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ABSTRACT: Triclinic calcium pyrophosphate dihydrate (t-
CPPD) crystals are one of the two polymorphs of micro-
crystals that have been found in the joints of patients suffering
from pseudogout. However, there is currently no treatment for
inhibiting the formation of these crystals, which present a high
inflammatory potential. In this context we studied in vitro the
precipitation of t-CPPD in a stirred reactor under pH- and
temperature-controlled conditions and determined the effect
of selected biologically relevant ionic additives (Mg2+, Cu2+,
Fe3+, Zn2+, S2O3

2−) on its formation. The results showed that 1
mM Fe3+, Zn2+, or Cu2+ induced the most significant changes
by partly inhibiting the crystallization of t-CPPD and favoring
the formation of an amorphous-CPP phase (98 wt %) in the presence of Fe3+ or a monoclinic-CPPD phase (78 or 71 wt %,
respectively) in the presence of Zn2+ or Cu2+. Correlations between 31P solid-state NMR, XRD, and elemental analyses showed
that the additive cations are inserted into the monoclinic-CPPD and/or amorphous-CPP phases. This study, which combines
structural, morphological, and elemental analyses, paves the way toward a deeper comprehension of the role of ionic additives in
preventing the formation of CPPD crystalline phases, and is a key step in long-term development of an effective therapeutic
treatment.

1. INTRODUCTION

Osteoarthritis (OA) and pseudogout are forms of arthritis
involving the deposition of microcrystals in the joints. Hydrated
calcium pyrophosphates (CPP: Ca2P2O7·nH2O) have been
identified among the deposited microcrystals in the joints of
arthritic patients. More precisely, two polymorphs of CPP
dihydrate (CPPD: Ca2P2O7·2H2O) have been found in the
joint tissues (cartilage, meniscus) or synovial fluids of patients
suffering from pseudogout: the monoclinic (m-CPPD) and
triclinic (t-CPPD) phases which both present a high
inflammatory potential.1,2 The triclinic form is considered the
most stable and is the most commonly found in vitro and in
vivo.3−5 There is currently no treatment that inhibits the
formation of these CPP crystals, but only treatment helping to
limit the inflammatory response and relieve the patient’s pain.6,7

Understanding the mechanisms of formation of CPP in vitro
and in vivo and the influence of substances that could
potentially inhibit the crystallization of the m-CPPD and t-
CPPD phases is a key step in the medium- to long-term
development of an effective therapeutic treatment.

Although only two dihydrated forms of CPPD crystals have
been detected in vivo (m- and t-CPPD), investigations of other
hydrated forms, such as the tetrahydrated CPP (m-CPPT β:
Ca2P2O7·4H2O) and especially amorphous CPP (a-CPP:
Ca2P2O7·nH2O with n ≅ 3 to 4), have also been reported in
vitro;8−10 these phases are also of interest as potential precursor
phases for the crystalline t- and m-CPPD phases in vitro and in
vivo.
There are few studies in the literature on CPP precipitation

in the presence of additives.11−15 In addition, these
experimental studies did not provide explanations of the
mechanism by which the additives act on the crystallization of
different CPP phases. However, the influence of additives or
impurities on the crystallization of other compounds has been
extensively studied in previous work.16,17 It is known that
additives can act in different ways: they can favor the formation
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of one phase at the expense of another,18 they can increase the
nucleation rate at the expense of the growth step, or they can
selectively inhibit or promote the growth of particular crystal
faces.19

In the case of CPP precipitation, one can classify the
potential additives into different categories: (i) additives having
a chemical resemblance to pyrophosphate or orthophosphate
ions, such as phosphocitrates20 and bisphosphonates;21 (ii)
proteins of biological interest, such as osteopontin, a negatively
charged bone sialoprotein22 and fetuin A, a blood protein;23

and (iii) cationic additives corresponding to ions already found
in the body, such as Mg2+ or Fe3+.
These additives may act according to the modes of action

described by Mullin24 and Nyvlt and Ulrich.25 Different
adsorption sites exist on the crystal surface (kinks, steps, and
edges) and the additive can be adsorbed on one or more of
these sites, to create a complex compound with entities/ions at
the surface of the crystal or included in the crystal lattice. This
can be facilitated if there is a similarity of ionic or molecular
structure between the additive and the ions or molecules
constituting the crystal (i.e., P2O7

4− and/or Ca2+ in the case of
CPPD compounds). In the present study, only ionic additives
will be considered.
Cheng and Pritzker14 showed that magnesium ions promote

the production of crystals of the m-CPPD phase rather than t-
CPPD in a laboratory study where the concentrations of Ca2+

and Mg2+ were varied simultaneously during the synthesis of
CPP. These authors performed their tests with three different
concentrations of sodium pyrophosphate high enough to obtain
sufficient CPP precipitate for analysis. Mandel et al. reported a
synthesis protocol of m-CPPD involving magnesium ions
which were not present in the synthesis of t-CPPD.26

In our study, besides Mg2+, four other types of biologically
relevant ions (Zn2+, Cu2+, Fe3+, and S2O3

2−) were selected as
additives. In human metabolism, iron is present in two different
ionic forms: Fe2+ (ferrous) and Fe3+ (ferric). Fe2+ is transported
in the blood by ferroportin, but the element is taken up in
tissues and cells as Fe3+, using transferrin (a plasmatic carrier)
and ferritin (an intracellular storage protein).27 In addition, it is
known that iron and magnesium are associated with
hypomagnesaemia and hemochromatosis diseases which are
related to premature osteoarthritis.28,29 In hemochromatosis
joint disease, measurements of serum ferritin have proven to be
useful in disease detection.30 Furthermore, previous studies on
crystal growth have shown that the higher the charge state of
the ion is, the more pronounced is the effect of this ion on
crystallization.24 Indeed, if Fe2+ were used in this study, it
would be difficult to stabilize and to prevent its oxidization in
solution at high temperature (e.g., 90 °C) and acidic pH.
Therefore, Fe3+ was chosen in the present study.
Among the other ions of interest, thiosulfate (S2O3

2−) was
previously studied and displayed a reasonable efficiency in the
treatment of renal or vascular calcifications.31−33 This ion was
selected to determine its influence, if any, on the formation of
CPP involved in osteoarthritis.
The objective of this study is to synthesize t-CPPD in vitro

through a precipitation process in a stirred reactor under pH-
and temperature-controlled conditions and to determine the
effect of the selected ionic additives on its precipitation. We do
not intend on mimicking in vivo conditions for CPPD
polymorph precipitation (it seems difficult at this stage,
owing to the lack of information we have on these systems at
the onset of CPPD formation) but we aim to evaluate and

compare the effect of various biologically relevant ionic
additives while keeping all the other synthesis parameters
identical to the t-CPPD reference synthesis (without additive).
The effect of these different ions will be thoroughly

investigated by means of a set of complementary character-
ization techniques: X-ray diffraction, Fourier-transform infrared
(FTIR) spectroscopy, Raman spectroscopy, solid-state nuclear
magnetic resonance (solid-state NMR), scanning electron
microscopy, and elemental analysis by inductively coupled
plasma spectrometry.

2. MATERIALS AND METHODS

2.1. Materials. Anhydrous potassium pyrophosphate (K4P2O7)
was obtained by heating potassium hydrogen phosphate dihydrate
(K2HPO4·2H2O, VWR, purity: 100%) at 400 °C for 4 h, and was used
to prepare the pyrophosphate reagent solution (rs). The other
precipitating reagents, i.e., calcium nitrate tetrahydrate (Ca(NO3)2·
4H2O, Carlo Erba, purity: 97%), acetic acid (VWR, purity: 100%), and
ammonia aqueous solution (VWR, 30%), were used without
undergoing further purification.

Commercial salts of zinc acetate dihydrate (Zn(CH3COO)2·2H2O,
Fisher Scientific, purity: 99.5%), iron chloride hexahydrate (FeCl3·
6H2O, VWR, purity: 98%), magnesium chloride hexahydrate (MgCl2·
6H2O, VWR, purity: 100%), copper nitrate hydrate (Cu(NO3)2·
2.5H2O, Alfa Aesar, purity: 98%), and sodium thiosulfate pentahydrate
(Na2S2O3·5H2O, VWR Prolabo, purity: 99.5%) were used as additives.

All the solutions used for performing precipitation by the double
decomposition method were prepared by dissolving the salts in
ultrapure water (18.2 MΩ.cm).

2.2. Experimental Setup for Precipitation in the Absence or
Presence of Ionic Additive. Pure t-CPPD, m-CPPD, and a-CPP
reference samples for this study, i.e., without any additive, were
synthesized by double decomposition precipitation by simultaneously
adding, at controlled flow rate (2.25 mL.min−1), a potassium
pyrophosphate reagent solution (rs) and a calcium nitrate reagent
solution (rs) into an ammonium acetate buffer solution (b) at
controlled temperature and pH. This method of synthesis was adapted
from that published by Gras et al.10 and implemented in a stirred
reactor in order to study the effect of the ionic additives under
improved control of conditions (pH, temperature, and stirring/
mixing). The pure CPP phase obtained by this method depends on the
chosen combination of pH and temperature as reported in Table 1.

The precipitation reaction involved in the precipitation of the t-
CPPD or m-CPPD phase is

+ + → ·
+ −

2 Ca P O 2 H O Ca P O 2H O
2

2 7

4

2 2 2 7 2

Reagent solutions were prepared at room temperature by dissolving
K4P2O7 (8.70 × 10−3 mol) or Ca(NO3)2·4H2O (1.74 × 10−2 mol) in
115 mL of ultrapure water to respectively prepare the pyrophosphate
and calcium reagent solutions (rs). A buffer solution (b) of ammonium
acetate was prepared from a mixture of acetic acid and ammonia in
water: mmonia solution was poured into the acetic acid solution to
reach the desired pH (i.e., 3.6 for t-CPPD and 5.8 for m-CPPD or a-
CPP).

The experiments were carried out in a 500 mL double-jacketed
Pyrex glass round-bottomed crystallizer. This tank was equipped with
four baffles, a lid, and a pH probe (PHC3001−8 Radiometer
Analytical) connected to a pH-meter (PHM220 Radiometer

Table 1. Selected Temperature and pH Conditions for the
Synthesis of the Various Pure Reference CPP Phases
According to Gras et al.10

CPP phase synthesized t-CPPD m-CPPD a-CPP

Temperature 90 °C 90 °C 25 °C

pH 3.6 5.8 5.8



Analytical). Temperature control was provided by a cryostat (AD15R-
30, VWR) connected to an external temperature sensor (PT100,
VWR). A stirrer (Propeller Stirrer Shafts, Bola) fixed to a motor (RW
20 digital, IKA) was used to ensure a homogeneous mixture. 100 mL
of the cationic and anionic reagent solutions were simultaneously
added at a constant flow rate (2.25 mL.min−1) in the buffer solution
(200 mL) by means of two syringe pumps (Harvard Apparatus PHD
2000) (Figure 1). At the end of the addition of the reagent solutions,

an aging step was performed at the selected temperature (90 °C for m-
CPPD and t-CPPD or 25 °C for a-CPP precipitation) for 10 min
under stirring. The precipitate was then filtered on a Buchner funnel
and washed with 1200 mL of deionized water before being dried in an
oven at 37 °C for at least 12 h. Finally, the samples obtained were
stored at ambient temperature in a sealed container to avoid any
contamination.
The effect of various ionic additives (A) on t-CPPD precipitation

was investigated at 90 °C and pH 3.6, i.e., the combination of
temperature and pH corresponding to the formation of the t-CPPD
phase.10 The ionic additive was introduced into the reactor via two

routes: (i) the additive salt was dissolved at different concentrations in
the buffer solution (b, placed in the reactor), or (ii) it was dissolved
into one of the reagent solutions (rs, placed in a syringe pump): in the
pyrophosphate reagent solution for experiments with the anionic
additive (S2O3

2−) or in the calcium reagent solution for experiments
with cationic additives (Mg2+, Cu2+, Fe3+, Zn2+).

The concentrations tested for each ionic additive were chosen to be
in the range of those found in human blood plasma (1 mM of
dissociated Mg2+, 0.002 to 0.04 mM Fe)34−37 or in blood components
(0.020 to 0.030 mM Zn2+ in blood plasma),38 except for sodium
thiosulfate, which is not naturally present in the human body. It is
important to note that for some of these ions, their concentrations can
vary in the human body, such as Cu2+, the concentration of which is
different in sweat (18.10 ± 3.90 μM Cu2+ in sweat from the arm), in
serum (0.00 μM Cu2+ for a healthy patient, 0.64 ± 1.10 μM Cu2+ for
an osteoarthritic patient), and in synovial fluid (1.10 ± 1.65 μM Cu2+

for an osteoarthritic patient).39

The quantities of ionic additives to be introduced into the buffer (b)
or a reagent solution (rs) placed in a syringe pump were calculated
with respect to the total volume of the solution within the reactor at
the end of the precipitation: 0.10 and 1.00 mM for Zn2+, Mg2+, or
Cu2+; 0.03, 0.10, and 1.00 mM for Fe3+; and 1.00 and 5.00 mM for
S2O3

2− when the additive was introduced into the buffer (b). When
the additive was introduced into one of the reagent solutions (rs), the
concentrations tested for each ionic additive were 0.10 and 1.00 mM.

All experiments were performed at least in duplicate.
2.3. Characterization of the Synthesized Powders. Each

synthesized sample was characterized by powder X-ray diffraction
(XRD), FTIR and Raman spectroscopy, and scanning electron
microscopy (SEM). In addition, elemental analyses were performed
by inductively coupled plasma optical emission spectrometry (ICP-
OES) on a solution of each sample.

The powder X-ray diffraction data were collected with a Bruker D8
Advance diffractometer equipped with a Bragg−Brentano θ−θ

geometry and a copper anode (λ (Cu Kα1) = 1.54060 Å and λ (Cu
Kα2) = 1.54439 Å). The X-ray diffraction patterns were obtained for a
range of 2θ angles from 5 to 50° with a step of 0.2°.

Figure 1. Standard experimental setup for the precipitation in a stirred
tank at controlled temperature, pH, flow rate, and mixing.

Figure 2. XRD patterns of m-CPPD and t-CPPD reference phases and of samples synthesized in the presence of additives at various concentrations
(0.10 or 1.00 mM for Mg2+, Zn2+, or Cu2+; 0.03, 0.10, or 1.00 mM for Fe3+; and 1.00 or 5.00 mM for S2O3

2−) initially present in the buffer solution
(b).



A semiquantitative study was performed on the XRD data obtained
for each synthesized sample using the TOPAS software according to
the methods of Scarlett and Madsen40 and Madsen et al.41 which
allowed the determination of the relative proportion (wt %) of m-
CPPD, t-CPPD, and a-CPP phases. This method, named the Partial or
No Known Crystal Structure method (PONKCS), is a direct
approach, where the amorphous contribution to the pattern is used
to directly estimate its proportion. A ±1 wt % accuracy for the relative
weight proportion can be expected with the PONKCS method.41

FTIR spectra were recorded with a ThermoNicolet 5700 Fourier-
transform infrared spectrometer in the 4000−400 cm−1 range with 64-
scan accumulation in transmission mode and a ±4 cm−1 resolution
using powder samples in KBr pellets (2 mg of sample in 300 mg of
KBr).
Elemental analyses were performed on aqueous solutions of the

dissolved samples using ICP-OES (Ultima2 spectrometer, HORIBA
Jobin Yvon). Each sample was analyzed in triplicate.
Scanning electron microscopy (SEM) micrographs were obtained

using a Leo 435 VP microscope. The samples were silver-plated with
an evaporator (Scancoat Six, Edwards) before observation.
Thermogravimetric analyses (TGA-DTA) were performed on some

of the samples using a Setaram Setsys Evolution instrument, with a
heating rate of 5 °C per minute, starting at 25 °C up to 1000 °C.
Complementarily to the XRD analyses, for some of the synthesized

samples, further structural investigations were performed using 31P
magic-angle spinning (MAS) NMR. Data were recorded using a 700
MHz Bruker AVANCE III spectrometer, equipped with a 4 mm
Bruker MAS probe. A MAS frequency of 14 kHz was used. The
chemical shifts were referenced to H3PO4. The main purposes of these
experiments were (i) to measure the T1(

31P) relaxation times in order
to evaluate the impact of the cations added in the precipitating
medium, and (ii) to record fully relaxed 31P NMR spectra in order to
quantify the involved phases. Briefly, a saturation-recovery experiment
under fast MAS was implemented as follows: saturation 31P pulses
were followed by a delay ranging from 0.25 to 720 s, and a final 31P
90° pulse of 5 μs. Spinal-64 1H decoupling (70 kHz) was applied
during acquisition.42 Prior to all experiments, the magic angle was
carefully set in order to obtain the best 31P MAS resolution, avoiding
the reintroduction of any CSA (chemical shift anisotropy) or dipolar
interaction which would broaden the spectra. Four scans were usually
used.

3. RESULTS AND DISCUSSION

3.1. Influence of Ionic Additives Initially Present
within the Buffer (b) Solution: Qualitative and Semi-
quantitative XRD Study. The X-ray patterns of the CPP
reference sample (prepared in the absence of additive) and of
the CPP samples synthesized in the presence of Mg2+, Zn2+,
Fe3+, Cu2+, or S2O3

2− ions initially present at different
concentrations in the buffer solution within the reactor are
shown in Figure 2. The results of the semiquantitative analysis
(relative weight proportion of m-CPPD, t-CPPD, and a-CPP
phases for all synthesized samples) of these XRD data are
reported in Table 2. We observed that the method of synthesis
in a stirred reactor at pH 3.6 and 90 °C and without additives
led to the precipitation of the t-CPPD phase (reference
compound) and that no additional crystalline phase could be
detected using XRD (as compared with the JCPDS No. 00−
041−0488 XRD reference data for the t-CPPD phase).
However, it appeared that this reference t-CPPD sample was
not fully crystallized (93 wt % of t-CPPD) and that it included a
small proportion (7 ± 1 wt %) of the a-CPP phase (Table 2).
The effect of maturation time during the synthesis of t-CPPD
and m-CPPD phases has yet been investigated; the character-
ization of the precipitates formed during the synthesis from 3
min up to the end of the precipitation (about 1 h) showed that
the phases were formed from the beginning and did not evolve

(unpublished results). Additional evolution tests have been
made at 37 °C, in solution, for 1 month for t-CPPD and m-
CPPD phases, and no alteration was detected.
The composition of the samples synthesized in the presence

of ionic additives showed the characteristic peaks of t-CPPD
(especially at 10.96° ± 0.02 and 12.59° ± 0.02) and a more or
less intense additional diffraction peak at about 2θ = 12.03° ±
0.02 characteristic of the m-CPPD phase ((110) Bragg peak43),
indicating that this latter phase also formed when the ionic
additives tested were present, except in the case of a low
concentration of Mg2+ (0.10 mM) (Figure 2). The relative
weight percentage of m-CPPD was approximately 0% in the
absence of ionic additive, but increased from 3 ± 1 wt % up to
75 ± 1 wt % in the presence of 1.00 mM of S2O3

2− or Zn2+,
respectively (Table 2). We can also clearly observe a dose-
dependent effect (by comparison of the relative peak intensities
for 0.10 and 1.00 mM of additive) for each ionic additive except
for S2O3

2−: in the case of a higher concentration (1.00 mM) of
Fe3+, Zn2+, or Cu2+ we observed that the diffraction peaks for
the t-CPPD phase were almost absent, indicating that the major
crystalline phase in these samples was m-CPPD (37, 75, and 60
wt %, respectively). The dose-dependent effect appeared to be
less pronounced in the presence of Mg2+ than in the presence
of Fe3+, Zn2+, or Cu2+ and was negligible for S2O3

2−: in both
cases (Mg2+ and S2O3

2−) the major crystalline phase observed
remained t-CPPD (from 69 up to 90 wt %).
Furthermore, it can be noted that the relative proportion of

the amorphous phase increased significantly in the presence of
1.00 mM of Zn2+ (20 ± 1 wt %) or Cu2+ (36 ± 1 wt %). The
greatest effect was observed for 1.00 mM of Fe3+ (62 ± 1 wt
%). The presence of an amorphous phase from 5 up to 62 ± 1
wt % depending on the ionic additive present in the
precipitating medium, is supporting the observation of a
more or less important diffuse halo on the XRD pattern (Figure
3). Like the pure a-CPP reference compound, the fraction of a-
CPP phase detected is probably associated with around 3 to 4
water molecules.8−10

These results showed that 1.00 mM Fe3+, Zn2+, or Cu2+

induced the most significant changes related to the presence of
the m-CPPD and a-CPP phases: the presence of 1.00 mM of
Zn2+, Cu2+, or Fe3+ ions partly inhibited the crystallization of t-

Table 2. Relative Weight Proportion (wt %) of the CPP
Phases (m-CPPD, t-CPPD, and a-CPP) Determined from
the XRD Data for the Samples Precipitated in the Presence
or Absence of Ionic Additives Initially Introduced in the
Buffer Solution (Denoted (b) in the Main Text)s

ionic additive concentration in the
precipitation medium

m-CPPD
(wt %)

t-CPPD
(wt %)

a-CPP
(wt %)

without additive (reference) 0 ± 1 93 ± 1 7 ± 1

[S2O3
2−] = 1.00 mM 3 ± 2 90 ± 1 7 ± 1

[S2O3
2−] = 5.00 mM 3 ± 1 89 ± 1 8 ± 1

[Mg2+] = 0.10 mM 1 ± 1 94 ± 1 5 ± 1

[Mg2+] = 1.00 mM 26 ± 1 69 ± 1 5 ± 1

[Fe3+] = 0.03 mM 4 ± 1 89 ± 1 7 ± 1

[Fe3+] = 0.10 mM 14 ± 1 80 ± 1 6 ± 1

[Fe3+] = 1.00 mM 37 ± 1 1 ± 1 62 ± 1

[Zn2+] = 0.10 mM 6 ± 1 84 ± 1 10 ± 1

[Zn2+] = 1.00 mM 75 ± 1 5 ± 1 20 ± 1

[Cu2+] = 0.10 mM 4 ± 2 93 ± 1 3 ± 1

[Cu2+] = 1.00 mM 60 ± 1 4 ± 1 36 ± 1
sAll experiments were performed in duplicate.



CPPD and favored the formation of (i) a-CPP phase (62 ± 1
wt %) in the presence of Fe3+, and (ii) m-CPPD phase (75 ± 1
wt %) in the presence of Zn2+. For the lowest concentrations of
Zn2+, Cu2+, or Fe3+ ions (0.10 mM), t-CPPD remained the
major phase in the precipitated samples.
All these results demonstrated a major effect of 1.00 mM of

Cu2+, Zn2+, and Fe3+ on t-CPPD crystallization, but did not
allow the detection of pure crystalline phases of magnesium,
zinc, iron, or copper pyrophosphate that may have precipitated,
considering the limit of detection (2%) of the XRD analysis.
Assuming that all the cationic additives (A) involved in the
synthesis had precipitated as A-pyrophosphate salts, we would
have expected a contribution of 2.6% (molar) or 2.0 to 3.1 wt %
of this compound depending on the additives (Zn2+, Cu2+, or
Mg2+) or 4.0% (molar) or 3.9 wt % of iron pyrophosphate
(with Fe/Pyro = 4/3 for electrical neutrality of the solid),
which would have been detectable by XRD.
Moreover, after carefully checking the unit-cell parameters

calculated from the XRD pattern data, we can confirm that
there is no significant difference from the unit-cell parameters
of the reference CPPD phases already published.10

Further structural investigations were performed by 31P solid-
state NMR analysis to provide more information on the phases
that precipitated in the presence of additives via the chemical

shift 31P and relaxation time T1(
31P) data (see Section 3.3).

Indeed T1 (the longitudinal relaxation time) is a parameter,
which is sensitive to the potential presence of paramagnetic
ions, such as Cu2+ and Fe3+, in the precipitated CPPs.

3.2. Influence of Ionic Additives Initially Present in
One of the Reagent Solutions (rs): Qualitative and
Semiquantitative XRD Study. Figure 4 shows the XRD
patterns of CPP samples synthesized with 1.00 mM of the
selected ionic additives initially present within the cationic or
anionic reagent solution (rs). The results of the semi-
quantitative analysis (relative weight proportion of m-CPPD,
t-CPPD, and a-CPP phases for all synthesized samples) of these
XRD data are reported in Table 3.

We can observe that the presence of 1.00 mM of Mg2+ or
S2O3

2− ions did not lead to significant changes in the sample
composition, which contained mainly t-CPPD (91 wt %), a-
CPP (6 wt %), and m-CPPD (3 wt %). The results reported in
Table 3 indicate the determinant effect of the presence of 1.00
mM of Fe3+, Zn2+, or Cu2+ ions on the composition of the
synthesized samples: Zn2+ or Cu2+ both favored the formation
of m-CPPD (71 and 78 wt %, respectively), a smaller amount
of a-CPP (25 and 20 wt %, respectively) and a very low
proportion of t-CPPD (4 and 2 wt %, respectively). On the
other hand, Fe3+ completely inhibited the crystallization of the
t-CPPD and m-CPPD phases: the samples synthesized in the
presence of 1 mM of Fe3+ were mostly amorphous (98 wt %).
The number of water molecules associated with this amorphous

Figure 3. XRD patterns (for 2θ = 17−45°) of the m-CPPD and a-CPP
reference compounds and the samples synthesized in the presence of
1.00 mM Cu2+ or Fe3+ initially present in the buffer (b) solution. Solid
line: halo corresponding to a-CPP.

Figure 4. XRD patterns of m-CPPD and t-CPPD reference phases, and of samples synthesized in the initial presence of ionic additives in one of the
reagent solutions (rs), leading to a 1 mM ionic additive concentration in the buffer solution at the end of the experiment.

Table 3. Relative Weight Percentage of the CPP Phases (m-
CPPD, t-CPPD, and a-CPP) Present in the Samples
Synthesized in the Presence or Absence of Ionic Additives
Initially Introduced into the Reagent Solution (rs)

ionic additive concentration in the
medium of precipitation

m-CPPD
(wt %)

t-CPPD
(wt %)

a-CPP
(wt %)

without additive (reference) 0 ± 1 93 ± 1 7 ± 1

[S2O3
2−] = 1.00 mM 3 ± 1 91 ± 1 6 ± 1

[Mg2+] = 1.00 mM 4 ± 2 90 ± 1 6 ± 1

[Fe3+] = 1.00 mM 2 ± 1 0 ± 1 98 ± 1

[Zn2+] = 1.00 mM 71 ± 1 4 ± 1 25 ± 1

[Cu2+] = 1.00 mM 78 ± 1 2 ± 1 20 ± 1



CPP phase (3.2 ± 0.1, for 1 mM of Fe3+(rs) sample),
determined by ATG analysis, was lower than those reported for
pure a-CPP reference compound,8−10 but they were still in the
range 3−4.
In addition, we observed that no crystalline phases of

magnesium, zinc, iron, or copper pyrophosphates coprecipi-
tated. As previously indicated for the samples precipitated using
the (b) protocol, if present in the samples the A-pyrophosphate
phases would have been detectable.
As in the case of ionic additives initially present in the buffer

solution, presented in Figure 3, the presence of a more or less
prominent diffuse halo around 2θ = 30°, especially for samples
prepared in the presence of Zn2+, Cu2+, or Fe3+ in the calcium
reagent solution (data not shown) testifies to the presence of
an amorphous phase.
Complementary FTIR spectroscopic analysis of the samples

formed in the presence of 1.00 mM Fe3+ was performed to
further investigate their composition. The spectra of this sample
and that of reference a-CPP10 are presented in Figure 5. All in
all, the spectra were quite comparable. The presence of the νPOP

as

and the νPOP
s vibration modes confirmed the presence of

pyrophosphate groups in an amorphous phase. A slight increase
of the absorbance at 960 cm−1 (ν1PO4

as ) and 1010 cm−1 (ν4PO4

as )

seems to indicate the presence of a small proportion of poorly
or noncrystalline calcium orthophosphate.44,45 Furthermore,
the splitting of the peaks corresponding to the 4νPO3

as , νPO3

as , and

δPO3
+ ρPO3

vibration modes confirms the presence of a small

amount of a crystalline phase of CPPD without the possibility
to clearly identify which CPPD phase (triclinic or monoclinic)
is present due to the low proportion of this crystalline phase in
this sample (2 wt % of m-CPPD evaluated by XRD, see Table
3), and also due to important band broadening characteristic of
the presence of the a-CPP phase. Complementary analysis by
Raman spectroscopy was performed and also confirms this
result (data not shown).

3.3. Complementary Elemental, Morphological, and
Structural Analyses. 3.3.1. Elemental Analyses. The results
of the elemental analysis of samples precipitated in the absence
or presence of ionic additives (A) are reported in Table 4. We
note that whatever the mode of introduction (b or rs) of the
cationic additive, the lowest A/Ca and A/P ratios (for 1 mM
Mg2+(rs): 6.7 × 10−3 and 7.0 × 10−3, respectively) were
obtained for samples precipitated in the presence of Mg2+.
These ratios were the lowest in the case of anionic additives
(A/Ca = 5.8 × 10−3 and A/P = 5.9 × 10−3 for 1.00 mM S2O3

2−

Figure 5. FTIR spectra of reference m-CPPD, t-CPPD, and a-CPP phases and of the sample synthesized in the presence of 1 mM Fe3+ present
initially in the calcium reagent solution, denoted (rs) in the main text. The different vibrational modes of the molecules, stretching (ν), bending (δ),
and rocking (ρ), respectively, symmetric (s) or antisymmetric (as), are indicated.

Table 4. A/Ca, A/P, Ca/P, and (Ca+A)/P or Ca/(P+A) Molar Ratios Calculated with Concentrations of Ca, P, and Ionic
Additives (A) Determined by ICP-OES Analyses of the Samples Synthesized in the Presence or Absence of the Ionic Additive
Initially Present in the Reagent Solution (rs) or in the Buffer Solution (b)

ionic additive concentration in the precipitation medium A/Ca A/P Ca/P (Ca+A)/P Ca/(P+A)

without additive (reference) 1.03 ± 0.03 - -

1.00 mM [S2O3
2−] (rs) (5.8 ± 0.2) × 10−3 (5.9 ±1.1) × 10−3 1.01 ± 0.14 - 1.01 ± 0.14

5.00 mM [S2O3
2−] (rs) (6.0 ± 0.5) × 10−3 (6.4 ± 0.6) × 10−3 1.06 ± 0.06 - 1.06 ± 0.06

1.00 mM [S2O3
2−] (b) (5.9 ± 0.3) × 10−3 (6.2 ± 0.4) × 10−3 1.04 ± 0.10 - 1.03 ± 0.10

1.00 mM [Mg2+] (rs) (6.7 ± 0.6) × 10−3 (7.0 ± 0.6) × 10−3 1.04 ± 0.09 1.05 ± 0.10 -

1.00 mM [Mg2+] (b) (9.5 ± 2.0) × 10−3 (9.1 ± 1.9) × 10−3 0.95 ± 0.09 0.96 ± 0.10 -

1.00 mM [Fe3+] (rs) (2.7 ± 0.2) × 10−2 (3.1 ± 0.3) × 10−2 1.13 ± 0.08 1.16 ± 0.08 -

1.00 mM [Fe3+] (b) (4.9 ± 0.4) × 10−2 (3.9 ± 0.5) × 10−2 0.80 ± 0.04 0.84 ± 0.05 -

1.00 mM [Zn2+] (rs) (2.8 ± 0.5) × 10−2 (2.6 ± 0.4) × 10−2 0.95 ± 0.05 0.98 ± 0.06 -

1.00 mM [Zn2+] (b) (2.8 ± 0.1) × 10−2 (2.6 ± 0.1) × 10−2 0.93 ± 0.05 0.95 ± 0.06 -

1.00 mM [Cu2+] (rs) (2.0 ± 0.3) × 10−2 (1.9 ± 0.3) × 10−2 0.94 ± 0.06 0.96 ± 0.06 -

1.00 mM [Cu2+] (b) (3.4 ± 0.2) × 10−02 (3.0 ± 0.2) × 10−02 0.90 ± 0.03 0.93 ± 0.03 -



(rs)). For the other cationic additives, this ratio ranged between
1.9% and 3.9%, indicating a quite high introduction of the
additive into the samples, including 100% for 1 mM of Cu2+

and Fe3+ introduced in the buffer or Zn2+ introduced in the
reagent solution. These three samples had a-CPP compositions
of 36, 62, and 25 wt %, respectively, the highest proportions of
a-CPP found in the studied samples. Indeed, if the totality of
the additive ions involved in synthesis had precipitated in pure
CPP phases in which Ca/P = 1, we would obtain 2.6% (molar)
of additive-pyrophosphate for Zn2+, Cu2+, and Mg2+ or 4.0%
(molar) of iron pyrophosphate (with Fe/Pyro = 4/3 for
electrical neutrality of the solid).
We also observed that except in the case of Zn2+ for which

the difference in sample compositions between both protocols
(b and rs) was not significant, for all the other additives the A/
Ca and A/P ratios were higher when the additive was
introduced in the buffer solution (b), which corresponded to
higher initial concentration of additives (high A/Ca or A/P
initially in the buffer solution, which then decreased as
precipitation occurred) (Table 4). Comparing the ionic radii
(in picometer: pm) of the cationic additives (Mg2+ (72 pm),
Cu2+ (73 pm), Fe3+ (55 pm), or Zn2+ (74 pm)) with those of
Ca2+ (100 pm), they are all smaller than calcium ions,
indicating that we should expect fairly similar behavior for
these ions upon CPP precipitation, as well as no significant
variation in their cell parameters by XRD analysis in the case of
a limited amount of additive ions incorporated in the crystals. A
Ca/P ratio lower than 1 can be expected if the cationic
additives are incorporated into the CPP precipitate and this was
observed, except in the cases of 1.00 mM Mg2+ or Fe3+ initially
introduced in the reagent solution (Table 4). This observation
may be explained by the low influence of the presence of 1.00
mM Mg2+(rs) on the sample composition (90 wt % of t-CPPD,
6 wt % of a-CPP, and 4 wt % of m-CPPD) compared with the
reference sample (without additive: 93 wt % of t-CPPD and 7
wt % of a-CPP) leading thus to a similar Ca/P ratio for both
samples (1.04 and 1.03, respectively). On the contrary, the
strongest effect on CPPD crystallization was observed in the
presence of 1 mM of Fe3+(rs) (98 wt % of a-CPP and 2 wt % of
m-CPPD) and it has been reported that some orthophosphates
can be associated with a-CPP phase,8 which could in this case
explain a Ca/P ratio slightly higher than 1.
3.3.2. Observations by Scanning Electron Microscopy.

Scanning electron micrographs of the samples precipitated in
presence of the various additives initially introduced in the
buffer (b) or reagent solution (rs) are presented in Figure 6.
We can observe that whatever the ionic additive involved,
except in the case of Fe3+ which will be discussed in the next
paragraph, the crystals appear to keep their acicular shapes, with
a large heterogeneity in particle sizes and agglomeration states.
Indeed, in the presence of additives, except in the case of Fe3+,
we observed finer particles and more needle-like crystals, which
is a morphology characteristic of the m-CPPD phase, compared
with the reference t-CPPD phase, the crystals of which appear
thicker (parallelipipedic crystals). This feature is a general
characteristic of CPPD crystals as observed in previous works
by Gras et al.10 These observations are consistent with the m-
CPPD/t-CPPD weight ratio determined by XRD, which was
found to increase rapidly with the concentration of Mg2+, Zn2+,
or Cu2+ (Table 2 and Table 3). We also notice that the
presence of Zn2+ ions causes a marked agglomeration of the
particles of the precipitate (Figure 6). A less pronounced effect
seems to appear in the presence of Cu2+. These observations

can be linked to the XRD semiquantitative results (Table 2):
high agglomeration is visible for samples with a high proportion
of a-CPP even if it was not the major phase (in presence of 1
mM of Zn2+ and 1 mM of Cu2+initially introduced in the buffer
solution).
The case of samples precipitated in the presence of 1 mM

Fe3+ is considered separately, as the a-CPP phase was the major
phase in these samples (Table 2 and Table 3). In agreement
with the XRD data, we can see on Figure 6 that the acicular
morphology of the CPPD crystals was no longer visible for
samples precipitated in the presence of 1.00 mM Fe3+

introduced in the calcium reagent solution (rs; 98 wt % of a-
CPP), whereas a few particles with the acicular morphology

Figure 6. SEM micrographs of the crystals of the reference t-CPPD
phase and of samples precipitated in the presence of 1.00 mM Mg2+,
1.00 mM Zn2+, 1.00 mM Cu2+, or 1.00 mM Fe3+ introduced in the
buffer (b) or in the reagent solution (rs).



were still visible for samples precipitated in the presence of 1.00
mM of Fe3+ introduced in the buffer solution (b; 62 wt % of a-
CPP) (Figure 6 and Tables 2 and 3). The a-CPP phase showed
quite well dispersed and smooth, round particles with a
diameter of about 20 μm. This a-CCP phase morphology was
different from that described by Gras et al.10 which contained
smaller (less than 1 μm) round, agglomerated particles.
Further structural investigations using solid-state NMR were

performed to shed some light on the possible mechanism of
action of some of these ionic additives.
3.3.3. Structural Analyses by 31P Solid-State NMR Spec-

troscopy. As explained previously, none of the characterization
methods used so far allowed a clear identification of the
dopants (cationic additives) in one or the other of the mineral
phases identified, due principally to the low amount of dopant
species. The determination of T1(

31P) (spin−lattice) relaxation
times could give an answer to this important question.
Generally speaking, the observed T1 in solid-state NMR are
strongly dependent on the presence of paramagnetic species,
which has been shown to considerably reduce their values.
Thus, this method is especially useful for paramagnetic dopants
like Cu2+ and Fe3+, whereas diamagnetic species such as Zn2+

and Mg2+ are expected to produce no noticeable effect (such
cations are introduced in very small amounts, and the natural
abundances of 25 Mg and 67Zn, which are quadrupolar nuclei,
are <10%).
The 31P MAS spectrum of the t-CPPD reference phase is

presented in Figure 7. As previously observed by Gras et al.,9 t-
CPPD (labeled t in Figure 7) is characterized by two sharp
peaks located at −5.14 and −6.24 ppm. The observation of two
31P resonances is in full agreement with the crystallographic
data as reported in previous publications.9 Studying the
spectrum in detail, one can observe the presence of two very
minor components at −7.5 and −9.96 ppm. They correspond
to a-CPP (labeled a in Figure 7) and m-CPPD (labeled m in
Figure 7), respectively (m-CPPD is also characterized by a
second resonance at −6.30 ppm, which here is superimposed
onto one of the peaks of the t-CPPD phase). These side phases
were considered here as negligible. T1(

31P) = 76.3 s for t-CPPD
(Table 5). m-CPPD is characterized by two resonance peaks
centered at −5.91 and −9.68 ppm. T1(

31P) = 96.0 s for m-
CPPD. In the case of a-CPP, a featureless broadened
component is observed at ∼−5 ppm, exhibiting T1(

31P) =
29.5 s.
The 31P MAS NMR spectra of the samples obtained in the

presence of 1.00 mM Cu2+ initially present in the buffer (b) or
in the reagent solution (rs) are reported in Figure 8. When
comparing these spectra with those of the t-CPPD, m-CPPD,
and a-CPP reference samples, it is obvious that the spectra of
the Cu2+-doped samples exhibit m-CPPD as the major phase,
confirming the XRD data (Table 2 and Table 3). The 31P
isotropic chemical shifts are centered at −6.44 and −10.24
ppm, slightly shielded when compared with the m-CPPD
reference (Table 5). This variation may be attributable to the
presence of Cu2+ cations in the sample, which was confirmed by
ICP-OES elemental analysis: Cu/Ca (rs) and Cu/P (rs) are
both around 2 × 10−2; Cu/Ca (b) and Cu/P (b) are both
around 3 × 10−2 (Table 4). A deconvolution of the spectra is
also presented in Figure 8. t-CPPD was present as a minor
component, as well as a much broader component, which could
be safely assigned to an amorphous phase. This amorphous
component is rather nonsymmetric in contrast to the one
observed for nondoped a-CPP (consequently, two components

were used in the final deconvolutionthey are both indicated
by the notation “a” in Figure 8). We did not attempt to further
analyze the shape of this particular resonance, but used it as a
fixed model for spectral deconvolution and quantitative
analyses (Table 5). The resulting data are in good agreement
with the results obtained by semiquantitative XRD analysis
(Table 2 and Table 3). Even if the semiquantitative XRD data
provide results in wt % and those of solid-state NMR in molar
% of the CPP phases, we can globally compare both data, as the
CPP phases involved in all samples have the same or quite the
same molecular weight (2 water molecules for t-CPPD and m-
CPPD and between 3 and 4 associated with a-CPP phase).
Finally, we note the presence of a broad component centered

at ∼−2.0 ppm. The intensity of this particular component is
small but measurable. It was even broader when Cu2+ was
introduced in the buffer ((b) protocol). At this stage, two
distinct assignments can be proposed for this broadened
component: (i) orthophosphates, such as those that can be
obtained as side products of the partial hydrolysis of
pyrophosphates,9 or (ii) pyrophosphates exhibiting shifted

Figure 7. 31P MAS NMR spectra (decoupled from 1H during the
acquisition) of the reference samples t-CPPD, m-CPPD, and a-CPP
(synthesized without additives). The different components of the MAS
spectra are labeled as follows: t (t-CPPD), m (m-CPPD), and a (a-
CPP).



Table 5. T1(
31P) Relaxation Time Measured by Saturation Recovery for Each Peak Identified in the 31P MAS NMR Spectra of

Samples Synthesized in the Presence (or Absence) of Cu2+ or Fe3+ Ions Introduced in the Calcium Reagent Solution (rs) or in
the Buffer (b)a

Reference Samples

Figure 7

m-CPPD reference

δ (ppm) −5.91 −9.68

line width (ppm) 0.68 0.63

relaxation time T1 (s) 96.0 (±0.4)

t-CPPD reference

δ (ppm) −5.14 −6.24

line width (ppm) 0.55 0.61

relaxation time T1 (s) 76.3 (±5.8)

a-CPP reference

δ (ppm) ∼ −5

line width (ppm) 1.1

relaxation time T1 (s) 29.5 (±2.7)

Samples Precipitated in the Presence of Ionic Additive

components t t/m m sPP a

1 mM [Cu2+] (rs)

δ (ppm) −5.41 −6.44 −10.24 ∼−2.0 −7.6/−9.2

line width (ppm) 0.58 0.52 0.59 3.0 1.1/1.8

relaxation time T1 (s) 2.0 ± 0.3 2.0 ± 0.3 ∼4

area (relative percentage) (%) 4 46 37 2 6/5

1 mM [Cu2+] (b)

δ (ppm) −5.40 −6.43 −10.23 ∼−1.5 −7.9/−9.2

line width (ppm) 0.89 0.59 0.53 6.4 1.4/2.2

relaxation time T1 (s) 2.6 ± 0.3 2.6 ± 0.3 ∼4

area (relative percentage) (%) 6 33 26 15 13/7

1 mM [Fe3+] (rs)

δ (ppm) −9.9 ∼1 ∼−7.5

line width (ppm) 1.6 ∼4 ∼6

relaxation time T1 (s) 3.3 ± 0.7 <1

area (relative percentage) (%) 7 12 81

1 mM [Fe3+] (b)

δ (ppm) −6.13 −9.98 ∼1 −7.8

line width (ppm) 0.70 0.73 ∼3 ∼6

relaxation time T1 (s) <1 <1 <1

area (relative percentage) (%) 22 22 3 53

1 mM [Zn2+] (rs)

δ (ppm) −5.52 −6.55 −10.35 −7.3/−9.2

line width (ppm) 0.58 0.67 0.66 2.49/1.76

relaxation time T1 (s) 43.4 ± 3.0 49.7 ± 7.3 ∼12

area (relative percentage) (%) 3 35 32 18/12

1 mM [Zn2+] (b)

δ (ppm) −5.47 −6.51 −10.31 −7.2/−9.1

line width (ppm) 0.50 0.70 0.66 1.4/1.8

relaxation time T1 (s) 74.0 ± 6.2 93.7 ± 12.5

area (relative percentage) (%) 3 42 35 9/11

Components t t m m a

1 mM [Mg2+] (rs)

δ (ppm) −5.57 −6.67 −7.7 −10.35 −6.03

line width (ppm) 0.59 0.70 1.66 0.84 0.89

relaxation time T1 (s) 25.8 ± 2.8 27.7 ± 3.0

area (relative percentage) (%) 43 49 5 3

1 mM [Mg2+] (b)

δ (ppm) −5.56 −6.63 −9.28 −10.33 −7.97

line width (ppm) 0.59 0.74 1.44 0.64 1.72

relaxation time T1 (s) 104.4 ± 29.7 65.2 ± 6.1 35.3 ± 6.8 65.8 ± 7.9

area (relative percentage) (%) 29 53 2 16
aIsotropic chemical shifts, line widths, and relative molar % are given as well. t: t-CPPD, m: m-CPPD, a: a-CPP, sPP: shifted calcium
pyrophosphates.



δiso(
31P) due to the paramagnetic effect of Cu2+ cations. From

the NMR point of view, 31P INADEQUATE MAS experiments
should allow definite assignments,8 as this double quantum
(DQ)-based experiment is sensitive to pyrophosphate groups
only. We did not attempt to implement this sequence, as the
intensity of the involved resonance was very small. However,
such a broad component was not observed at all in the case of
diamagnetic cations, namely, Zn2+ and Mg2+ (Figures 10 and
11, respectively). Moreover, it is clear from Figure 8 that the
broadening is more pronounced in the (b) protocol than in the
(rs) protocol. We recall here that Cu/P (rs) < Cu/P (b). In
summary, we suggest that the broad component centered at
∼−2.0 ppm can be assigned safely to pyrophosphate groups in
relatively close vicinity to the paramagnetic centers.46 Indeed,
such a component is observed on the 31P MAS NMR spectra.
Even if FTIR spectroscopy was able to distinguish

orthophosphate from pyrophosphate groups (for instance, in
the case of Fe3+; see Figure 5), the broadening and overlapping
of the vibrational bands would exclude definite assignments at
this stage. The complementary roles of solid state NMR
spectroscopy, X-ray diffraction and vibrational spectroscopies
characterization techniques are demonstrated here.
Considering the T1(

31P) data, we focused here only on the
major m-CPPD phase, and found that T1(

31P) ≅ 2.3 s for both
samples (on average). When compared with the reference m-
CPPD phase, one observes a drastic reduction of the 31P
longitudinal relaxation time. This can be safely attributed to the
presence of the paramagnetic Cu2+ cations within the m-CPPD
structure. Indeed, it is well established that paramagnetic ions

usually lead to a very efficient pathway for nuclear
relaxation.46−50 Two relaxation mechanisms can be considered,
namely, a through-space dipolar coupling between electrons
and nuclei and a through-bond electronic interaction (Fermi
contact). Both are usually present. The effect of paramagnetism
on the NMR resonances can be summarized as the following:
(i) a loss of signal is observed for those nuclei in close vicinity
to the paramagnetic centers, (ii) line widths can broaden
significantly, (iii) nuclear longitudinal T1 values are usually
strongly shortened, and (iv) paramagnetic shifted peaks can be
observed directly on the NMR spectrum. Very recently,
McCarty and Stebbins51 performed an in-depth study of the
effect of paramagnetic cations such as Ni2+ and Co2+ on the
17O, 25 Mg, and 43Ca MAS NMR spectra of CaO, MgO, and
CaO.
Though present as a minor component, T1(

31P) ≅ 4 s was
estimated for the a-CPP component. No attempt was made to
derive the T1(

31P) data for t-CPPD (t) and the shifted
pyrophosphates (sPP) as the corresponding intensities were
intrinsically small.
The 31P MAS NMR spectra of the samples obtained in the

presence of 1 mM Fe3+ initially present in the buffer (b) or in
the reagent solution (rs) are reported in Figure 9. All relevant
isotropic chemical shifts and T1(

31P) data are reported in Table
5. In the case of the (b) protocol, there are similarities with the
results for the Cu2+-doped samples. Indeed, m-CPPD and a-
CPP were clearly obtained as major phases, but with a different
molar ratio compared with the Cu2+ case. This result is in good
agreement with the XRD data (Table 2 and Table 3).
In the case of the (rs) protocol, a broad spectrum was

obtained, exhibiting two main components: shifted pyrophos-
phates, sPP; and amorphous pyrophosphates, a (Figure 9). A
very small amount (∼4%) of another phase (∼−9.9 ppm) was
faintly detected.
This 31P isotropic chemical shift is in agreement with the

presence of m-CPPD as a minor phase, as shown by powder
XRD (Table 3).
In other words, Fe3+ is able to inhibit almost completely the

crystallization of CPPD phases (m and t) when using the (rs)
protocol. As already observed in the case of Cu2+-doped
samples, a drastic reduction of T1(

31P) was observed for both
m-CPPD and a-CPP phases. This shows again that Fe3+ cations
are inserted into the m-CPPD and a-CPP phases.
In the case of Fe3+ ((b) protocol), we further observe that

the content of a-CPP is much larger than in the case of Cu2+

(Figure 8). This observation is in full agreement with the
semiquantitative XRD data mentioned above (62 wt % of a-
CPP phase in the case of Fe3+).
The 31P MAS NMR spectra of the samples obtained in the

presence of 1.00 mM Zn2+ and Mg2+ (diamagnetic species)
initially present in the buffer (b) or in the calcium reagent
solution (rs) are reported in Figures 10 and 11, respectively. All
relevant isotropic chemical shifts and T1(

31P) data are reported
in Table 5. In the case of Zn2+ (Figure 10), there are similarities
with the results of the Cu2+-doped samples. Indeed, m-CPPD
and a-CPP were clearly obtained as the major phases but with a
different molar ratio when compared with the Cu2+ case. This
result is in good agreement with the XRD data (Table 2 and
Table 3). Furthermore, the molar proportions of the different
phases reported in Table 5 are in good agreement with the
XRD data (Table 2 and Table 3) and confirm that m-CPPD
and a-CPP are indeed obtained as the major phases.

Figure 8. 31P MAS NMR spectra (decoupled from 1H during the
acquisition) of samples synthesized in the presence of 1.00 mM Cu2+

introduced in the buffer (b) or in the calcium reagent solution (rs).
The relaxation delay after the train saturation of the 31P channel was
incremented from the bottom to the top of the spectra (saturation−
recovery). The different components of MAS spectra are labeled as
follows: t (t-CPPD), m (m-CPPD), a (a-CPP), and sPP (shifted
calcium pyrophosphates).



In the case of the (rs) protocol (Zn2+), the amorphous (a)
contribution is characterized by two components as observed
above (Figure 10). Furthermore, a small contribution of t-
CPPD is evidenced as well. Finally, a negligible resonance is
observed at ∼0 ppm.
As already observed in the case of Cu2+ doped samples, a

significant reduction of T1(
31P) was observed for both the m-

CPPD (∼45.0 s) and a-CPP (∼12.0 s) phases (we mention
here that T1(

31P) = 96.0 and 29.5 s for reference m-CPPD and
a-CPP, respectively). However, this reduction is not as
pronounced as in the case of the paramagnetic ions of Cu2+.
In this case, any effect of paramagnetic relaxation is excluded.
We believe that Zn2+ cations enter the m-CPPD structure as
well as a-CPP, leading to local defects and consequently to the
subsequent decrease of T1(

31P).
When comparing the spectra obtained in the case of Mg2+

with the t-CPPD, m-CPPD, and a-CPP references (Figure 11),
it is obvious that the spectra of the Mg2+-doped samples exhibit
t-CPPD as the major phase and m-CPPD as a minor one in the
case of the (b) protocol. This result is in good agreement with
the XRD data (Tables 2 and 3), and the molar proportions of
the different phases reported in Table 5 are in good agreement

with XRD as well. The 31P isotropic chemical shifts are
centered at −5.70, −6.50, and −10.34 ppm, slightly shielded
when compared with the reference phases. This variation may
be attributable to the presence of Mg2+ cations which was
confirmed by ICP-OES elemental analysis: Mg/P (rs) = (7.0 ±
0.6) × 10−3; Cu/P (b) = (9.1 ± 1.9) × 10−3 (Table 4). As
already observed in the case of the Zn2+-doped samples, a
reduction of T1(

31P) (in the presence of Mg2+) was observed
for t-CPPD in the (rs) protocol and m-CPPD in the (b)
protocol as well. Recently, Gras et al.43 reported some
similarities between the m-CPPD and t-CPPD phase structures
and those of other dihydrated pyrophosphate phases involving

Figure 9. 31P MAS NMR spectra (decoupled from 1H during the
acquisition) of samples synthesized in the presence of 1.00 mM Fe3+

introduced in the buffer (b) or in the calcium reagent solution (rs).
The relaxation delay after the train saturation of the 31P channel was
incremented from the bottom to the top of the spectra (saturation−
recovery). The different components of MAS spectra are labeled as
follows: m (m-CPPD), a (a-CPP), and sPP (shifted pyrophosphates).

Figure 10. 31P MAS NMR spectra (decoupled from 1H during the
acquisition) of samples synthesized in the presence of 1.00 mM Zn2+

introduced in the buffer (b) or in the calcium reagent solution (rs). t
(t-CPPD), m (m-CPPD), a (a-CPP).



other divalent metal cations, such as Mg2+, Mn2+, Fe2+, or Co2+,
which support our results suggesting the introduction of
magnesium in the CPPD phase structures.
These experiments using the same ionic additive introduced

in the buffer or in the reagent solution demonstrate that the
initial concentration of the additive and its distribution in the
reactor combined with the supersaturation level are crucial
parameters.
Concerning the inhibition of the t-CPPD crystallization by

Fe3+ ions, there may be a competition between iron
pyrophosphate and calcium pyrophosphate precipitation, or
Fe3+ may be adsorbed on the crystal and block some of the

growth sites (the Fe/Ca atomic ratio ranged between 2.7% and
4.9%; Table 4).
The use of S2O3

2− ion as an additive has no notable effect on
the t-CPPD formation.
At this stage, it is important to recall that the m- and t-CPPD

phases are those that have been identified in vivo, while we are
attempting to explain some of their behaviors observed in vitro.
The medium of precipitation is highly supersaturated at the
beginning of the synthesis. In the presence of additives, it is
possible that the most unstable phase (a-CPP) is formed first,
then evolves into m- or t-CPPD. The formation of a dihydrate
phase instead of another may be due to kinetics, potentially
modified by the presence of additives in the precipitation
medium. This seems to be consistent with the fact that in vitro,
the a-CPP phase could be a precursor of the m- and t-CPPD
phases. Another hypothesis is that the less stable crystalline
dihydrated phase (m-CPPD) could be formed first, and then
evolve into t-CPPD. In this case, the ionic additives studied
here would stabilize the m-CPPD phase and therefore prevent
it from evolving toward the t-CPPD phase. This assumption is
consistent with the effect identified in this study for Mg2+, Zn2+,
and Cu2+ cations. These ions promote the formation of m-
CPPD instead of t-CPPD by replacing Ca2+ in the structure.
That effect is especially strong for high initial concentrations of
these ions at the beginning of the precipitation of CPP ((b)
protocol). A potential excess of certain ions in arthritic joints
could be a precursor and/or aggravating factor for the
formation of CPPD crystals and the inflammatory response.
To explore this assumption, it could be interesting to correlate
medical analyses of the osteoarticular fluid compositions in
osteoarthritic patients who also suffer from diseases caused by
ionic imbalance, such as Menke’s or Wilson’s disease affecting
copper levels in the body.52 Furthermore, the used of Fe3+ ions
to prevent the precipitation of CPPD crystals has yet to be
explored in physiological conditions.

■ CONCLUSION

Calcium pyrophosphate dihydrate polymorphs (m-CPPD and
t-CPPD: Ca2P2O7·2H2O) detected in the joints of arthritic
patients are known to be highly inflammatory. Understanding
their formation and trying to minimize their development are
routes to reduce the pain caused or even to cure the disease.
Two main steps were analyzed in this study to achieve this

goal: the ability to produce these crystals in vitro, outside the
human body, to study their nucleation and growth phenomena
on the one hand, and testing ionic additives likely to have an
inhibitory action on CPPD formation on the other hand.
A stirred-batch reactor under controlled pH and temperature

was implemented to prepare almost pure t-CPPD, m-CPPD,
and a-CPP (amorphous) phases by simultaneously adding, at
controlled flow rates, a potassium pyrophosphate reagent
solution, and a calcium nitrate reagent solution into an
ammonium acetate buffer solution. This method is fast and
reproducible and produces adequate quantities of pure
products in vitro.
These phases were characterized in detail by using X-ray

diffraction, FTIR spectrometry, 31P solid-state nuclear magnetic
resonance, scanning electron microscopy, and elemental
analysis by inductively coupled plasma spectrometry. The
addition of one type of ionic additives ionic additives (Mg2+,
Cu2+, Fe3+, Zn2+, and S2O3

2−) in the reactor during the
precipitation of CPPD was tested. These additives can influence
the obtained phase.

Figure 11. 31P MAS NMR spectra (decoupled from 1H during the
acquisition) of samples synthesized in the presence of 1.00 mM Mg2+

introduced in the buffer (b) or in the calcium reagent solution (rs). t
(t-CPPD), m (m-CPPD).



When the t-CPPD phase was synthesized in the presence of
ionic additives, the results showed that instead of pure t-CPPD,
the m-CPPD phase formed simultaneously for all the tested
ionic additives, except in the case of low concentrations of
Mg2+. We also observed a dose-dependent effect: the higher the
amount of additives, the higher the proportion of m-CPPD in
the obtained mixture. Furthermore, for some additives, like
Zn2+, Cu2+, and Fe3+, the relative proportion of the amorphous
phase increased significantly in the mixture. The additive can
also change the morphology of the obtained particles, leading
to more or less agglomerated crystals. The use of S2O3

2− ions as
an additive has no notable effect on the formation of t-CPPD.
NMR analysis has allowed us to advance some interpretation

of the modes of action of the cationic additives tested that can
be adsorbed or inserted in the crystal lattice. In vitro, the a-CPP
phase may be a precursor of the m- and t-CPPD phases.
Another hypothesis is that the less stable crystalline dihydrated
phase (m-CPPD) may be formed first, and then evolve into t-
CPPD. In this case, the ionic additives studied here would
stabilize the m-CPPD phase and therefore prevent it from
evolving toward the t-CPPD phase. As ionic additives may
change the CPPD nucleation and crystal growth processes, we
recently engaged to study CPPD crystallization at constant
supersaturation with different CPPD seeds to understand better
these effects.
This study contributes to understanding the role some trace

elements can have in CPP crystal formation occurring in
pseudogout and in associated diseases like hypomagnesaemia
(low magnesium), Wilson’s disease (copper excess), and
hemochromatosis (iron excess).
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