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Multiscale Analysis of Intensive
Longitudinal Biomedical
Signals and Its Clinical
Applications
Recent advances in wearable and/or biomedical sensing technologies have made it

possible to record continuous biomedical signals over long periods of time. This
paper reviews multiscale approaches for their analysis.

By Toru Nakamura, Ken Kiyono, Herwig Wendt, Patrice Abry, Fellow IEEE, and

Yoshiharu Yamamoto

ABSTRACT | Recent advances in wearable and/or biomedical

sensing technologies have made it possible to record very

long-term, continuous biomedical signals, referred to as bio-

medical intensive longitudinal data (ILD). To link ILD to clini-

cal applications, such as personalized healthcare and disease

prevention, the development of robust and reliable data anal-

ysis techniques is considered important. In this review, we in-

troduce multiscale analysis methods for and the applications

to two types of intensive longitudinal biomedical signals,

heart rate variability (HRV) and spontaneous physical activity

(SPA) time series. It has been shown that these ILD have ro-

bust characteristics unique to various multiscale complex sys-

tems, and some parameters characterizing the multiscale

complexity are in fact altered in pathological states, showing

potential usability as a new type of ambient diagnostic and/

or prognostic tools. For example, parameters characterizing

increased intermittency of HRV are found to be potentially

useful in detecting abnormality in the state of the autonomic

nervous system, in particular the sympathetic hyperactivity,

and intermittency parameters of SPA might also be useful in

evaluating symptoms of psychiatric patients with depressive

as well as manic episodes, all in the daily settings. Therefore,

multiscale analysis might be a useful tool to extract informa-

tion on clinical events occurring at multiple time scales dur-

ing daily life and the underlying physiological control

mechanisms from biomedical ILD.

KEYWORDS | Autonomic nervous system; complex biosignals;

dynamical disease; heart failure; heart rate variability; multi-

scale fluctuations; psychiatric disorder; spontaneous physical

activity

I . INTRODUCTION

Ambulatory assessments have recently started to become

rapidly pervasive on a global scale. The development of

such technologies allows us to obtain large-scale data by

longitudinal recording of biomedical signals, such as

heart rate and physical activity time series. For instance,

in the last few years, a number of wearable devices and

cloud services using them for healthcare management

have been released at low cost [5]–[7]. However,

methods to analyze this kind of data collected continu-

ously in daily life, or so-called intensive longitudinal data

(ILD) [9], have not yet been fully established. To gain

useful information for better healthcare uses, it is impor-

tant to characterize signal features related to underlying
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physiological control mechanisms and clinical events oc-

curring on multiple time scales.

In this review, we introduce studies on statistical and

dynamical characterizations of signals called heart rate

variability (HRV) [13], a sequence of heart inter-beat in-

tervals measured by ambulatory electrocardiography, and

spontaneous physical activity (SPA), or sometimes called

locomotor activity, measured by acceleration sensors

built, for instance, into a wrist band/watch [14], [15]. Be-

cause the data collection for these signals is one of the

easiest modes of ambulatory monitoring, these data are

indeed two typical examples of ILD [9] that can be ob-

tained from time scales of seconds, minutes, hours, and

even days (or months in the case of SPA). These types of

data contain signal components due to changes in physio-

logical states and/or behavioral episodes (exercise, sleep,

eating, etc.) in daily life. In addition to these limited

number of within-day states and/or episodes, they also

contain an even greater amount of fluctuations around

changes in local means, known to show characteristics

unique to various multiscale complex systems. These

characteristics include long-range correlation [16], [17],

fractality [18]–[21], multifractality [22], non-Gaussian

[17], [23] and/or non-Poissonian [1], [2] behavior, and

intermittency [3], [4], [11], [23]–[25].

From a biomedical perspective, the massive existence

of signal components exhibiting such multiscale com-

plexity is considered important for two reasons. First, as

it is difficult for an individual to control her/his physio-

logical states and behavioral episodes over a number of

multiple time scales at the same time for a long period

of recording during daily life, these components are most

likely to be generated unconsciously without being af-

fected much by the specific life-styles of patients. Thus,

they are considered to provide robust measures reflecting

intrinsic characteristics of underlying physiological con-

trol mechanisms [26]. Notwithstanding this, these mea-

sures for multiscale complexity have been shown to be

altered in pathological states: e.g., myocardial infarction

[27], [28] and heart failure [11], [23]–[25], [29] for

HRV, and major depressive disorder [1], [2], [30] and

schizophrenia [31] for SPA. Second, and more intrigu-

ingly, it may be possible that statistical as well as dynam-

ical features of these components (fluctuations) could

provide information about early signs of abrupt changes

in the state of the system [32], and in this case health

and medical status.

The importance of studying statistical and dynamical

features of fluctuations can be understood by using a

schematic view of the dynamics of physiological regula-

tions and the transition to a “dynamical disease” [33],

[34] state [Fig. 1]. Traditionally, physiological regulations

have been explained using the concept of homeostasis
(i.e., stability through constancy), maintaining constancy

of a vital variable by sensing its deviation from a set point

and providing feedback to correct the error. Short-range

negative correlations of state variables are expected in

such a case. In 1988, Sterling and Eyer [35] extended this

concept to that of allostasis (i.e., stability through change)

to account for the ability to adapt successfully to the chal-

lenges of “daily life” by the brain’s mechanisms to main-

tain viability, emphasizing the extremely demanding and

complex biological imperative that “an organism must

vary all the parameters of its internal milieu and match

them appropriately to environmental demands.” In this

allostatic state, the spatiotemporal complexity of the

brain’s control systems may give rise to multiscale com-

plexity in the state variables, and it has indeed been

shown that both HRV [24] and SPA [1], [2], [31] exhibit

long-range correlation and intermittent dynamics only in

the daily life condition (not, e.g., during non-Rapid Eye

Movement sleep). While allostasis is necessary to make

physiological regulations during daily life, further activa-

tion of this state may bring a system to the critical transi-

tion point where the emergence of longer period

oscillation (e.g., critical slowing down [32]) and/or larger

deviations could be early signs of disease onset and/or ex-

acerbation. In this review, we will show some examples

for such a scenario including that increased intermittency

and appearance of larger non-Gaussian deviation of HRV,

due most likely to the sympathetic over-excitation, were

associated with increased mortality in severe heart failure

patients [25].

The above concept of dynamical disease [i.e., the

qualitative transition (bifurcation) to a diseased state

through changes in control parameters] is not new and

was indeed proposed almost a couple of decades ago

[33], [34]. While it is intuitively useful in disease fore-

casting, prevention and control, verification has been dif-

ficult because it requires large amount of data for the

state variables to gain quantitative insights into the dy-

namical state of the system; now it may be possible, by

Fig. 1. A current schematic view on the onset of (transition to)

dynamical disease and multiscale fluctuations in state space.



using biomedical ILD, to quantitatively study the dynami-

cal disease. Therefore, the purpose of this review is to

provide an overview of multiscale fluctuation analysis of

emerging biomedical ILD and its clinical applications.

Specifically, in Sections II and III, respectively for HRV

and SPA, we will introduce: 1) the physiological back-

ground, a brief history of research and unsolved prob-

lems; 2) characterizations of multiscale dynamics mainly

focusing on intermittent and non-Gaussian behaviors in

signals; and 3) examples of clinical applications and im-

plications provided through the analysis of multiscale

fluctuations. This will be followed by Section IV, which

summarizes the findings and discusses future directions.

Numerous multiscale analysis tools have so far been de-

veloped, mostly in the fields of statistical physics and

biosignal processing (cf., e.g., [36]–[40]). The present

contribution concentrates specifically on tools that focus

on a joint analysis of the intermittent and non-Gaussian

nature of data. Interested readers are referred to, e.g.,

[41] for a comprehensive review of multiscale analysis

tools and their clinical applications for HRV.

II . HEART RATE VARIABILITY

A. What is HRV and Why is it Important?
Normal heart contraction is initiated by electrical im-

pulses from the sinoatrial (SA) node acting as the natural

pacemaker of the heart. On an electrocardiogram, nor-

mal beating (called normal sinus rhythm) generates a

seemingly periodic and well-defined pattern [Fig. 2(a)].

However, closer examination reveals that the heartbeat

intervals fluctuate in a complex and irregular manner

even for a healthy individual at rest [Fig. 2(b)]. This

fluctuation is caused by that of the pacing rate of the SA

node modulated primarily as well as continuously by the

activity of sympathetic and/or parasympathetic (vagal)

nervous fibers via the autonomic nervous system (ANS)

[42]. Sympathetic stimulation exerts facilitatory effects

on the heart and increases heart rate, whereas parasym-

pathetic stimulation exerts inhibitory effects and de-

creases heart rate. In addition, the ANS has a broader

range of cardiovascular effects (e.g., on blood pressure),

generating much more dynamical and complex behaviors

in heart rate. Therefore, through the analysis of heart

rate fluctuations, called heart rate variability (HRV), it

is possible to evaluate various aspects of ANS function

[13], [43].

Clinically, an ambulatory electrocardiography device

called the Holter monitor, used for the diagnosis of ar-

rhythmias, is used to continuously monitor HRV usually

for 24 hours [44], and it has been reported that reduced

and/or abnormal HRV in cardiac patients is associated

with higher mortality during follow-up periods [45]–[47].

Hence, HRV characteristics are expected to serve as prog-

nostic as well as diagnostic markers of various cardiovas-

cular disorders. Heart rate in healthy subjects is well

controlled by parasympathetic function; higher parasym-

pathetic activity is known to result in slower heart rate

and increases in parasympatheticmarkers (see Section II-B)

of HRV. On the other hand, decreased parasympathetic

activity evaluated by higher heart rate and reduced HRV

is associated with increased risk of mortality in cardiac

patients, such as those after acute myocardial infarction

(AMI) [47].

More importantly, available epidemiological and

clinical data have shown that increased activity of the

sympathetic nervous system leads to an increase in car-

diovascular morbidity and mortality [48]. Accumulating

evidence has suggested that sympathetic hyperactivity is a

potential cause of fatal cardiovascular events, and pre-

sumably the major contributor to arrhythmic events [48].

Therefore, the noninvasive assessment of sympathetic ac-

tivity to the heart is of great importance. However, as

shown in Section II-B, currently most HRV markers are

considered to reflect primarily parasympathetic func-

tions, and there is no widely accepted and well tested

HRV index used as a marker of sympathetic nervous sys-

tem activity [49].

Fourier power spectral density estimation has been a

main tool in conventional HRV analysis [13]. The power

spectral density provides a full characterization of sto-

chastic processes only when they are stationarity and lin-

ear [50]. Notably, power spectral density does not

account for any departure of data from Gaussianity.

However, many real-world signals including HRV time

series cannot be fully characterized based on the assump-

tion of stationary Gaussian linear processes, and display

much more complex behavior. To quantify such nonlin-

ear features, concepts and analysis methods developed in

Fig. 2. Definition of R-R interval (RRI) and 24 hour heart rate

variability (HRV). In general HRV analysis, the R-peak in normal

sinus rhythm is assumed. (a) The R wave can be detected as a

sharp positive peak in the standard electrocardiogram (ECG), and

the RRI is defined as the duration between successive R-waves.

(b) 24 hour HRV (normal-to-normal R-R intervals) in a 31-yr-old

male subject.



statistical physics and nonlinear dynamics have been ap-

plied to HRV analysis [51]. The nonlinear indices which

have been proposed include scaling exponents character-

izing fractal and long-range correlation characteristics

[16], [52], multifractal properties [22], Poincaré plot-

based indices [53], entropy measures [54]–[57], symbolic

pattern statistics [55], [58] and non-Gaussian properties

[23]. Some of these nonlinear indices are expected to

provide complementary information on HRV characteris-

tics contributing to better diagnosis and prognosis than

conventional time and frequency domain indices.

With regards to a dynamical disease perspective

[Fig. 1], the following aspects of the HRV dynamics

should be considered as important: (1) common dynami-

cal properties of HRV have been observed in healthy sub-

jects even in daily life, when the measurements are

performed, [23], [26], although these properties can de-

pend on age [59], [60]; (2) these properties arise from

endogenous HRV dynamics, not from behavioral and en-

vironmental factors [23], [26]; and (3) an alteration of

such properties are associated with morbidity and mortal-

ity in cardiac patients [25], [28], [61], [62]. These proper-

ties have been observed in long-range correlation [26],

multifractality [22] and scale invariant non-Gaussianity

[23]. These characteristics are evaluated based on multi-

scale (or multiresolution) analysis, and have been exam-

ined as mortality risk markers for cardiac patients.

Moreover, some markers are suggested to be associated

with overall sympathetic hyperactivity during daily life.

Thus, multiscale analysis approaches could provide new

insight into HRV dynamics.

In this section, we discuss multiscale characteristics

of HRV and the key issues for evaluation of ANS func-

tions, especially sympathetic activity thought to play an

important role in the transition of the allostatic state.

B. Frequency Domain HRV Markers and the
Limitations

Frequency domain analysis based on Fourier power

spectral density estimation is a widely used tool for the

investigation of HRV [13]. HRV power spectral density

serves to detect a number of physiological processes

working at different and multiple time scales. In healthy

subjects under controlled conditions, a typical power

spectrum of HRV is comprised of two oscillating compo-

nents in high-frequency (HF; 0.15 to 0.4 Hz) and low-

frequency (LF; 0.04 to 0.15 Hz) bands [Fig. 3(b)], and a

1=f noise-like component in very-low-frequency (VLF;

below 0.04 Hz) band. The HF component reflects effects

of respiration on heart rate, referred to as respiratory si-

nus arrhythmia (RSA) while the LF component, associ-

ated with so-called Mayer waves (approximately 0.1 Hz),

represents oscillations related to regulation of blood

pressure and vasomotor tone. The origin of the VLF com-

ponent remains an open issue: it is however commonly

thought to relate to hemodynamic functions [13], [43],

[63], [64], such as thermoregulation and kidney func-

tion. For the noninvasive assessment of ANS functions,

power of the HF component is taken as a marker for car-

diac parasympathetic activity; the LF component is a

marker for cardiac sympathetic activity, or both the sym-

pathetic and parasympathetic influences, and the ratio of

LF to HF power (LF/HF ratio) indicates sympathovagal

balance, which is usually interpreted as reflecting the

relative sympathetic predominance [13], [65]. In this

view, an increase in LF power is assumed to indicate an

increase in sympathetic activity, and a higher value of

LF/HF ratio indicates a shift of sympathovagal balance

toward sympathetic predominance.

It is generally accepted that HF power reflects RSA me-

diated by the parasympathetic activity [66]. However, the

origin and clinical significance of LF power have aroused

considerable controversy. In short-term HRV recordings

(! minutes) under experimental conditions affecting

Fig. 3. Frequency domain HRV analysis. (a) Time series of R-R

intervals in a 31-yr-old male subject (top) and its frequency band

components (3 bottom rows). The time series was resampled at

evenly spaced intervals (2 Hz). The R-R time series was

decomposed into high frequency (HF: 0.15 to 0.40 Hz), low

frequency (LF: 0.04 to 0.15 Hz) and very low frequency (0 to

0.04 Hz) components. These components were obtained using the

inverse Fourier transform of corresponding frequency

components. (b) Power spectral density of the R-R time series (a).

(c) Assessment of the scaling exponent " of 24-h HRV. The power

spectrum was estimated from the resampled time series at 2 Hz.



autonomic response, the relative power contribution of LF

component is considered as a marker for sympathetic mod-

ulation [65], [67]. However, many studies using pharmaco-

logical, physiological and psychological manipulations

affecting sympathetic activity on HRV have challenged the

association of cardiac sympathetic activity with LF power

[68], [69]. The available data have suggested that over a

wide frequency range including HF and LF bands, the

HRV power spectrum is mainly determined by the para-

sympathetic system [70]. It has also been suggested that

the LF power constitutes an index of baroreceptor reflex

gain (or sensitivity) in mediating oscillations in blood pres-

sure and vasomotor activity [71], [72].

More controversial was the interpretation of LF

power and LF/HF ratio obtained from 24-hour ambula-

tory HRV recordings in patients with a marked reduction

in ventricular function. While in these patients, sympa-

thetic activity was reported to be markedly elevated [48],

a decrease in LF power and LF/HF ratio is more com-

monly observed, and associated with increased risk of

mortality [18], [73]. Therefore, clinical significance of as-

sociation of cardiac sympathetic activity with LF power-

related indices is questionable.

In addition to scale-specific behavior of HRV observed

in HF and LF bands, it has also been proposed that HRV

fluctuations show fractal, or scaling properties in the VLF

band (G 0.04 Hz), related to long-range correlations [16],

[17], [20], [59], [74], [75]. A time series is said to exhibit

long-range correlations when the data points across

widely separated times are correlated and the autocorre-

lation function of the time series or its increments shows

a power-law decay: Cð#Þ ! #$$ , where # is the time lag

[76]. Although the general mathematical mechanism for

generating long-range correlations is not clear, in some

numerical studies of complex systems, long-range correla-

tions emerge as a result of the collective behavior of mul-

tiple interacting components, each with its own, specific

and different characteristic time scales [77].

The conventional way to quantify long-range correla-

tions is to use power spectral analysis. Although long-

range correlated processes with SðfÞ ! f$" power spectra

have no characteristic time scale, such processes can be

characterized by a scaling exponent " [Fig. 3(c)]. The

1=f" power spectrum over large time scales is related to

the power-law autocorrelation ð! #$$Þ by " ¼ 1$ $
when 0G $ G 1 [78]. By estimating the slope in a log-log

plot of the 1=f"-type power spectrum, the scaling expo-

nent " can be obtained. A representative stochastic pro-

cess exhibiting monofractal behavior is fractional

Brownian motion (fBm) as a generalization of Brownian

motion [79]. This process is a Gaussian process BHðtÞ
and self-similar in terms of statistical properties:

BHðatÞ ¼! jajHBHðtÞ, where “¼!” denotes equality of the

probability distribution, 0 GH G 1 is a scaling exponent,

called the Hurst exponent, and related to " by

" ¼ 2H þ 1. In addition, the increment process of fBm

exhibits long-range correlation and is referred to as frac-

tional Gaussian noise (fGn), with " ¼ 2H $ 1.

In HRV analysis of healthy individuals, the value of "
is close to one in young adults, and gradually increases

with aging [59]. Moreover, an abnormal increase of "
(9 1.5) has been reported to be associated with an in-

creased risk of mortality in cardiac patients [61], [62]. To

consider this phenomenon, it is important to note that

the long-range correlated nature over the range of several

tens of seconds to a few hours arises from endogenous

HRV dynamics, not from exogenous effects such as be-

havioral and environmental factors [26]. To explain the

mechanism of the long-range correlated HRV, analogies

with critical phenomena have been proposed [23], [24].

The characteristic features at the critical point of a phase

transition are the divergence of relaxation time with

strongly correlated fluctuations and the scale invariance

in statistical properties. A healthy human heart rate has

been confirmed robustly to show the 1=f"-type power

spectrum. In addition, it is also reported that HRV in

healthy individuals undergoes a phase-transition-like be-

havior [24]. That is, highly correlated fluctuations are ob-

served only during daily activity, and a breakdown of

these characteristics occurs during prolonged, strenuous

exercise and in the nocturnal sleep period.

In the scaling analysis of HRV, it is important to note

that power spectrum analysis may provide spurious de-

tection of scaling properties caused by nonstationarity of

the time series [76]. The nonstationarity, such as a

smooth baseline trend and heterogeneous statistical

property, is known to introduce spurious scaling. To

avoid such artifacts and to provide more accurate esti-

mates of scaling exponents, alternative analysis methods

have been developed, such as detrended fluctuation anal-

ysis (DFA) [16] and multiresolution time-frequency anal-

ysis based on wavelet transform [80], [81]. In clinically

oriented studies, the DFA has been frequently used, and

some studies demonstrated its clinical significance (see

[41] for a comprehensive review). On the other hand,

multiresolution time-frequency analysis based on wavelet

transform has also been recognized as a tool to study

non-stationary signals [80], [81]. In this analysis, a time

series is decomposed into different time-scale compo-

nents. An advantage of wavelet analysis is that it can

have a salutary effect called vanishing moments which

eliminates smooth trends in the observed time series.

Wavelet analysis can provide more detailed information

about the time-varying properties of HRV. Therefore, it

may be a useful tool to detect and predict fatal events.

The ability of wavelet analysis to model and describe the

scale-free properties of HRV temporal dynamics has

been well documented in [23], [82]–[85].

C. Intermittent Fluctuations of HRV
In addition to 1=f" scaling as observed in fBm and

fGn, multiscaling (multifractal) properties of HRV have



been studied mainly in the field of statistical physics

[22], [82], [86]–[88]. Ivanov et al. reported, for the first

time, multifractality of HRV in normal subjects and re-

duced multifractality in patients with congestive heart

failure (CHF) [22]. Further, it has been suggested that

multifractal HRV is associated with ANS functions and

mainly with parasympathetic modulation [89], [90]. Re-

cent methodological developments in multifractal analy-

sis are expected to expand its potential applications to

HRV analysis [83]–[85], [91], [92].

Multifractal analysis was initially introduced to study

the so-called intermittency phenomenon of the fluid ve-

locity field in fully developed turbulence [93]. The multi-

fractality of the intermittent turbulent behavior is closely

related to a multiplicative cascade process where the lo-

cal energy on a given scale is linked to local energy on a

larger scale via a random multiplier [94], [95]. The ob-

served multifractality of HRV implies the intermittent

nature of HRV fluctuations and is analogous to the multi-

plicative cascade process [96].

A one-dimensional discrete time series based on the

idea of the multiplicative cascade can be constructed as

follows [97]: one starts with a discrete time series of

Gaussian noise fXtg of length 2m where m is the total

number of cascade steps, and split the interval into two

equal subintervals. On each subinterval, the local stan-

dard deviation (SD) is multiplied by random weights eY ,
where Y are independent Gaussian random variables

with variance %2=m and % * 0 is a shape parameter con-

trolling the strength of non-Gaussianity. Each of the two

subintervals is again cut in two equal subintervals and

the process is repeated. After m cascade steps, the time

series fbtg is given by

bt ¼ Xt exp
X

m

j¼1

Y
ðjÞ
ðt$1Þ
2m$j

j k (1)

where b,c is the floor function. As shown in Fig. 4(a),

this process exhibits intermittent bursts due to the multi-

plication of multiple random variables. One of the main

tools to characterize these intermittent fluctuations has

been multifractal analysis [e.g., Fig. 4(c)]. On the other

hand, a remarkable property of the intermittent fluctua-

tions is heterogeneity of variance, which results in non-

Gaussian probability density functions (PDF’s) [Fig. 4(b)].

Thus, characterization of intermittent fluctuations is pos-

sible through the analysis of the deformation process of

Fig. 4. Characterization of intermittent fluctuations. (a) An example of an intermittent time series fbtg generated by a multiplicative

cascade model (Eq. (1) with %2 ¼ 0:82, m ¼ 16). (b) Deformation of PDF’s of f!sBðtÞg, where BðtÞ ¼ Pt
k¼1 bðkÞ and !sBðtÞ ¼ Bðtþ sÞ $ BðtÞ.

Standardized PDF’s for different scales are shown for (from top to bottom) s ¼ 1; 4; 16. In the solid lines, we superimposed the PDF’s

approximated by a multiplicative log-normal model [Eq. (3) with a Gaussian kernel G]. For comparison, the dashed lines denote a

Gaussian distribution. (c) The singularity spectrum DðhÞ of the integrated series fBðtÞg. DðhÞ was estimated from 64 samples using

p-exponent and p-leader based multifractal analysis with p ¼ 1 (see [8] for details). (d) Scale dependence of %2 of f!sBðtÞg. Dashed lines

indicate theoretical predictions: %2
s ¼ %2ð1$ log2 s=mÞ [10]. Error bars indicate standard deviations.



the non-Gaussian PDF’s across scales [Fig. 4(d)] [10],

[97], [98]. Recently, the non-Gaussianity of HRV has

been suggested as a marker potentially related to sympa-

thetic cardiac overdrive [11], [25], [28]. Therefore, per-

haps even more so than conventional HRV markers

associated mainly with parasympathetic activity, this ap-

proach may be useful to evaluate another important phys-

iological function. In addition, long-range correlation,

multifractality, and large non-Gaussian deviations are

commonly observed near dynamical transition points

[99], [100] [Fig. 1]. Therefore, such properties may be

useful for finding early warning signals for fatal and cata-

strophic events.

1) Multifractal Analysis—HRV as Multiplicative Cascades:
Multifractal analysis is able to characterize the fluctua-

tions over time of the (ir-)regularity or singularity of a

signal XðtÞ, measured by a pointwise regularity (Hölder)

exponent hðtÞ, by means of the so-called singularity spec-

trum, defined as the fractal (Hausdorff) dimension of the

set of time instances with the same regularity [101]:

DðhÞ ¼ dimH tijhðtiÞ ¼ h
% &

: (2)

The practical counterpart enabling the estimation of

DðhÞ from data termed multifractal formalism relies on

the characterization of scaling behavior of higher order

statistics.

Many methods have been proposed to estimate the

singularity spectrum DðhÞ from observed time series (cf.

[84] for a review). As for the multifractality of HRV,

wavelet transform modulus maxima (WTMM) methods

[38] and multifractal detrended fluctuation analysis

(MFDFA) [39], [40] have been mainly employed [22],

[82], [86], [87], [89], [90].

Most recently, a framework has been proposed that

extends the wavelet based analysis of self-similar pro-

cesses and the estimation of the Hurst parameter H to

the analysis of multifractal scaling and to the estimation

of the multifractal spectrum DðhÞ [8]. It is referred to as

p-exponent and p-leader based multifractal analysis, and

it permits, beyond the limitation of the Hölder exponent

(*0), accounting for negative regularity, widely ob-

served in the real-world time series and notably in HRV.

Thus, this approach could provide a new and powerful

tool to examine the multifractality of HRV, as shown in

Fig. 6(d).

Matlab code implementing the wavelet analysis of

self-similarity and multifractality is available at http://

www.irit.fr/~Herwig.Wendt/software.html#wlbmf.

2) Non-Gaussian Properties of HRV: In studies of devel-

oped turbulence and non-equilibrium systems exhibiting

intermittent fluctuations, it has been demonstrated that

the observed non-Gaussian probability distributions with

fat tails are often described effectively by a superposition

of Gaussian distributions with fluctuating variances

[102]. Based on this framework, the observed distribu-

tion can be approximated by

PðxÞ ¼
Z
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0

1

(
PL

x

(

( )

Gðln (Þdðln(Þ (3)

where PL is the standard Gaussian distribution and G is a

distribution describing the fluctuation of the standard de-

viations. In the analysis of intermittent fluctuations, we

focus mainly on the estimation of the variance of G and

its scale dependence [102].

Based on this framework, Kiyono et al. proposed a

multiscale probability density function (PDF) analysis in-

cluding a detrending procedure [23], [98]. The proce-

dure of this analysis is as follows: (1) Time series of R-R

intervals are interpolated and resampled at 4 Hz, yielding

interpolated time series fbtg. After subtracting the mean

from the interpolated time series, integrated time series

fBðtÞg are obtained by integrating fbðtÞg over the entire

series length. (2) The integrated time series fBðtÞg are

divided into overlapping segments of length 2s with

50% overlap, where s is the scale of coarse graining

(s ¼ 25 sec in Fig. 5). In each segment, the local trend

is eliminated by third-order polynomial fit. (3) Coarse

grained variation !sBðtÞ is measured as the increment

with a time lag s of integrated and detrended time se-

ries. (4) f!sBðtÞg is standardized by its standard devia-

tion to quantify the PDF. Then, the non-Gaussianity

index %s is estimated based on the qth-order moment of

f!sBðtÞg as
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where EðXÞ is the expectation value of X and " is the

Gamma function [97]. In previous studies [25], [28], %s

is estimated based on the 0.25th-order moment ðq ¼
0:25Þ to emphasize the center part of PDF. In this anal-

ysis, the observed non-Gaussian shape [Fig. 4(b)] at

each scale is quantified by the non-Gaussianity index %s

defined as the standard deviation of ln( in (3), where

G is assumed to be a Gaussian. The greater the %s, the

greater the proportion of large deviation than what is

expected from the Gaussian distribution.

Using this method, Kiyono et al. reported robust

scale-invariant properties in non-Gaussian distributions

observed in healthy human HRV spanning the range of



about 20–2000 beats, which were preserved not only in

a quiescent condition, but also in a dynamic state where

the mean level of the heart rate was dramatically chang-

ing [23]. In addition, in patients with CHF, increased

non-Gaussianity at scale of 40 beats of 24-hour ambula-

tory HRV predicts increased mortality risk, while none

of the conventional HRV indices, including those reflect-

ing vagal heart rate control, were predictive of death

[25]. Moreover, Hayano et al. reported that, in patients

after AMI, an increased non-Gaussianity index %25 sec at

a scale of 25 sec is associated with increased cardiac

mortality risk, and its predictive power is independent of

clinical risk factors and of other HRV predictors [28].

The aspects characterized by %25 sec are related to am-

plitude modulation properties of LF component as shown

in Fig. 3(a). The detrending procedure in multiscale PDF

Fig. 5. Representative examples of non-Gaussian heart rate fluctuations during the daytime in a healthy subject and a congestive

heart failure patient. Time series of normal-to-normal R-R intervals (top row), standardized time series of coarse grained heart rate

variations f!25 secBðtÞg (middle row), and standardized PDFs of !25 secBðtÞ (bottom row). Estimated values of the non-Gaussianity index

%25 sec are shown in each panel in the bottom row. The solid lines represent the PDF approximated by a multiplicative log-normal

model [(3) with a Gaussian kernel G].

Fig. 6. Scale dependence of the non-Gaussianity index %2
s and Multifractal spectrum DðhÞ of daytime HRV (12:00-1800). The result for:

(a) congestive heart failure (CHF) patients, both for survivors ðn ¼ 69Þ and non-survivors ðn ¼ 39Þ within the follow-up period of

33 0 7 months; (b) multiple system atrophy (MSA); and (c) Parkinson disease (PD) patients. Age-matched controls were selected from

a database of healthy subjects. Error bars indicate 95%-confidence intervals of the group means. The gray shaded range corresponds

to low-frequency band ðsG25 secÞ. Marked increases in %2
s in the gray shaded scales are observed only in CHF patients, particularly

non-survivors (a). DðhÞ are estimated in the range of 10–200 sec using p-exponent and p-leader based multifractal analysis with p ¼ 1

(see [8] for details). These figures are modified versions from [11].



analysis acts as a high-pass filter that removes low fre-

quency components below a given time scale, and the

calculation of partial sums (or increments of integrated

series) acts as a low-pass filter. In the estimation of

%25 sec, the combination of these procedures acts as a

band-pass filter that allows mainly the LF component to

pass. The increased %25 sec indicates an increase in ampli-

tude heterogeneity of LF oscillation as seen in Fig. 5

(middle rows). Note that the %25 sec can change indepen-

dently of the value of LF power. Thus, the %25 sec can

provide complementary information beyond conventional

frequency domain indices.

As for the association of %25 sec with the ANS func-

tions, the following facts should be considered: (1) The

HRV in the scales corresponding to HF and LF bands are

mediated almost exclusively by neural autonomic mecha-

nisms [13], [103]. (2) The %25 sec showed no substantial

correlation with the HRV indices reflecting vagal heart

rate regulation [25], [28]. (3) %25 sec was decreased in post-

AMI patients taking beta-blockers suppressing the sympa-

thetic influence [28]. Based on these facts, Hayano et al.
suggested that %25 sec captures heart rate fluctuation at

least partly mediated by intermittent activations of cardiac

sympathetic activity [28].

In addition, in the study of daytime HRV in patients

with multiple system atrophy (MSA) and with Parkinson

disease (PD), it is reported that a marked increase in

non-Gaussianity on a relatively short time scale observed

in CHF patients was not observed in these patients with

sympathetic dysfunction [11]. Both MSA and PD are pro-

gressive neurodegenerative disorders, although auto-

nomic lesions in MSA are caused by preganglionic

sympathetic failure [104], and those of PD are ganglionic

and postganglionic [105], [106]. As shown in Fig. 6, com-

pared with an age-matched healthy control group, mean

values of %s in CHF patients, especially nonsurvivors in

comparison to survivors during the follow-up period, dis-

play marked increases in relatively small scales covering

the LF band. On the other hand, as shown in Fig. 6(b)

and (c), such marked increases were not observed in

MSA and PD patients. This result also supports the view

that an increase of %25 sec could be a hallmark of overall

cardiac sympathetic overdrive detectable with ambulatory

HRV monitoring.

The fact that heart rate dynamics of CHF patients

with elevated sympathetic activity exhibit a marked in-

crease in non-Gaussianity and its decays with scales

within LF and VLF ranges suggests a sympathetic origin

for HRV intermittency. In these scales (G 200 sec), heart

rate dynamics reflect cardiovascular regulation by neural,

humoral, and thermal influences [107]. These subsystems

are considered to be compensatory; therefore, it is likely

that only simultaneous failure of all these subsystems op-

erating on multiple time scales, compatible with the re-

ciprocal of cascade steps “j” in (1) could result in

sympathetic overdrive, leading to intermittent heart rate

fluctuations with large deviations. We propose that such

a multiplicative picture would provide a deeper physio-

logical understanding of the nature of sympathetic func-

tion [11]. As shown in Fig. 6(d), intermittent nature of

HRV in CHF patients may also be characterized by mul-

tifractal analysis. Also, the fact that HRV of non-surviving

CHF patients exhibit stronger LF intermittency than that

of surviving patients [Fig. 6(a)] would indicate a relation-

ship between appearance of the HRV intermittency (due

to sympathetic overdrive as a control parameter) and a

pathological transition [Fig. 1]. The same scenario also

applies to AMI patients in [28].

D. Remarks and Other Methods
Sympathetic nervous system activity is thought to be

an important factor in many health problems, not only

in cardiovascular diseases but also in the development of

a wide variety of chronic illnesses [108]. Therefore, mul-

tiscale analysis characterizing the intermittent nature of

HRV may have widespread applications in various fields

of health management. Among HRV indices that have

been suggested as markers of sympathetic activity, an in-

creased non-Gaussianity of HRV may reflect hazardous

effects of elevated cardiac sympathetic activity in cardiac

patients. In addition, some other nonlinear markers not

mentioned in this paper, such as approximate and sample

entropies, have been suggested to be associated with

sympathetic activation [109], [110]. Moreover, multiscale

entropy analysis [36], [37] and other multiscale tools,

such as empirical mode decomposition [111] may have

potential clinical applications. However, to establish as-

sociations between sympathetic activity and the clinical

significance of these approaches, systematic validation

and further studies on a large scale data are yet required.

III . SPONTANEOUS PHYSICAL
ACTIVITY

A. Alterations of SPA in Psychiatric Diseases
In the fields of psychiatry and mental healthcare, pre-

vention and early intervention are crucially important

and widely accepted as effective strategies to reduce the

number of patients with serious psychiatric disorders and

ultimately medical/healthcare related costs [112]–[114].

In order to develop a reliable and effective strategy based

on clinical evidence, the identification of an objective

biomarker for psychiatric disorders is essential because it

could contribute to the early detection of warning signs

for pathogenic and/or pathological changes resulting in

the development of these illnesses [115]. However, such

an objective measure has not been fully developed.

The recent development of information and commu-

nication technologies, such as wearable/mobile devices,

provides massive longitudinal, non-medical data from

our daily lives (e.g., physical activity, heart rate, GPS,



etc.), which are thought to include useful information on

our physiological and/or pathological conditions. While

the extraction of pathological information available for

clinical use is still challenging, many researchers have re-

cently studied and reported promising outcomes [116]–

[118]. In this section, we introduce examples of objective

evaluation of psychiatric disorders based on physical ac-

tivity easily assessed by using a wearable device.

1) Behavioral Abnormalities in Psychiatric Disorders:
Physical activity can be continuously monitored in a

quantitative and noninvasive way, e.g., through the use

of a wrist watch- type or band-type acceleration sensor, a

method referred to as actigraphy. This type of device has

the capability of detecting small changes in bodily/wrist

acceleration so that even slight movements by the sub-

jects are registered. Therefore, the data recorded include

information on both conscious and unconscious behav-

iors in daily life. In this review, we call this type of lon-

gitudinal behavioral data spontaneous physical activity

(SPA).

Behavioral alteration is one of the cardinal signs of

psychiatric disorders, and many psychiatric disorders, in-

cluding depression, indeed have diagnostic criteria which

require an assessment of altered physical activity [15].

For instance, one of the known disease signs of depres-

sion is psychomotor retardation, involving a recognizable

alteration in physical activity such as slowing down of

movement [119]. Therefore, behavioral dynamics is con-

sidered to contain rich information on pathological

symptoms of psychiatric disorders and is thought to be

useful for objective diagnosis of disorders.

In order to characterize behavioral abnormalities, in-

cluding chronobiological disturbances, basic statistics (e.g.,

mean and variance) and periodicities (by, e.g., cosinor

method or Fourier analysis) of SPA have been tradition-

ally evaluated. For example, reduced daily activity levels

have been reported in patients with major depressive dis-

order (MDD) [14], [15] and schizophrenia [120], [121].

On the other hand, increased activity levels were shown

in patients with attention-deficit hyperactivity disorder

[122], [123] and patients with bipolar disorder (BD) dur-

ing manic phases [124]. In addition, significant associa-

tions of these statistics with clinical variables have also

been confirmed [125]–[127]. From the viewpoint of dy-

namical properties of SPA, Hauge et al. examined an en-

tropy measure to show the increase in complexity of SPA

in schizophrenia [120]. Indic et al. examined the scaling

behavior of amplitudes of SPA on multiple time scales

and reported altered scaling behavior in BD as well as as-

sociations with clinical states, indicating the utility of

monitoring SPA for objective evaluation of pathological

states of BD [128].

The direct connection between alterations in these

traditional measures and the underlying pathophysiology

is unknown, but several studies using neuroimaging

approaches have recently suggested the existence of asso-

ciations of SPA with brain structures or functions in the

motor control systems [129]–[132]. For example, altered

associations of SPA with structures and functions of mo-

tor regions of brain, including anterior cingulate cortex,

supplementary motor area, and thalamus, have been re-

ported in schizophrenia patients [129], [131], [133]. In

addition, a relationship between dysfunction of cortico-

basal ganglia pathways in white matter and the patho-

physiology of hypokinesia in schizophrenia has been

reported, suggesting that structural disconnectivity could

lead to disturbed motor behavior in schizophrenia [132].

Studies about MDD have also demonstrated the link be-

tween psychomotor retardation and white matter integ-

rity of the motor system [134], [135]. These reports

manifest the existence of underlying neurological bases

for SPA.

B. On-off Intermittency and Scale-Invariance in SPA
As detailed in this subsection, Nakamura et al. re-

cently studied the dynamical properties of SPA and dis-

covered robust statistical laws of behavioral organization,

specifically how resting and active periods derived from

physical activity data are interwoven into daily life [1],

[2], [31]. Furthermore, they reported alterations in the

resting period statistical law in patients with MDD [1]

and schizophrenia [31] reflecting increased intermittent

bursts in activity counts characterized by reduced activity

levels associated with occasional bursts of physical activ-

ity. These studies manifest that the quantitative and ob-

jective evaluation of intermittency of physical activity

could provide appropriate behavioral measures capable of

probing alterations in pathological states in psychiatric

disorders.

1) Intermittent Nature of SPA and its Alterations: Fig. 7
shows typical fluctuations of SPA in a healthy subject

and in a patient with MDD. In the healthy subject

[Fig. 7(a)], a clear circadian rest-activity cycle is observed,

while in the MDD patient [Fig. 7(b)], this rhythmic pat-

tern is notably disrupted, reflecting the reported chrono-

biological abnormality in depression [14]. During the

daytime, physical activity of the healthy subject is charac-

terized by consistently higher activity levels, whereas the

MDD patient exhibits intermittent bursts in activity

counts with more episodes of slowing down or cessation

of movements [1], [31]. As mentioned below, the inter-

mittent burst is a significant dynamical feature of physical

activity and its alteration is a robust and effective indica-

tor for behavioral abnormalities observed in psychiatric

disorders.

2) Statistical Laws of Behavioral Organization: In order to

characterize the intermittent patterns in physical activity,

Nakamura et al. evaluated the cumulative probability dis-

tribution PCðx * aÞ of durations a of both resting pe-

riods, where the activity counts were successively lower



than a certain predefined threshold value (e.g., an over-

all average of non-zero activity counts), and of active

periods, where the counts were successively higher

than the threshold values [1], [2] [the bottom panels in

Fig. 7(a) and (b)]. The robust statistical laws they found

in healthy subjects [1], [2], against factors such as differ-

ence in study populations and choice of different thresh-

olds, were the power-law distribution PCðx * aÞ ! a$$

with the scaling exponent $ ! 1:0 for the distributions of

resting period durations [Fig. 7(c)] and the stretched ex-

ponential functional form PCðx * aÞ ¼ expð$*a"Þ with

the stretching parameter " ! 0:5 for the distribution of

active period durations [Fig. 7(d)]. In addition, they re-

ported that these statistical laws found in healthy humans

were shared by wild-type mice (i.e., no significant differ-

ence in values of the scaling exponent $ and the stretch-

ing parameter "), suggestive of the presence of an

underlying principle governing behavioral organization, or

behavioral switching, across species [2]. Furthermore, a

significant decrease in $ of resting period distributions

among humans with MDD or schizophrenia [1], [31] and

mice with deficiency in a circadian clock gene (Period 2)

[2] has also been reported. These findings indicate that al-

terations in intermittency of behavioral dynamics charac-

terized by $ are useful for describing abnormalities in SPA

observed in psychiatric disorders. Another important point

to be emphasized is the possibility that the cross-species

translation provided by the statisitcal law of behavioral

organization may play a crucial role in bridging the gap

between specific genetic substrates and behavioral endo-

phenotypes in psychiatric disorders [136], [137].

3) A Model for on-off Intermittency in Behavioral Organiza-
tion: In order to elucidate the underlying mechanisms of

the alteration in resting period distributions, a mathe-

matical model based on queuing theory [12], [124],

which models a decision-making strategy for selection of

Fig. 7. Fluctuations in spontaneous physical activity and their statistical laws of behavioral organization (modified from [1], [2]).

Illustrative examples of physical activity data for a healthy adult (a), and a patient with major depressive disorder (MDD) (b) over

three consecutive days (top panels). These data were measured by a watch-type device (Ambulatory Monitors Inc., Ardsley, NY, USA)

worn on the wrist of their non-dominant hand. The zero-crossing mode, which measures counts of events in which an acceleration

signal crosses a zero level within a predefined time (e.g., 1 min), is used. The middle panels are magnifications of the top panels with

4 h periods during the third day. The overall average of non-zero activity counts was used as the threshold (horizontal dotted line),

and the period during which the activity counts were successively below or above the threshold is defined as a resting or active

period, respectively (bottom panels). (c) Cumulative distributions PCðx * aÞ of resting period durations a for healthy adults (open

circles) and MDD patients (blue filled squares). Straight lines are eye guides with the overall mean values; the power law distribution

with $ ! 1:0 for healthy adults and $ ! 0:7 for MDD patients, respectively. The green curve indicates a random case (i.e., an exponential

functional form). (d) The same as (c) but for active period durations. The stretched exponential functions were nicely fitted to the

active distributions. Error bars indicate standard error of the mean.



a biological “cue” to response [4], was considered. This

model is based on the following assumptions; spontane-

ous movements in animals would be triggered by contin-

uously presented internal or external demands and/or

stimuli (e.g., appetite, emotion, etc.); on the basis of

their biological importance, one demand/stimuli is prob-

abilistically chosen either consciously or unconsciously.

This decision-making process can be modeled well by a

stochastic priority queuing model. In [4], we demon-

strated that a strategy where each demand/stimuli is

probabilistically chosen every time in proportion to its

biological importance can explain the unique statistical

law of resting periods with $ ! 1:0. Mathematically, with

the probability of response to a demand/stimuli with

priority x given by
Q

ðxÞ ! x [black line in Fig. 8(a)],

the cumulative distribution of durations of resting pe-

riods is analytically derived to follow the power-law func-

tional form [12] with the exponent $ ¼ 1 [Fig. 8(b)]. In

contrast, the decrease of $ observed in MDD, schizo-

phrenia, and BD during the depression phase [Fig. 8(c);

see III-C below] can be reproduced by assuming
Q

ðxÞ !
x% with % greater than unity (e.g., % ¼ 1:4) [blue curve

in Fig. 8(a)]. This assumption implies that a demand/

stimuli with higher priority is preferentially selected, giv-

ing rise to a fatter distribution tail and frequent episodes

of longer resting periods, generating a more intermittent

sequence of onset of activity bursts [Fig. 8(c)]. Also, the

increase of $, observed in a patient with BD during a

manic episode, can be modeled by assuming % smaller

than unity (e.g., % ¼ 0:8) [red curve in Fig. 8(a) and

(d)]. Based on the findings for mice with deficiency in

Period 2 also showing decreased $ [138], [139], we dis-

cussed [4] that these strategic changes in decision-making

—preferential selectivity to demands and/or stimuli with

higher priority—may be related to reinforcement of re-

warding neural networks induced by dysfunction of the

dopamine and/or glutamatergic systems.

C. Towards Monitoring and Early Detection of
Psychiatric Disorders
1) ILD of SPA in Bipolar Disorder: Bipolar disorder is a

major psychiatric disorder demonstrating recurrent and

alternating periods of manic (or hypomanic), depressive,

and mixed episodes, with varying intervals [119], [140],

[141]. Mania, a period of elevated or irritable mood, as

well as increased energy (overactivity) and a decreased

need for sleep, is the defining feature of BD. On the

other hand, like MDD, depressive episodes are character-

ized by lack of interest, loss of energy, insomnia, fatiga-

bility, and suicidal thoughts. The most prominent feature

Fig. 8. Sequences of resting period durations and their model (modified from [4]). (a) Probability density function
QðxÞ ! x% for

choosing a demand/stimulus with physiological priority x. The sequence of onset of activity bursts (resting durations) derived from

physical activity of a (b) healthy adult ð$ ! 1:0Þ, (c) a bipoloar disorder (BD) patient in the depressive phase ð$ ! 0:7Þ, and (d) in the

hypomanic phase. The sequence of waiting times simulated from the priority stochastic queuing model with (b) % ¼ 1:0 (i.e., $ ¼ 1:0),

(c) % ¼ 1:4 (i.e., $ ! 0:7), and (d) % ¼ 0:8 (i.e., $ ! 1:25) are also shown. The simulated sequences of waiting time were generated on the base

of the stochastic priority queuing model [12] with a priority list comprising L ¼ 10 demands, where a priority parameter xi ði ¼ 1; . . . ; LÞ
chosen from a uniform distribution +ðxÞ ¼ Uð0; 1Þ is assigned to each demand. At each time step, one demand is selected from the list

(in the brain) according to
QðxÞ ! x% for execution (or act), and then removed from the list. At that moment, a new demand is added to

the list with a priority randomly selected from +ðxÞ. The probability that a demand with priority x is executed at time t is given by

fðx; tÞ ¼ ð1$QðxÞÞt$1 QðxÞ, and the average waiting time of a demand with priority x is obtained by averaging over t weighted with fðx; tÞ,
giving rise to #ðxÞ ¼ P1

t¼1 tfðt; xÞ ¼ 1=$ðxÞ 1 1=x%. Analytically, with the conservation law of probability ð+ðxÞdx ¼ Pð#Þd#Þ, the waiting time

distribution of the demands is given by Pð#Þ 1 +ð#$1=%Þ=#1þ1=%. Note that each vertical line separates the successive waiting time of demands

chosen according to their priority.



of BD is the switching dynamics between depressive and

manic phases. Elucidating the underlying mechanism of

these sudden changes in pathological states is important

as it would contribute to the precise and reliable predic-

tion of the timing of these transitions. This in turn

would lead to the development of timely and efficient

clinical interventions, and novel treatments aimed at the

prevention of suicide and decreasing the risk of issues

with social relationships, loss of job and financial prob-

lems. However, little attention has been given to these

sorts of dynamical features (clinical phase transitions) of

pathological states in BD.

A longitudinal study design allows us to investigate

dynamical aspects in pathological states during the period

of clinical phase transitions in BD, along with inter-

relationships between psychological and behavioral vari-

ables. Indeed, studies examining BD using longitudinal

designs have demonstrated dynamical changes related

with phase transitions in subjective mood [142], [143],

physical activity (including sleep and circadian rhythm)

[144], [145], and biochemical variables [146].

Nakamura et al. recently measured ILD of SPA and

self-reported symptoms in bipolar patients (type-II) to cap-

ture clinical phases transitions [3]. Fig. 9(a) and (b) repre-

sent an example of physical activity data and subjective

mood scores continuously monitored over almost one year,

respectively, including a period of well-identified clinical

phase transition. The activity levels during around 110–

140 days were consistently low with worsening of mood,

indicative of a depressive episode. After this period, the

mood scores gradually increased and then reached at the

maximum score (the patient rated the best) on day 165. In

parallel with this rapid mood change, the activity levels in-

creased, manifesting the transition from the depressive

phase to manic phase. The physical activity [labeled “A” in

Fig. 9(a)] during the depressive phase showed frequent in-

termittent bursts in the activity counts during the daytime

[Fig. 9(d)], while the data [labeled “B” in Fig. 9(a)] in the

manic phase was characterized by more sustained higher

activity levels [Fig. 9(e)] [3].

In this subsection, we demonstrate the possibility to

objectively monitor changes in pathological states based

on alterations of behavioral dynamics (i.e., intermit-

tency) and further discuss the detection of early signs for

clinical phase transition.

2) Objective and Continuous Monitoring of Pathological
States: Application of the method for behavioral organiza-

tion (see Fig. 7) during the clinical phase transition re-

vealed that the resting period distributions in both

depressive and hypomanic phases took a power-law form

PCðx * aÞ ! a$$ over almost two decades (from 2 min to

100 min), with considerable difference in their scaling

exponent [$ ¼ 0:85 for the data during depressive phase

shown in Fig. 9(d) and $ ¼ 1:22 for the data during hypo-

manic phase shown in Fig. 9(e)]. The increase in longer

resting periods in the depressive phase, like MDD,

suggests more episodes of slowing down or cessation of

movement in depressive phase than in hypomanic phase.

The continuous nature of physical activity data allows

us to evaluate daily changes in values of $ in a continu-

ous fashion [Fig. 9(c)]. The objective behavioral index $
can distinguish the differences in pathological states in

BD; the values of $ were lower in depressive phase than

those in hypomanic phase. In addition, the low-frequency

fluctuations (9 7 days) in the value of $ demonstrated the

significant concurrent association with self-reported

mood scores and the values of $ [3]. This indicates the

possibility of quantitatively and continuously capturing

manic-depressive phase transitions from physical activity

monitored using a wearable device.

3) Detection of Early Signs for Pathological Transitions
From the Viewpoint of Dynamical Systems: Investigation

into a theory for aperiodic alterations between depressive

and manic episodes, by developing a dynamical model,

may help elucidate the underlying mathematical mecha-

nisms of the pathological phase transitions in BD and de-

velop novel prediction methods, leading to timely and

effective interventions.

The most prominent dynamical feature of BD is the

coexistence of two extreme mood states (depression and

mania) and oscillating/switching dynamics between them

with unequal durations of each episode [143]. In addi-

tion, clinical observations suggest that this aperiodicity

in transition periods is determined by the interaction be-

tween the biological mechanisms generating periodicity

and environmental and psychological stresses in daily life

[144], [147]. These complex and nonlinear dynamical

phenomena are reminiscent of bistability. Although other

dynamical models could be considered to describe the al-

ternating phenomena between manic and depressive

states [143], we start from hypothesizing a bistable sys-

tem as a simple model to explain the switching mecha-

nism. Indeed, by proposing a mathematical model with

bistability, Goldberter successfully simulated the recur-

rent and alternating switching dynamics between depres-

sion and mania, together with the antidepressant effects

clinically observed [148] (e.g., a transition to mania or

rapid cycling triggered by antidepressants [149]).

Bifurcation of the bistable system reproduced the

phenomena clinically observed in patient with BD well.

If the same mechanism exists in actual pathological tran-

sitions, there is a possibility to detect a tipping point of

pathological transitions by evaluating the dynamical fea-

tures of fluctuations in physiological parameters (e.g.,

mood and/or physical activity) because the system dis-

plays complex and unique fluctuations around a bifurca-

tion point [32]. Fig. 10(a)–(c) shows potential landscapes

illustrating a bifurcation phenomenon of a bistable sys-

tem as a model for pathological cycling in BD. Under the

condition where a control parameter governing the dy-

namics of the system is sufficiently close to a bifurcation

point, the steady states (potential wells) become unstable,



and the system can no longer remain at these states, start-

ing to fluctuate in a unique manner [Fig. 10(b)]. There-

fore, the evaluation of dynamical features of fluctuations

in state variables allows us to detect a tipping point of

pathological transitions, like the dynamical disease sce-

nario in Fig. 1. For example, critical slowing down is

known as a characteristic dynamical phenomenon emerg-

ing in the vicinity of a phase transition or a critical point

[32], indicating the occurrence of bifurcation in the un-

derlying systems. These early warning signs are com-

monly observed in a variety of fields from economics to

climate systems [32], [150]–[153]. Systems showing

Fig. 9. Dynamics of spontaneous physical activity and subjective mood during clinical phase transitions in bipolar disorder (BD)

(modified from [3]). (a) A double-plot actogram of physical activity data of a patient with BD over 333 days. For presentation

purposes, the activity data were converted into resting and active periods and then color coded according to the corresponding value

of $ [see (c)]. (b) Fluctuations in subjective mood scores reported by the patient every night, ranging from the 0 (the worst) to 10 (the

best). The clinical phase transition from a depressive phase to a hypomanic phase occurred during the period between days 140–150.

(c) The continuous evaluation of the scaling exponent $ of resting period distributions. Here, the value of $ was continuously estimated

by using a sliding window of 7-day width by shifting 1 day [red filled circles in (c)]. The trend of $ [blue curve in (c)] significantly traced

pathological changes of depressive-manic cycles rated by subjective mood [3]. The physical activity data during depressive phase (d)

and manic phase (e), labeled “A” and “B” in the panel (a), respectively, are shown in (d) and (e). Their magnification with 4 h periods

during the third day is also shown. The value of $ was 0.85 and 1.22, respectively.



critical slowing down are theoretically characterized by a

decreasing rate of recovery from small perturbations

(slowness), which results in the accumulation and persis-

tence of perturbations over time, leading to increases in

local variance and autocorrelation around critical points

[32]. Fig. 10(e) as applied to the BD transition shows the

changes in autocorrelation coefficients obtained by fitting

an autoregressive model of order 1 [i.e., AR(1) model] to

the data of $ [shown in Fig. 10(d)] within a sliding win-

dow of size 10 days. During the transition period from de-

pressive to manic phase (from 130–150 days), the

autocorrelation coefficients of daily fluctuations of $
gradually increase, possibly giving rise to an early warn-

ing sign for the phase transition. On the other hand, dur-

ing clinically “stable” states in depressive and manic

phases, the decrease of correlation coefficients to around

zero value can be observed. This implies that the state of

the system randomly fluctuates around a stable well

[Fig. 10(a) or (c)]. This example suggests the possibility

of detecting early warning signs for pathological transi-

tions by evaluating the dynamical features of SPA, and

also the viability of utilizing biomedical ILD to empiri-

cally study disease dynamics, i.e., dynamical disease.

IV. SUMMARY AND FUTURE
DIRECTIONS

In this paper, we have shown the application of multi-
scale analysis to two types of intensive longitudinal bio-
medical signals, i.e., HRV and SPA time series. Recent
advances in wearable and/or biomedical sensing technol-
ogies [5]–[7] are enabling us to collect these data with
large temporal scales up to days and months during daily
life. Thus, it is now timely to start thinking about the rig-
orous “use” of this type of data. In particular, it is consid-
ered important to begin investigation into how to
robustly characterize their statistical and dynamical prop-
erties and how to practically utilize the analytical results
in medicine and healthcare.

It was shown that these ILD indeed have robust char-

acteristics unique to various multiscale complex systems,

and that some parameters for multiscale complexity are

in fact altered in pathological states, indicating potential

usability as new types of ambient diagnostic and/or prog-

nostic tools. For example, parameters characterizing in-

creased intermittency (like %s; Section II) of HRV are

found to be potentially useful in detecting abnormalities

in the state of the autonomic nervous system, in

Fig. 10. A bifurcation phenomenon of a bistable system and early warning signs for clinical phase transitions in bipolar disorder (BD).

(a) and (c): the potential landscapes for a depressive phase (a) and a manic phase (c). (b) is an illustration of a potential function at

the bifurcation point (e.g. saddle node bifurcation). When the control parameter of the system is sufficiently close to the bifurcation

point, the steady states become unstable and the most unstable direction in phase space dominates the behavior of the system. This

direction is determined by the eigenvector of the Jacovian corresponding to the eigenvalue for which the eigenvalue becomes zero

real valued. Around this point, fluctuations with unique dynamical properties (e.g., critical slowing down) can be observed. (d) The

fluctuations in $ around the period of the phase transition from depression to mania. (e) The alteration in autocorrelation coefficients

obtained by fitting an autoregressive model of order 1 [AR(1) model] to the data of $ within a sliding window of size 10-days. The

locations where the values of autocorrelation coefficient approach to zero may correspond to the “stable” depressive and manic

phase [labeled “(a)” and “(b)”] as illustrated in panel (a) and (b), respectively.



particular overall sympathetic hyperactivity, and the in-

termittency of SPA (characterized by $; Section III)

might also be useful in evaluating symptoms in psychiat-

ric patients with depressive as well as manic episodes, all

in daily settings. Furthermore, increased deviations and

low frequency correlation appeared to be observed

around transition points of disease states, with a potential

application to disease forecasting, prevention, and control

under the concept of dynamical disease [33], [34].

In conclusion, multiscale analysis might be a useful

tool to extract information on clinical events occurring

on multiple time scales during daily life, and on the

underlying physiological control mechanisms from bio-

medical ILD. In the following, we put forward some

promising directions for future research:

1) Multiscale analysis of physiological signals: While

the multiscale analysis performed off-line on

high quality data have shown the ability to as-

sess the physiological status of subjects, the de-

velopments of a variety of wearable devices as

well as their massive use yield further changes

for analysis tools. First, low price devices may

have limited performance, with high rates of

missing data or strong quantizations. It is thus

important to develop robust methodology against

such crucial issues. Second, the explosion of data

size would eventually make a posteriori off-line
processing impossible. Thus, further develop-

ment of multicale analysis algorithms with low

memory and computational costs, and on-the-fly

architecture. Such an on-line architecture would

also play important roles for disease prevention

and control involving forecasting.

2) Validation and reliability tests of multiscale analysis
in clinical applications: HRV has been used to study

various pathological conditions, such as heart fail-

ure, coronary artery disease, arterial hypertension,

diabetes, stroke, etc. [64]. Despite the widespread

use and expected applications of HRV, studies re-

lated to its application in clinical medicine are still

very limited. To establish the physiological and

clinical significance of HRV, especially that based

on multiscale analysis of ILD for early prediction,

diagnosis, and risk assessment, extensive valida-

tions are needed. The same also applies to SPA

time series. To do this, a close collaboration be-

tween clinicians, biomedical physicists and engi-

neers is an important factor [154].

3) Intensive longitudinal data and data mining: While

HRV and SPA are currently typical ILD, the de-

velopment of wearable and/or biomedical sensing

technologies, the prevalence of high-speed Inter-

net access and low-cost data storage have now

made it possible to collect various types of mas-

sive biomedical ILD. The application of the multi-

scale analysis introduced here to a variety of this

“bio-big data” including, e.g., blood pressure, glu-

cose, and symptom diaries, will also be important

for health-related applications. Also, feature selec-

tion and machine learning approaches [155],

which provide different information compared to

assessment by multiscale and conventional analy-

sis, might be promising [156]. The optimal choice

of these approaches would contribute to extract

important bio-markers for early prediction, diag-

nosis and risk assessment of diseases.

4) Multiscale mechanisms of dynamical disease: Mas-

sive biomedical ILD and extracted disease spe-

cific bio-markers can be used to gain insights

into the dynamical systems underlying patholog-

ical transitions and/or pathogenesis of diseases,

enabling elucidation of their mathematical

models based on concepts of nonlinear dynamics

such as multi-stability and bifurcation of attrac-

tors. These approaches would lead to the meth-

odological developments for early detection of

disease onset and exacerbation based on analysis

of biomedical ILD measured in daily life. The

early detection or prediction of pathological

transitions enables control of the risk of disease

and significantly contributes to effective health-

care management and disease prevention. h
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