By fully considering the rank of the measurement matrix, a novel algorithm based on orthogonal matching pursuit (OMP) and least squares (LS) methods with a new threshold is proposed for eective channel estimation. Simulation results show that with fewer number of pilots, the proposed method outperforms the compared existing channel estimation methods in a comprehensive way and approaches

Introduction

Orthogonal frequency division multiplexing (OFDM) technique is widely used in wireless communication system thanks to its advantages of high data transmission rate over multipath fading channel [START_REF] Bingham | Multicarrier modulation for data transmission: An idea whose time has come[END_REF]. In OFDM system, accurate channel state information (CSI), high spectral eciency, low complexity are all essential. Therefore, how to eectively balance the above factors is one of the main challenges in channel estimation eld.

In order to achieve the above goals, the sparse properties of physical channels can be exploited. The existence of physical sparse channels is proven by many experiments [START_REF] Bajwa | Compressed Channel Sensing: A new Approach to Estimating Sparse Multipath Channels[END_REF], which showed that digital television channels [START_REF] Minn | An investigation into time-domain approach for OFDM channel estimation[END_REF], underwater acoustic channels [START_REF] Berger | Application of compressive sensing to sparse channel estimation[END_REF], some particular urban channels for long term evolution system [START_REF] Maechler | Implementation of greedy algorithms for LTE sparse channel estimation[END_REF], Hilly Terrain channels [START_REF] Nasr | Performance of an echo canceller and channel estimator for on-channel repeaters in DVBT/H networks[END_REF] and ITU-R vehicular channels (channel A and channel B) [START_REF]International Telecommunication Union, Guidelines for evaluation of radio transmission technologies for IMT[END_REF] have sparse properties.

Traditional channel estimation methods are mainly based on least squares (LS) estimator. Due to the main drawback of LS, which tends to be highly aected by noise, especially in sparse channel situation, the most signicant taps (MST) based technique is developed [START_REF] Minn | An investigation into time-domain approach for OFDM channel estimation[END_REF]. For MST, dierent thresholds have been proposed for eective sparse channel estimation. There are generally two types of methods, the rst type requires the prior knowledge of channel statistics (power prole of channel impulse response (CIR) or sparsity level) [START_REF] Oliver | Sparse channel estimation in OFDM system by threshold-based pruning[END_REF][START_REF] Najjar | Sparsity level-aware threshold-based channel structure detection in OFDM systems[END_REF], while the second one relies on the estimated noise power or noise standard deviation (STD) [START_REF] Kang | Ecient DFT-based channel estimation for OFDM system on multipath channels[END_REF][START_REF] Xie | Ecient time domain threshold for sparse channel estimation in OFDM system[END_REF]. [START_REF] Rosati | OFDM channel estimation based on impulse response decimation: Analysis and novel algorithms[END_REF] shows that threshold without prior requirement of channel statistics will benet wireless communication system. A two-step threshold is proposed in [START_REF] Xie | Ecient time domain threshold for sparse channel estimation in OFDM system[END_REF], which realizes eective sparse channel estimation within a wide range of channel sparsity without prior knowledge of both channel statistics and noise STD.

The above mentioned methods assume that M ≥ L cp (M and L cp are the number of pilots and length of cyclic prex respectively), which leads to a signicant loss on frequency resources in estimating sparse channels with large delay spreads. Therefore, the case of M < L cp becomes more and more popular [START_REF] Tauböck | A compressed sensing technique for OFDM channel estimation in mobile environments: Exploiting channel sparsity for reducing pilots[END_REF]. The case of M < L cp is closely related to the compressed sensing (CS) [START_REF] Donoho | Compressed Sensing[END_REF] theory. l 1 norm based methods and greedy pursuit methods are two main categories of CS reconstruction methods [START_REF] Berger | Application of compressive sensing to sparse channel estimation[END_REF]. Compared with l 1 norm based methods, greedy pursuit methods have lower complexity, therefore, they are widely used in sparse channel estimation [START_REF] Berger | Application of compressive sensing to sparse channel estimation[END_REF][START_REF] Dai | Time domain synchronous OFDM based on simultaneous multi-channel reconstruction[END_REF][START_REF] Zhu | Sparsity-Aware Adaptive Channel Estimation Based on SNR Detection[END_REF][START_REF] Gao | Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO[END_REF]. Recently, orthogonal matching pursuit (OMP), one of the most popular algorithms among greedy pursuit methods and some of its derived algorithms, such as subspace pursuit (SP), adaptive simultaneous orthogonal matching pursuit (A-SOMP) and distributed sparsity adaptive matching pursuit (DSAMP) etc are used to realize channel estimation with prior knowledge of channel statistics (channel sparsity) or signal to noise ratio (SNR) or predetermined threshold [START_REF] Berger | Application of compressive sensing to sparse channel estimation[END_REF][START_REF] Dai | Time domain synchronous OFDM based on simultaneous multi-channel reconstruction[END_REF][START_REF] Zhu | Sparsity-Aware Adaptive Channel Estimation Based on SNR Detection[END_REF][START_REF] Gao | Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO[END_REF]. For example, in time domain synchronized OFDM (TDS-OFDM) system, SNR as a prior knowledge is used to estimate the channel sparsity S (number of non-zero channel taps) to improve the SP based sparse channel estimation [START_REF] Zhu | Sparsity-Aware Adaptive Channel Estimation Based on SNR Detection[END_REF]. In [START_REF] Gao | Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO[END_REF], by exploiting the spatially common sparsity within the system bandwidth of multicarrier massive MIMO chan-nels during multiple time blocks, the authors proposed distributed sparsity adaptive matching pursuit (DSAMP) algorithm to estimate the downlink channels. Of course, S max (maximum possible value of S) can be used [START_REF] Jiang | A fast algorithm for sparse channel estimation via orthogonal matching pursuit[END_REF], however, it may cause loss in estimation precision. We initially proposed an eective threshold estimator for CS based sparse channel estimation without optimizing the noise STD estimation [START_REF] Xie | A novel eective compressed sensing based sparse channel estimation in OFDM system[END_REF], selection of the m (m ≤ M ) columns in measurement matrix and error vector construction etc.

In this paper, we propose a novel threshold for OMP algorithm without prior knowledge of channel statistics and noise STD. The proposed threshold is based on a novel noise STD estimator, which is realized by a new error vector constructed by m selected coecients estimated by LS and initial CIR with S max coecients estimated by OMP which is dierent from our initial research work in [START_REF] Xie | A novel eective compressed sensing based sparse channel estimation in OFDM system[END_REF]. The proposed method allows estimating the real number of signicant taps S. Therefore, the error from the S max -S noise coecients can be eliminated. Simulation results show the eectiveness of the proposed method. This paper is organized as follows. The considered OFDM system model is given in section 2. In section 3, the proposed threshold based estimation algorithm for OMP is presented. Section 4 provides some simulation results. Conclusion is drawn in section 5.

System Model

Consider an OFDM system with N subcarriers, among which M are pilots with positions k 0 , k 1 , . . . , k M -1 . After the transmission of normalized

pilots X p = diag[x[k 0 ], x[k 1 ], . . . , x[k M -1 ]] through a S sparse channel h = [h[0], h[1], . . . , h[L cp -1]] T , the pilot vector y p = [y[k 0 ], y[k 1 ], . . . , y[k M -1 ]] T
is received at the receiver, and given by [START_REF] Bajwa | Compressed Channel Sensing: A new Approach to Estimating Sparse Multipath Channels[END_REF]:

y p = Ah + w p (1) 
with A = X p F M ×Lcp the measurement matrix; In the case of M < L cp , we have Rank(A) < L cp . To obtain an eective threshold, the noise STD is required. However, due to Rank(A) = M , reconstruct the whole CIR with length L cp and estimate the noise STD are impossible. In this case, partial CIR with m (m ≤ M ) coecients can be extracted to estimate the noise STD.

F M ×Lcp (k u , v) = e -j(2πkuv/N ) , 0 ≤ u ≤ M -1, 0 ≤ v ≤ L cp -1; w p = [w[k 0 ], w[k 1 ], . . . , w[k M -1 ]]
(1) can be rewritten as:

y p = A m h m + A b h b + w p (2) 
where

A m = [a[p 0 ], a[p 1 ], . . . , a[p m-1 ]] and h m = [h[p 0 ], h[p 1 ], . . . , h[p m-1 ]] T
are the matrix with the m selected columns of A, which is used to realize the Fourier transform of the partial CIR and vector with the m corresponding channel taps of h, which contains the partial information of CIR respectively;

A b and h b = [h[p m ], h[p m+1 ], . . . , h[p Lcp-1 ]
] T are the matrix with the remaining L cp -m columns of A and vector with the corresponding channel taps of h respectively.

Using LS to estimate the m selected channel taps, we get:

ĥls_m = (A H m A m ) -1 A H m y p (3) 
Combining ( 2) and (3), we have:

ĥls_m = h m + (A H m A m ) -1 A H m A b h b + (A H m A m ) -1 A H m w p (4) 
which is composed of three parts, the rst part is the m selected channel taps, the second one is the interference due to the signicant taps in h b and the last part is the noise part denoted by e m .

In order to obtain a good estimate of the error vector e m for eective noise STD estimation, two aspects are essential. The rst one is the selection of the number of m and the m columns, which will be discussed in Section 4 and Section 3.1.1 respectively, the second one is the reduction of the interference from the rst two parts in (4), which will be discussed in Section 3.1.2.

Selection of m Columns

The condition number of A m is a key parameter for LS method. The smaller it is, the better is the stability of the estimator to perturbations [START_REF] Mostovyi | On the stability the least squares Monte Carlo[END_REF].

To obtain the m eective selected columns, cond(A m ) should be the smallest possible. To realize this, the subset with m indices should be chosen as:

Λ = arg min Λ 1 cond(A Λ 1 ), |Λ 1 | = m (5) 
with Λ the subset of the m optimally selected columns. The optimal partial measurement matrix denoted by A m is obtained by choosing the m columns dened by Λ.

(5) is the optimal solution for the estimation of h m , however, to obtain Λ, there are Lcp m possible choices. It is a heavy computational task. Similar to the suboptimal pilot arrangement method proposed in [START_REF] He | Pilot pattern optimization for compressed sensing based sparse channel estimation in OFDM systems[END_REF], a suboptimal subset of indices of m selected columns can be obtained. Firstly, a limited number of subsets of m selected columns are randomly generated, then, the suboptimal subset is given by the matrix with the smallest condition number.

Reduction of Interference and Construction of Error Vector

In order to get a good estimate êm , it is necessary to reduce the impact of the signicant taps of h m and h b in (4). Therefore, the signicant taps estimated by OMP expressed by ĥomp 

[d 0 ], ĥomp [d 1 ], . . . , ĥomp [d Smax-1 ], 0 ≤ d 0 , d 1 , ..., d Smax-1 ≤ L cp -
êm =h m -ĥomp_m + (A H m A m ) -1 A H m A b (h b -ĥomp_b ) + (A H m A m ) -1 A H m w p = ĥls_m -ĥomp_m -(A H m A m ) -1 A H m A b ĥomp_b (6) 
From ( 4) and ( 6), êm can nally be rewritten as:

êm = ĥls_m -I m (A H m A m ) -1 A H m A b   ĥomp_m ĥomp_b   (7) 

Noise STD and Threshold Estimation

If the initial estimated channel by OMP is accurate, êm approximates the noise vector e m = (A H m A m ) -1 A H m w p with length of m. Each element of e m being a linear combination of independent complex Gaussian variables, is a complex Gaussian random variable. In practice, some small contribution of signicant taps remains in êm , it is better to use the median absolute deviation (MAD) method [START_REF] Xie | Ecient time domain threshold for sparse channel estimation in OFDM system[END_REF][START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF]. In the following, MAD method is adopted to realize eective noise STD estimation.

Each element of e m follows complex Gaussian distribution. The STD of its real part σr and imaginary part σi is estimated by the median value [11]:

σr = σi = σ = median(|ê m |) √ ln4 (8) 
Therefore, the STD of each element of e m can be estimated by σ = √ 2σ . With the estimated σ, the universal threshold can be adopted for the detection of sparse channel [START_REF] Bajwa | Compressed Channel Sensing: A new Approach to Estimating Sparse Multipath Channels[END_REF][START_REF] Xie | Ecient time domain threshold for sparse channel estimation in OFDM system[END_REF][START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF]:

T = Rσ; (R = 2(1 + a)ln(L cp )) (9) 
with a, (a ≥ 0) a constant factor. In this paper, we take a = 0. 

S

Find the estimated error vector by ( 7) Step 1: Get an initial CIR with S max iterations by OMP algorithm.

p y LS estimation (selected channel taps) _ ˆ[0] ls m h _ ˆ[ 1] ls m h m  ˆT R   ˆ[0] h ˆ[ 1] cp hL  _ ˆ[0] omp b h _ ˆ[ 1] omp b cp h L m            ˆ[0] m e ˆ[ 1] m e m     _ ˆ[0] omp m h _ ˆ[ 1] omp m h m  ˆm e    m
Step 2: Estimate the partial CIR with y p by LS (3).

Step 3: Obtain the estimated error vector êm by (7).

Step 4: Estimate the noise STD σ from ( 8) and the threshold T by [START_REF] Najjar | Sparsity level-aware threshold-based channel structure detection in OFDM systems[END_REF].

Step 5: Detect the MST by: ĥ

[n] =    ĥomp [n], | ĥomp [n]| > T 0, | ĥomp [n]| ≤ T , 0 ≤ n ≤ L cp -1 (10) 

Simulation Results

In simulation, a QPSK modulated OFDM system with length of cyclic prex 256, is considered. The system has a total bandwidth of 10MHz [START_REF] Najjar | Sparsity level-aware threshold-based channel structure detection in OFDM systems[END_REF] and 1024 subcarriers, among which minimum 128 are pilots. For obtaining a comprehensive performance evaluation of dierent channel estimation methods, two dierent sparse channel models with dierent channel sparsities and channel statistics are considered. The rst channel model is the ATTC (Advanced Television Technology Center) and the Grand Alliance DTV laboratory's ensemble E model whose CIR is given by [START_REF] Minn | An investigation into time-domain approach for OFDM channel estimation[END_REF]:

h[n] = δ[n]+0.3162δ[n-2]+0.1995δ[n-17]+0.1296δ[n-36]+0.1δ[n-75]+0.1δ[n-137]. (11) 
where the unit delay of the channel is equal to the OFDM sample period.

The second channel model is the Hilly Terrain channel [START_REF] Nasr | Performance of an echo canceller and channel estimator for on-channel repeaters in DVBT/H networks[END_REF] whose power delay prole (POD) is given in Table 1.

The coecients in [START_REF] Xie | Ecient time domain threshold for sparse channel estimation in OFDM system[END_REF] and the square root of the elements of the relative power in their linearized form in Table 1 represent the STD of the corresponding zero mean complex Gaussian random variables. Additionally, the timation methods for the rst channel model. We observe that even with only 12.5% of pilots, the proposed method signicantly outperforms the LS method with the threshold proposed by Kang et al. [START_REF] Kang | Ecient DFT-based channel estimation for OFDM system on multipath channels[END_REF] (for convenient comparisons, the exact noise STD is used) with 25% of pilots and OMP method with 20 taps and 12.5% of pilots throughout the considered E b /N 0 ;

the E b /N 0 gap is about 2dB for the same BER performance. Additionally, the proposed method slightly outperforms the LS estimator with sub-optimal threshold (SOT) [START_REF] Rosati | OFDM channel estimation based on impulse response decimation: Analysis and novel algorithms[END_REF] (the estimated number of channel taps Ŝ is set to be the channel sparsity S) and 25% of pilots in the overall considered E b /N 0 , however, the spectral eciency of the proposed method is much better. Furthermore, without prior knowledge of either channel statistics and noise STD, the proposed method still maintains good performance on BER compared with sparsity adaptive matching pursuit (SAMP) method (step size s = 1) [START_REF] Do | Sparsity adaptive matching pursuit algorithm for practical compressed sensing[END_REF] with the prior knowledge of noise STD and 12.5% of pilots, OMP method with 6 taps (exact sparsity S in the rst channel model), the oracle estimator (constrained LS with known number of non-zero channel coecients and their positions) [START_REF] Ben-Haim | Coherence-based performance guarantees for estimating a sparse vector under random noise[END_REF] and known channel CSI (known instantaneous channel frequency response). When compared with SAMP method, the oracle estimator with 12.5% of pilots and known CSI, the proposed method has at most 0.15dB, 0.5dB and 0.8dB performance degradation respectively. 

+ 10log(n b N -M N N N +Lcp ) = E b /N 0 + 1.
46dB in the case of 12.5% of pilots (For QPSK modulation, one symbol contains 2 bits, so n b = 2. Additionally, in the case of 12.5% of pilots, M = 128), while in the case of 25% of pilots, SNR = E b /N 0 + 0.79dB (The same calculation formula, but in the case of 25% of pilots, M = 256), the power payload of the methods with 25% of pilots is 0.67dB higher than that of the methods with 12.5% of pilots. If we consider the LS estimator with SOT and 25% of pilots in 6dB and the oracle estimator with 12.5% of pilots in 5.33dB in the small gure in 

BER

Proposed method (m=20,12.5% pilots) Proposed method (m=40,12.5% pilots) Proposed method (m=60,12.5% pilots) Proposed method (m=80,12.5% pilots) Proposed method (m=100,12.5% pilots) Proposed method (m=120,12.5% pilots) (σ is the exact noise STD, σi is the proposed estimated STD in the i th Monte-Carlo simulation and U is the number of Monte Carlo simulations), which is shown in Table 2. when m = 100, the condition number is 9.29, which is a bigger number, however, it is not a too big value for condition number, therefore, ε dierence is also limited. However, when m = 120 close to the number of pilots 128, the condition number of A m is 24.71, which is nearly 5 times as large as that for m = 80. This can explain why the noise STD estimation and BER performance are poor when m = 120.

From the above analysis combined with the performance of the proposed noise STD estimation method with dierent m in Table 2 and the condition number of A m in Table 3, we know that the choice of the value of m should eectively balance the number of noise samples m and the condition number of A m . In practice, m/M should be considered. In this paper M = 128.

The cases m = 60 and m = 80 can achieve the best noise STD performance.

Therefore, a good value for m/M should be within the range [0.47, 0.63].

Table 4 evaluates the complexity of the proposed method and the traditional DFT based method. As can be seen from the table, the complexity of the proposed method is composed of that of OMP method O(M L cp S max ), threshold estimation method O(M 2 m) and FFT method O(N log 2 N ). In the is O(N log 2 N ), therefore, the total complexity is O(N log 2 N ). Although, the proposed method has a higher complexity than LS based method, the estimation performance and spectral eciency of the proposed method are much better than LS based method. (Note: The complexity of the algorithm of condition number based m columns selection and that of pilot arrangement is not included, because they can be realized in the absence of practical communication.) SAMP method (s = 1) requires a few more iterations than OMP as indicated in [START_REF] Do | Sparsity adaptive matching pursuit algorithm for practical compressed sensing[END_REF], so the complexity of SAMP is higher than the proposed method, which is also conrmed by the simulation time. Additionally, SAMP method requires the prior knowledge of noise STD, although its estimation performance is slightly better.

Conclusion

This paper addresses the CS based sparse channel estimation in OFDM system. The main goal of the paper is to detect MST for CS based sparse channel estimation without prior knowledge of channel statistics and noise STD. In the proposed method, by employing jointly LS and OMP, an error vector with m coecients, which approximates the noise vector, is constructed. By employing the m coecients of the error vector, the noise STD is estimated and eective MST detection is realized. Simulation results

show that the proposed method has the advantages in comprehensive performances regarding the channel estimation performance, spectral eciency, computational complexity and prior parameters dependence (noise STD).
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Table 1 :

 1 Power delay prole for 12 tap Hilly Terrain channel

	Delay [µs]	0 0.2 0.4 0.6 0.8 2.0 2.4 15 15.2 15.8 17.2 20
	Power [dB] -10 -8 -6 -4	0	0	-4 -8	-9	-10 -12 -14
	pilot pattern arrangement is obtained by the suboptimal method proposed in
	[21]. Moreover, we consider S max = 20 and 6000 randomly generated subsets
	of indices are used for searching a suboptimal subset of indices selection of
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Table 2 :

 2 Performance of the proposed noise STD estimation method with dierent m for As can be seen from Table2, for the same value of m, ε is extremely stable for dierent E b /N 0 . When m = 60, 80, ε is approximately 0.11. However, when m = 120, ε is 1.64, which is a huge error for noise STD estimation.

	the rst channel model					
	E b /N 0 (dB) m = 20 m = 40 m = 60 m = 80 m = 100 m = 120
	10	0.24	0.19	0.11	0.11	0.37	1.64
	20	0.24	0.18	0.11	0.11	0.38	1.64
	30	0.23	0.18	0.11	0.11	0.38	1.64

Table 3 :

 3 Condition number of the measurement matrix A m

	m	20	40	60	80	100	120
	condition number 1.66 2.43 3.55 5.26 9.29 24.71

Table 3

 3 presents the condition number of A m with dierent m. When m = 20, 40, 60, 80, the condition number of A m is less than 5.5. Comparatively,

Table 4 :

 4 Computational complexity comparisoncp S max ) O(N log 2 N ) O(M log 2 M ) O(N log 2 N )proposed method, the complexity of OMP algorithm is O(M L cp S max ), which approximates to O(M 2 m), therefore, the total complexity of the proposed method is O(M L cp S max ) + O(N log 2 N ). LS based method has complexity of LS estimator, threshold estimation and FFT method. The complexity of LS and threshold methods is O(M log 2 M ) and the complexity of FFT method
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