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Abstract

High speed data transmission for wireless communication in orthogonal fre-

quency division multiplexing (OFDM) system requires e�ective channel state

information (CSI). CSI should be precisely estimated with low consumption

of spectral resources and acceptable computational cost. To realize this goal,

an e�ective compressed sensing (CS) based channel estimation scheme is

proposed for sparse channels with large delay spreads, without prior knowl-

edge of channel statistics and noise standard deviation. By fully considering

the rank of the measurement matrix, a novel algorithm based on orthogonal

matching pursuit (OMP) and least squares (LS) methods with a new thresh-

old is proposed for e�ective channel estimation. Simulation results show that

with fewer number of pilots, the proposed method outperforms the compared

existing channel estimation methods in a comprehensive way and approaches
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the optimal channel estimation performance.

Keywords: Channel estimation, compressed sensing, sparse channels with

large delay spreads, orthogonal matching pursuit, OFDM, threshold.

1. Introduction

Orthogonal frequency division multiplexing (OFDM) technique is widely

used in wireless communication system thanks to its advantages of high data

transmission rate over multipath fading channel [1]. In OFDM system, accu-

rate channel state information (CSI), high spectral e�ciency, low complexity

are all essential. Therefore, how to e�ectively balance the above factors is

one of the main challenges in channel estimation �eld.

In order to achieve the above goals, the sparse properties of physical

channels can be exploited. The existence of physical sparse channels is proven

by many experiments [2], which showed that digital television channels [3],

underwater acoustic channels [4], some particular urban channels for long

term evolution system [5], Hilly Terrain channels [6] and ITU-R vehicular

channels (channel A and channel B) [7] have sparse properties.

Traditional channel estimation methods are mainly based on least squares

(LS) estimator. Due to the main drawback of LS, which tends to be highly

a�ected by noise, especially in sparse channel situation, the most signi�cant

taps (MST) based technique is developed [3]. For MST, di�erent thresholds

have been proposed for e�ective sparse channel estimation. There are gen-

erally two types of methods, the �rst type requires the prior knowledge of

channel statistics (power pro�le of channel impulse response (CIR) or spar-

sity level) [8, 9], while the second one relies on the estimated noise power or
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noise standard deviation (STD) [10, 11]. [12] shows that threshold without

prior requirement of channel statistics will bene�t wireless communication

system. A two-step threshold is proposed in [11], which realizes e�ective

sparse channel estimation within a wide range of channel sparsity without

prior knowledge of both channel statistics and noise STD.

The above mentioned methods assume that M ≥ Lcp (M and Lcp are the

number of pilots and length of cyclic pre�x respectively), which leads to a sig-

ni�cant loss on frequency resources in estimating sparse channels with large

delay spreads. Therefore, the case of M < Lcp becomes more and more pop-

ular [13]. The case of M < Lcp is closely related to the compressed sensing

(CS) [14] theory. l1 norm based methods and greedy pursuit methods are two

main categories of CS reconstruction methods [4]. Compared with l1 norm

based methods, greedy pursuit methods have lower complexity, therefore,

they are widely used in sparse channel estimation [4, 15, 16, 17]. Recently,

orthogonal matching pursuit (OMP), one of the most popular algorithms

among greedy pursuit methods and some of its derived algorithms, such as

subspace pursuit (SP), adaptive simultaneous orthogonal matching pursuit

(A-SOMP) and distributed sparsity adaptive matching pursuit (DSAMP)

etc are used to realize channel estimation with prior knowledge of channel

statistics (channel sparsity) or signal to noise ratio (SNR) or predetermined

threshold [4, 15, 16, 17]. For example, in time domain synchronized OFDM

(TDS-OFDM) system, SNR as a prior knowledge is used to estimate the chan-

nel sparsity S (number of non-zero channel taps) to improve the SP based

sparse channel estimation [16]. In [17], by exploiting the spatially common

sparsity within the system bandwidth of multicarrier massive MIMO chan-
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nels during multiple time blocks, the authors proposed distributed sparsity

adaptive matching pursuit (DSAMP) algorithm to estimate the downlink

channels. Of course, Smax (maximum possible value of S) can be used [18],

however, it may cause loss in estimation precision. We initially proposed an

e�ective threshold estimator for CS based sparse channel estimation with-

out optimizing the noise STD estimation [19], selection of the m (m ≤ M)

columns in measurement matrix and error vector construction etc.

In this paper, we propose a novel threshold for OMP algorithm without

prior knowledge of channel statistics and noise STD. The proposed threshold

is based on a novel noise STD estimator, which is realized by a new error

vector constructed by m selected coe�cients estimated by LS and initial

CIR with Smax coe�cients estimated by OMP which is di�erent from our

initial research work in [19]. The proposed method allows estimating the

real number of signi�cant taps S. Therefore, the error from the Smax − S

noise coe�cients can be eliminated. Simulation results show the e�ectiveness

of the proposed method.

This paper is organized as follows. The considered OFDM system model

is given in section 2. In section 3, the proposed threshold based estimation

algorithm for OMP is presented. Section 4 provides some simulation results.

Conclusion is drawn in section 5.

2. System Model

Consider an OFDM system with N subcarriers, among which M are

pilots with positions k0, k1, . . . , kM−1. After the transmission of normalized

pilots Xp = diag[x[k0], x[k1], . . . , x[kM−1]] through a S sparse channel h =
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[h[0], h[1], . . . , h[Lcp − 1]]T , the pilot vector yp = [y[k0], y[k1], . . . , y[kM−1]]T

is received at the receiver, and given by [2]:

yp = Ah + wp (1)

with A = XpFM×Lcp the measurement matrix; FM×Lcp(ku, v) = e−j(2πkuv/N),

0 ≤ u ≤ M − 1, 0 ≤ v ≤ Lcp − 1; wp = [w[k0], w[k1], . . . , w[kM−1]]T the

complex additive white Gaussian noise (AWGN) vector with zero mean and

covariance matrix σ2
wIM .

3. Proposed Threshold based Sparse Channel Estimation

3.1. Construction of Error Vector with m Selected Columns

In the case of M < Lcp, we have Rank(A) < Lcp. To obtain an e�ec-

tive threshold, the noise STD is required. However, due to Rank(A) = M ,

reconstruct the whole CIR with length Lcp and estimate the noise STD are

impossible. In this case, partial CIR with m (m ≤ M) coe�cients can be

extracted to estimate the noise STD.

(1) can be rewritten as:

yp = Amhm + Abhb + wp (2)

where Am = [a[p0],a[p1], . . . ,a[pm−1]] and hm = [h[p0], h[p1], . . . , h[pm−1]]T

are the matrix with the m selected columns of A, which is used to realize the

Fourier transform of the partial CIR and vector with the m corresponding

channel taps of h, which contains the partial information of CIR respectively;

Ab and hb = [h[pm], h[pm+1], . . . , h[pLcp−1]]T are the matrix with the remain-

ing Lcp −m columns of A and vector with the corresponding channel taps

of h respectively.
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Using LS to estimate the m selected channel taps, we get:

ĥls_m = (AH
mAm)−1AH

myp (3)

Combining (2) and (3), we have:

ĥls_m = hm + (AH
mAm)−1AH

mAbhb + (AH
mAm)−1AH

mwp (4)

which is composed of three parts, the �rst part is the m selected channel

taps, the second one is the interference due to the signi�cant taps in hb and

the last part is the noise part denoted by em.

In order to obtain a good estimate of the error vector em for e�ective noise

STD estimation, two aspects are essential. The �rst one is the selection of

the number ofm and them columns, which will be discussed in Section 4 and

Section 3.1.1 respectively, the second one is the reduction of the interference

from the �rst two parts in (4), which will be discussed in Section 3.1.2.

3.1.1. Selection of m Columns

The condition number of Am is a key parameter for LS method. The

smaller it is, the better is the stability of the estimator to perturbations [20].

To obtain them e�ective selected columns, cond(Am) should be the small-

est possible. To realize this, the subset with m indices should be chosen as:

Λ = arg min
Λ1

cond(AΛ1), |Λ1| = m (5)

with Λ the subset of the m optimally selected columns. The optimal partial

measurement matrix denoted by Am is obtained by choosing the m columns

de�ned by Λ.
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(5) is the optimal solution for the estimation of hm, however, to obtain

Λ, there are
(
Lcp

m

)
possible choices. It is a heavy computational task. Similar

to the suboptimal pilot arrangement method proposed in [21], a suboptimal

subset of indices of m selected columns can be obtained. Firstly, a limited

number of subsets of m selected columns are randomly generated, then, the

suboptimal subset is given by the matrix with the smallest condition number.

3.1.2. Reduction of Interference and Construction of Error Vector

In order to get a good estimate êm, it is necessary to reduce the impact

of the signi�cant taps of hm and hb in (4). Therefore, the signi�cant taps

estimated by OMP expressed by ĥomp[d0], ĥomp[d1], . . . , ĥomp[dSmax−1], 0 ≤

d0, d1, ..., dSmax−1 ≤ Lcp − 1 are introduced. The signi�cant taps of ĥomp

in subsets Λ and Λc (the complement of Λ) are extracted to get two new

sparse vectors ĥomp_m and ĥomp_b. Then, a new equation is obtained with

regard to êm:

êm =hm − ĥomp_m + (AH
mAm)−1AH

mAb(hb − ĥomp_b) + (AH
mAm)−1AH

mwp

=ĥls_m − ĥomp_m − (AH
mAm)−1AH

mAbĥomp_b

(6)

From (4) and (6), êm can �nally be rewritten as:

êm = ĥls_m −
[
Im (AH

mAm)−1AH
mAb

]ĥomp_m
ĥomp_b

 (7)

3.2. Noise STD and Threshold Estimation

If the initial estimated channel by OMP is accurate, êm approximates

the noise vector em = (AH
mAm)−1AH

mwp with length of m. Each element of
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em being a linear combination of independent complex Gaussian variables,

is a complex Gaussian random variable. In practice, some small contribution

of signi�cant taps remains in êm, it is better to use the median absolute

deviation (MAD) method [11, 22]. In the following, MAD method is adopted

to realize e�ective noise STD estimation.

Each element of em follows complex Gaussian distribution. The STD of

its real part σ̂r and imaginary part σ̂i is estimated by the median value [11]:

σ̂r = σ̂i = σ̂
′
=

median(|êm|)√
ln4

(8)

Therefore, the STD of each element of em can be estimated by σ̂ =
√

2σ̂
′
. With the estimated σ̂, the universal threshold can be adopted for the

detection of sparse channel [2, 11, 22]:

T̂ = Rσ̂; (R =
√

2(1 + a)ln(Lcp)) (9)

with a, (a ≥ 0) a constant factor. In this paper, we take a = 0.

3.3. Main Framework of the Proposed Method

OMP estimation

(           iterations)
maxS

Find the estimated error 

vector       by (7)

py

LS estimation

(selected       channel taps)

_
ˆ [0]ls mh

_
ˆ [ 1]ls mh m

ˆ ˆT R

ˆ[0]h

ˆ[ 1]cph L 

_
ˆ [0]omp bh _

ˆ [ 1]omp b cph L m   













ˆ [0]me

ˆ [ 1]me m 

  _
ˆ [0]omp mh _

ˆ [ 1]omp mh m

ˆ
me






m

Figure 1: Proposed channel estimation method

Fig 1 gives the main framework of the proposed method, the speci�c steps

of which are summarized as follows.
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Step 1: Get an initial CIR with Smax iterations by OMP algorithm.

Step 2: Estimate the partial CIR with yp by LS (3).

Step 3: Obtain the estimated error vector êm by (7).

Step 4: Estimate the noise STD σ̂ from (8) and the threshold T̂ by (9).

Step 5: Detect the MST by:

ĥ[n] =

 ĥomp[n], |ĥomp[n]| > T̂

0, |ĥomp[n]| ≤ T̂
, 0 ≤ n ≤ Lcp − 1 (10)

4. Simulation Results

In simulation, a QPSK modulated OFDM system with length of cyclic

pre�x 256, is considered. The system has a total bandwidth of 10MHz [9]

and 1024 subcarriers, among which minimum 128 are pilots. For obtain-

ing a comprehensive performance evaluation of di�erent channel estimation

methods, two di�erent sparse channel models with di�erent channel spar-

sities and channel statistics are considered. The �rst channel model is the

ATTC (Advanced Television Technology Center) and the Grand Alliance

DTV laboratory's ensemble E model whose CIR is given by [3]:

h[n] = δ[n]+0.3162δ[n−2]+0.1995δ[n−17]+0.1296δ[n−36]+0.1δ[n−75]+0.1δ[n−137].

(11)

where the unit delay of the channel is equal to the OFDM sample period.

The second channel model is the Hilly Terrain channel [6] whose power

delay pro�le (POD) is given in Table 1.

The coe�cients in (11) and the square root of the elements of the relative

power in their linearized form in Table 1 represent the STD of the corre-

sponding zero mean complex Gaussian random variables. Additionally, the
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Table 1: Power delay pro�le for 12 tap Hilly Terrain channel

Delay [µs] 0 0.2 0.4 0.6 0.8 2.0 2.4 15 15.2 15.8 17.2 20

Power [dB] -10 -8 -6 -4 0 0 -4 -8 -9 -10 -12 -14

pilot pattern arrangement is obtained by the suboptimal method proposed in

[21]. Moreover, we consider Smax = 20 and 6000 randomly generated subsets

of indices are used for searching a suboptimal subset of indices selection of

m selected columns.
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Proposed method (12.5% pilots)
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Oracle estimator (12.5% pilots)
LS (threshold of Kang et al [10] 25% pilots)
LS (suboptimal threshold (SOT) [12] 25% pilots)
SAMP [23] (s=1 and 12.5% pilots)
Known channel knowledge
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Figure 2: BER performance comparison for the �rst channel model

Fig 2 illustrates BER performance comparison of di�erent channel es-

timation methods for the �rst channel model. We observe that even with

only 12.5% of pilots, the proposed method signi�cantly outperforms the LS

method with the threshold proposed by Kang et al. [10] (for convenient

comparisons, the exact noise STD is used) with 25% of pilots and OMP

method with 20 taps and 12.5% of pilots throughout the considered Eb/N0;

the Eb/N0 gap is about 2dB for the same BER performance. Additionally,
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the proposed method slightly outperforms the LS estimator with sub-optimal

threshold (SOT) [12] (the estimated number of channel taps Ŝ is set to be the

channel sparsity S) and 25% of pilots in the overall considered Eb/N0, how-

ever, the spectral e�ciency of the proposed method is much better. Further-

more, without prior knowledge of either channel statistics and noise STD, the

proposed method still maintains good performance on BER compared with

sparsity adaptive matching pursuit (SAMP) method (step size s = 1) [23]

with the prior knowledge of noise STD and 12.5% of pilots, OMP method

with 6 taps (exact sparsity S in the �rst channel model), the oracle estima-

tor (constrained LS with known number of non-zero channel coe�cients and

their positions) [24] and known channel CSI (known instantaneous channel

frequency response). When compared with SAMP method, the oracle es-

timator with 12.5% of pilots and known CSI, the proposed method has at

most 0.15dB, 0.5dB and 0.8dB performance degradation respectively.

4 6 8 10 12 14 16 18 20

10
−2

10
−1

E
b
/N

0
 (dB)

B
E
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Proposed method (12.5% pilots)
OMP (20 taps and 12.5% pilots)
OMP (12 taps and 12.5% pilots)
Oracle estimator (12.5% pilots)
LS (threshold of Kang et al [10] 25% pilots)
LS (suboptimal threshold (SOT) [12] 25% pilots)
SAMP [23] (s=1 and 12.5% pilots)
Known channel knowledge

0 1 2 3 4 5 6

10
−1

Figure 3: BER performance comparison for the second channel model

As shown in Fig 3, compared with the �rst channel model, although the
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second channel model has di�erent channel sparsity, delay of channel paths

and POD, the proposed method still maintains similar trends in BER perfor-

mance compared with other channel estimation methods except that the LS

estimator with sub-optimal threshold (SOT) and 25% of pilots outperforms

slightly the proposed method with 12.5% of pilots (at most 0.6dB degrada-

tion in Eb/N0 for the same BER) in low Eb/N0 (from 0dB to 10dB). The

main reasons are the reduction of number of pilots and the increase of chan-

nel sparsity, which lead to the decrease on the performance of sparse channel

reconstruction by OMP algorithm in low Eb/N0. However, considering the

spectral e�ciency promotion, the precision loss is acceptable.
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LS (threshold of Kang et al [10] 25% pilots)
LS (suboptimal threshold (SOT) [12] 25% pilots)
SAMP [23] (s=1 and 12.5% pilots)

Figure 4: MSE performance comparison for the �rst channel model

In Fig 4, MSE performance of di�erent channel estimation methods is

evaluated for the �rst channel model. In vast majority of considered Eb/N0

range (from 12dB to 30dB), the LS estimator with SOT and 25% of pilots

outperforms the methods with 12.5% of pilots, including, oracle estimator,

OMP method with 6 taps, SAMP method and the proposed method, which
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doesn't coincide with the BER performance in Fig 2. The primary reason

for this is that MSE and BER are expressed in terms of Eb/N0 (instead of

SNR), which is more fair for the channel estimation methods with di�erent

pilot percentages. In this paper, 12.5% and 25% of pilots are considered,

therefore, by considering the parameters of N=1024, Lcp=256 and QPSK

modulation used in the simulation, SNR = Eb/N0 + 10log(nb
N−M
N

N
N+Lcp

) =

Eb/N0 + 1.46dB in the case of 12.5% of pilots (For QPSK modulation, one

symbol contains 2 bits, so nb = 2. Additionally, in the case of 12.5% of pilots,

M = 128), while in the case of 25% of pilots, SNR = Eb/N0 + 0.79dB (The

same calculation formula, but in the case of 25% of pilots, M = 256), the

power payload of the methods with 25% of pilots is 0.67dB higher than that

of the methods with 12.5% of pilots. If we consider the LS estimator with

SOT and 25% of pilots in 6dB and the oracle estimator with 12.5% of pilots

in 5.33dB in the small �gure in Fig 2, their BER performance is the same and

Eb/N0 gap is about 0.67dB, which actually corresponds approximately to the

power payload gap. Additionally, considering the same channel estimation

performance, the Eb/N0 gap between the LS estimator with SOT and 25%

of pilots and the oracle estimator with 12.5% of pilots in Fig 2 is less than

0.6dB within the Eb/N0 range 10dB-20dB, which can explain why the LS

estimator with SOT and 25% of pilots has better performance in MSE.

The above analysis on the performance of the proposed method consid-

ers m = 80. To show the in�uence of the value of m, in Fig 5, the BER

performance of the proposed method with di�erent m for the �rst channel

model is shown. Generally, the proposed method with m = 20, 40, 60, 80, 100

and 12.5% of pilots has almost the same BER performance throughout the
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Figure 5: BER performance of proposed methods with di�erent m for the �rst channel

model

considered Eb/N0. Comparatively, the proposed method with m = 120 and

12.5% of pilots has obvious poorer performance. To understand the reason,

we consider the absolute relative error on the proposed estimated STD with

the �rst channel model ε =
∑U−1

i=0 |σ̂i−σ|
Uσ

(σ is the exact noise STD, σ̂i is the

proposed estimated STD in the ith Monte-Carlo simulation and U is the

number of Monte Carlo simulations), which is shown in Table 2.

Table 2: Performance of the proposed noise STD estimation method with di�erent m for

the �rst channel model

Eb/N0(dB) m = 20 m = 40 m = 60 m = 80 m = 100 m = 120

10 0.24 0.19 0.11 0.11 0.37 1.64

20 0.24 0.18 0.11 0.11 0.38 1.64

30 0.23 0.18 0.11 0.11 0.38 1.64

As can be seen from Table 2, for the same value ofm, ε is extremely stable
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for di�erent Eb/N0. When m = 60, 80, ε is approximately 0.11. However,

when m = 120, ε is 1.64, which is a huge error for noise STD estimation.

Table 3: Condition number of the measurement matrix Am

m 20 40 60 80 100 120

condition number 1.66 2.43 3.55 5.26 9.29 24.71

Table 3 presents the condition number ofAm with di�erentm. Whenm =

20, 40, 60, 80, the condition number of Am is less than 5.5. Comparatively,

when m = 100, the condition number is 9.29, which is a bigger number,

however, it is not a too big value for condition number, therefore, ε di�erence

is also limited. However, when m = 120 close to the number of pilots 128,

the condition number of Am is 24.71, which is nearly 5 times as large as

that for m = 80. This can explain why the noise STD estimation and BER

performance are poor when m = 120.

From the above analysis combined with the performance of the proposed

noise STD estimation method with di�erent m in Table 2 and the condition

number of Am in Table 3, we know that the choice of the value of m should

e�ectively balance the number of noise samples m and the condition number

of Am. In practice, m/M should be considered. In this paper M = 128.

The cases m = 60 and m = 80 can achieve the best noise STD performance.

Therefore, a good value for m/M should be within the range [0.47, 0.63].

Table 4 evaluates the complexity of the proposed method and the tradi-

tional DFT based method. As can be seen from the table, the complexity

of the proposed method is composed of that of OMP method O(MLcpSmax),

threshold estimation method O(M2m) and FFT method O(N log2N). In the
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Table 4: Computational complexity comparison

Proposed Method LS based method

Alg OMP+Thr FFT LS+Thr FFT

Comp O(MLcpSmax) O(N log2N) O(M log2M) O(N log2N)

proposed method, the complexity of OMP algorithm is O(MLcpSmax), which

approximates to O(M2m), therefore, the total complexity of the proposed

method is O(MLcpSmax) +O(N log2N). LS based method has complexity of

LS estimator, threshold estimation and FFT method. The complexity of LS

and threshold methods is O(M log2M) and the complexity of FFT method

is O(N log2N), therefore, the total complexity is O(N log2N). Although, the

proposed method has a higher complexity than LS based method, the esti-

mation performance and spectral e�ciency of the proposed method are much

better than LS based method. (Note: The complexity of the algorithm of

condition number based m columns selection and that of pilot arrangement

is not included, because they can be realized in the absence of practical com-

munication.) SAMP method (s = 1) requires a few more iterations than

OMP as indicated in [23], so the complexity of SAMP is higher than the

proposed method, which is also con�rmed by the simulation time. Addition-

ally, SAMP method requires the prior knowledge of noise STD, although its

estimation performance is slightly better.

5. Conclusion

This paper addresses the CS based sparse channel estimation in OFDM

system. The main goal of the paper is to detect MST for CS based sparse

16



channel estimation without prior knowledge of channel statistics and noise

STD. In the proposed method, by employing jointly LS and OMP, an er-

ror vector with m coe�cients, which approximates the noise vector, is con-

structed. By employing the m coe�cients of the error vector, the noise

STD is estimated and e�ective MST detection is realized. Simulation results

show that the proposed method has the advantages in comprehensive per-

formances regarding the channel estimation performance, spectral e�ciency,

computational complexity and prior parameters dependence (noise STD).
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