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Point-Process High-Resolution Representations of Heartbeat Dynamics

for Multiscale Analysis: a CHF Survivor Prediction Study

G. Valenza∗, H. Wendt, K. Kiyono, J. Hayano, E. Watanabe, Y. Yamamoto, P. Abry∗∗, R. Barbieri∗∗

Abstract— Multiscale analysis of human heartbeat dynamics
has been proved effective in characterizeing cardiovascular
control physiology in health and disease. However, estimation of
multiscale properties can be affected by the interpolation pro-
cedure used to preprocess the unevenly sampled R-R intervals
derived from the ECG. To this extent, in this study we propose
the estimation of wavelet coefficients and wavelet leaders on
the output of inhomogeneous point process models of heartbeat
dynamics. The RR interval series is modeled using probability
density functions (pdfs) characterizing and predicting the time
until the next heartbeat event occurs, as a linear function of
the past history. Multiscale analysis is then applied to the pdfs’
instantaneous first order moment. The proposed approach is
tested on experimental data gathered from 57 congestive heart
failure (CHF) patients by evaluating the recognition accuracy
in predicting survivor and non-survivor patients, and by com-
paring performances from the informative point-process based
interpolation and non-informative spline-based interpolation.
Results demonstrate that multiscale analysis of point-process
high-resolution representations achieves the highest prediction
accuracy of 65.45%, proving our method as a promising tool
to assess risk prediction in CHF patients.

I. INTRODUCTION

The analysis of Human Heart Rate Variability (HRV)

[1] has notably been used to discern healthy subjects from

patients suffering from congestive heart failure (CHF) [2].

However, an important remaining challenge consists in im-

proving the prediction of mortality risk for CHF patients, as

well as risk stratification, to a level accurate enough to allow

for application in clinical practice [2]–[5]. In particular, it

has been accepted that linear features of heartbeat dynamics

(often based on spectral analysis [1]) are not sufficient for

CHF patients characterization, and need to be complemented

by nonlinear features, ranging from Entropy rates to Non-

Gaussian metrics (cf. [1], [6]–[13] and reference therein for
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reviews). In the last two decades, 1/f and fractal processes

were used to model the temporal dynamics of HRV fluc-

tuations [12]. More recently, multifractal [5], [11], or non

Gaussian fat tail distribution models [14] have been involved

in HRV descriptions. It was shown that the variations of

scaling properties can be associated with pathologies and

thus used as diagnostic tool [11], [15]. Furthermore, in CHF

patients, departures from Gaussianity were used to evaluate

increased mortality risk [2], and compared against fractal

exponent [16]. Recently, a robust and efficient procedure

relying on the use of multiscale representation and wavelet

leaders, has been proposed to conduct multfractal analysis

[17] and tested on HRV analysis [5], [18].
In this study, we evaluate the impact of point-process

based interpolation strategies [8], [19] on wavelet leader

based multiscale representations and we compare it against

either a direct analysis of the raw data, or the use of a non

informative standard spline-based interpolation. In fact, the

R-R interval series extracted from the ECG are analyzed to

characterize heart rate (HR) and heart rate variability (HRV).

Whether raw data or interpolated and regularly re-sampled

time series should be considered is a matter of debate. The

former choice creates the difficulty of analyzing irregularly

sampled data thus requiring to convert number of beats into

seconds ; the latter choice raises the question of which

interpolation should be envisaged and how much achieved

results will depend on interpolation.
It has been demonstrated that, by means of a point process

approach, it is possible to characterize the probabilistic

generative mechanism of heartbeat events, even considering

short recordings under nonstationary conditions. The RR

interval series (RRi) is modeled using probability density

functions (pdfs) characterizing and predicting the time un-

til the next heartbeat event occurs. The unevenly spaced

heartbeat intervals are then represented as observations of

a state-space point process model defined at each moment in

time, thus allowing to estimate instantaneous HR and HRV

measures without using any interpolation method. We here

illustrate these points on the study of a high quality database

(described in Section II-C), comprised of 57 CHF patients,

with the aim to accurately assess risk of posterior mortality.

Results related to multiscale representations and (supervised)

classification performance are presented and commented in

Section III. Conclusions are drawn in Section IV, along with

discussions and future endeavors.

II. MATERIALS AND METHODS

A. Point-Process Models of Heartbeat Dynamics

1) Model: Point-process interpolation is performed

through a parametrized linear combination of the RR interval



series. For t ∈ (0, T ], the observation interval, and 0 ≤
u1 < · · · < uk < uk+1 < · · · < uK ≤ T the times of

the events, we can define N(t) = max{k : uk ≤ t} as the

sample path of the associated counting process. Its differ-

ential, dN(t), denotes a continuous-time indicator function,

where dN(t) = 1 when there is an event, or dN(t) = 0
otherwise. The left continuous sample path is defined as

Ñ(t) = N(t−) = limτ→ t− N(τ) = max{k : uk < t}.

Although this framework can be applied to any phenomenon

represented by unevenly observed events, we here define the

point process model of the ventricular contraction events as

the focus of our study. Therefore, given the R-wave events

{uj}
J
j=1 detected from the ECG, RRj = uj−uj−1 > 0

denotes the jth R–R interval. Assuming history dependence,

the probability distribution of the waiting time t−uj until the

next R-wave event follows an inverse Gaussian model [19]

f(t|Ht, ξ(t)) =

[
ξ0(t)

2π(t− uj)3

] 1

2

× exp

{
−
1

2

ξ0(t)[t− uj − µ(t,Ht, ξ(t))]
2

µ(t,Ht, ξ(t))2(t− uj)

}
(1)

with j = Ñ(t) the index of the previous R-wave event before

time t.
In this study, we use the formulation where the instanta-

neous first-order moment statistic (mean) µ of the distribu-

tion is defined as

µRR(t,Ht, ξ(t)) = γ0 +

p∑

i=1

γ1(i, t)RRÑ(t)−i
(2)

with Ht = (uj ,RRj ,RRj−1, ...,RRj−p+1), ξ(t) =
[ξ0(t), γ0(t), γ1(1, t), ..., γ1(p, t)] the vector of the time-

varying parameters, and ξ0(t) > 0 the shape parameters of

the inverse Gaussian distribution.

The use of an inverse Gaussian distribution f(t|Ht, ξ(t)),
characterized at each moment in time, is motivated both

physiologically (the integrate-and-fire initiating the cardiac

contraction [19]) and by goodness-of-fit comparisons [8]. In

fact, if the rise of the membrane potential to a threshold

initiating the cardiac contraction is modeled as a Gaussian

random walk with drift, then the probability density of the

times between threshold crossings (the R-R intervals) is

indeed the inverse Gaussian distribution [19]. Since the IG

distribution is characterized at each moment in time, it is

possible to obtain an instantaneous estimate of µe(t) at a

very fine time scale (with an arbitrarily small bin size ∆),

which requires no interpolation between the arrival times of

two beats, therefore addressing the problem of dealing with

unevenly sampled observations.

2) Parameter Estimation, Model Selection, Goodness-of-

Fit: We effectively estimate the parameter vectors ξa(t)
using the Newton-Raphson procedure to compute the local

maximum-likelihood estimate [8]. Because there is signifi-

cant overlap between adjacent local likelihood intervals, we

start the Newton-Raphson procedure at t with the previous

local maximum-likelihood estimate at time t − ∆. We de-

termine the optimal order {p} by the Akaike Information

Criterion (AIC), and by prefitting the point process model

goodness-of-fit to a subset of the data [19]. Model goodness-

of-fit is based on the Kolmogorov-Smirnov (KS) test and

associated KS statistics [8], [19]. The recursive, causal nature

of the estimation allows to predict each new observation,

given the previous history, independently at each iteration.

The model and all its parameters are therefore also updated at

each iteration, without priors. In other words, each test point

RRk is tested against one instance of a time-varying model

trained with points {RRj} with j < k. Autocorrelation

plots are also considered to test the independence of the

model-transformed intervals [19]. Once the order {p, q} is

determined, the initial model coefficients are estimated by

the method of least squares [8].

B. Multiscale analysis

1) Hurst parameter and wavelets: Classical multiscale

analysis is based on wavelet coefficients, which are obtained

by comparing by inner product the data X to the collection

{ψj,k(t) = 2−jψ(2−jt−k)}(j,k)∈N2 of dilated and translated

templates of the so-called mother wavelet ψ: dX(j, k) =
〈ψj,k|X〉. For detailed introductions to wavelet transforms,

readers are referred to e.g., [20].

For self-similar processes, such as fractional Brownian

motion, commonly used to model HRV (cf. e.g., [21],

[22]), it can be shown that the so-called structure functions,

consisting of sample moments of order q > 0, behave as

power laws with respect to scales

S(q, j) =

nj∑

k=1

|dX(j, k)|2 ≃ Kq2
jqH (3)

with nj the number of dX(j, k) available at scale 2j . The

Hurst parameter H can (technically) be simply related to the

repartition of energy along frequencies (hence to the Fourier

spectrum or autocorrelation of X). It thus consists of a linear

feature that can be efficiently estimated using wavelets [17],

[18]. The function S(q = 2, j) can also be deeply tied to

Fourier spectrum [17], [18].

2) Multifractal models and wavelet leaders: In many

applications and notably in HRV analysis, it was pointed

out that self-similar models do not fully describe the scaling

properties in data and that multifractal models could prove

useful (cf. e.g., [11], [18]). Multifractality mostly implies that

the linear behavior with respect to q of the scaling exponents

qH in (5) must be replaced with a strictly concave function

ζ(q). Parameter H alone thus no longer fully accounts for

the scaling properties in data. It is now well-documented

that the correct estimation of the scaling exponents ζ(q) for

all values of q requires replacing wavelet coefficients with

wavelet leaders, consisting of multiscale quantities that better

capture the fluctuations of regularity in data by scanning all

details finer than the chosen analysis scale [17].

The wavelet leaders are defined as local suprema of

(fractionally integrated) wavelet coefficients, taken with a

narrow temporal neighborhood and all finer scales

L
(γ)
X (j, k) := sup

λ′⊂3λj,k

2j
′γ |dX(λ′)|. (4)

with λj,k = [k2j , (k+1)2j) and 3λj,k =
⋃

m{−1,0,1} λj,k+m

[17]. The fractional integration parameter γ ≥ 0 is chosen
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Fig. 1. Multiscale representations for the 3 different data modeling, for
SV an NS subjects.

to ensure minimal regularity (cf. [17] and references therein

for theoretical developments and details on multifractal anal-

ysis). It has also been shown [17] that multifractal properties

are well assessed when using multiscale representation based

on the log-leaders lnL(γ)(j, ·)

C(γ)
p (j) ≡ Cump lnL

(γ)(j) ≃ c0p + cp ln 2
j (5)

with coefficients cp related to ζ(q) (and the multifrac-

tal spectrum [17]) via the polynomial expansion ζ(q) ≡∑
p≥1 cpq

p/p!. Thus, the leading coefficient c1 is closely re-

lated to H , and C
(γ)
1 (j) to S(2, j). C

(γ)
1 (j) hence constitutes

a vector of linear features, associated to the autocorrelation

of X [17], [18], while C
(γ)
2 (j) and C

(γ)
3 (j) (the variance

and skewness of lnL(γ)(j), respectively) probe information

beyond correlation and are thus non linear features.

C. Experimental Data

Recordings from a cohort of 57 patients suffering from

Congestive Heart Failure (CHF) were made available by

the Nagoya Hospital or Fujita Health University Hospital,

Japan. Of these patients, 30 died within 33 ± 17 months

(range, 1-59 months) after Hospital discharge, whereas 27

survived for a longer time. The former group is referred

to as non-survivors (NS) and the latter as survivors (SV).

Further clinical details can be found in [2]. For each patient,

R peak arrival times were carefully extracted from 24-hour

Holter ECG recordings. Missing data and outliers stemming

from atrial or ventricular premature complexes were handled

by preprocessing automated tools. Subjects with sustained

tachyarrhythmias were excluded from the study.

III. RESULTS

A. Analysis setting

From the R peak arrival time lists {tn, n = 1, . . . , N},

three different time series are constructed and studied using

the multiscale representations described in Section II-B: i)

The raw data Xn ≡ tn − tn−1, referred to as the RRi

time series ; ii) X is interpolated using the informative

Point Process based interpolation (described in Section II-

A), referred to as the PP Interp. time series ; iii) X is

interpolated using a standard non informative Spline-based

interpolation, referred to as the Spline Interp. time series.

The 24h-long data are analyzed in one block. Analysis is

conducted using Daubechies2 wavelets. Inspection of the

database lead to choose γ = 1 in what follows. Note that

for large subclass of multifractal processes one can show

that C1(j) ≡ C
(γ)
1 (j) − γ ln 2j for p ≥ 2 does not depend

on γ. This is assumed to hold for the data analyzed here.

B. Scaling properties

The wavelet coefficient based log2 S(2, j) and wavelet

leader based C1(j), C2(j), C3(j) representations are com-

puted for data obtained from two different interpolations,

as well as directly from raw RRi data. For interpolated

time series, scale 2j can be associated to 2jTSms. Raw

RRi data consist of the list of RR interarrival times and

scale 2j can qualitatively be related to 2jR ms, where R
denotes the sample mean estimate of the mean of the RR

interarrival times for each subject. This permits to compare

multiscale representations obtained from each methods, as

functions of equivalent scales, for NS and SV subjects. Fig. 1

clearly show that the multiscale representations log2 S(2, j)
and C1(j), C2(j), C3(j) for the three time series are quasi-

identical at large j, hence validating that interpolation strate-

gies do not impact the coarsest time scales (above j ≥ 11,

i.e., above ≃ 10s). Obviously, fine scales (below j ≤ 7,

i.e., below ≃ 0.6s) do not exist for the raw RRi data,

whereas fine scales are available for the PP Interp. and

Spline Interp. time series. Their being different is a direct

signature of the nature of the interpolation procedures more

than of the content of the data. Intermediate time scales

(8 ≤ j ≤ 10, i.e., from 1s to 5s) are the scale of interest,

where the interplay between the content of the data and the

interpolation procedures occurs. RRi data at scales j = 8 and

9 show clear departures from the scaling behavior observed

at coarser scales. The non informative Spline Interp. time

series suffer from the same drawback. On the contrary, the

informative PP Interp. time series shows scales j = 8 and

9 in agreement and continuation of the scaling behavior

seen at coarser scales. This clearly illustrates that point-

process modeling of heartbeat dynamics allows to extend

the possibility of extracting relevant information, already

existing in data at coarse scales, also at finer scales.

C. SV versus NS classification

Exploring the extent to which the proposed multiscale

representations permit to discern SV from NS subjects,

we focus of the intermediate scales 8 ≤ j ≤ 10 where

interpolation procedures yields different behavior.

The obtained feature set is taken as an input of the Leave-

One-Out (LOO) procedure for a Support Vector Machine

(SVM)-based pattern recognition [23] (nu-SVM with nu =
0.5 and radial basis kernel function). A class label, among

SV or NS, given by clinical assessment, was associated to

each point in the feature space, which, for each fixed scale j
independently, takes as input the 4-dimensional feature vec-

tor log2 S(2, j), C1(j), C2(j), C3(j). In order to compare the

proposed methodology with other standard approaches, we

evaluated the LOO-SVM performance in predicting SV vs.



NS patients using the 4-dimensional feature vector estimated

on RRi data, PP Interp. and Spline Interp.

Classification performance (measured in terms of accura-

cies, i.e., % of overall — True Negative and True Positive —

total correct classification) are reported in Table I. Consider-

ing the SV vs. NS classes, accuracy of 50% is the change.

TABLE I

CLASSIFICATION ACCURACY IN %

scale (j) PP Interp. RRi data Spline Interp.

5 41.82 0 20.00
6 49.09 0 7.27
7 52.73 0 3.64
8 65.45 21.82 30.91
9 63.64 10.91 30.91

10 54.55 50.91 45.45

Table I shows that accuracies at fine scales are small and

irrelevant, which is consistent with the fact that fine scales do

not contain information related to actual data. It also shows

that performances at coarse scales are equivalent for all 3

time series (PP Interp., RRi data, and Spline Interp.) and

barely beyond 50%. Finally and interestingly, Table I show

that the maximum discrepancies between all 3 time series

occur around scales j = 8, 9 and 10, and that, at these

scales the point-process derived time series achieves the best

accuracies (up to 65.45%).

IV. CONCLUSION AND DISCUSSION

This study aimed at testing a novel approach of multiscale

analysis on high-resolution time series derived by point-

process models of heartbeat dynamics on 57 long-term ECG

recordings gathered from patients with CHF. To this extent,

three multiscale representations are considered and com-

pared: the log2 S(2, j) and C1(j), C2(j), C3(j) is estimated

from (a) the raw data (RRi time series), (b) RR interval

series interpolated using a standard non informative spline-

based interpolation, and (c) RR interval series interpolated

using the informative point-process based interpolation. All

representations are used to predict the mortality of CHF

patients through a simple SVM classifier.

Results demonstrate that the analysis using the point-

process derived time series achieves the best prediction accu-

racy, with a maximum of 65.45% for scale 8. This result is in

agreement with our previous studies [8], [19] demonstrating

that the use of an inverse Gaussian distribution, characterized

at each moment in time, inherits both physiological (the

integrate-and-fire initiating the cardiac contraction [19]) and

methodological information. The parameter µRR(t,Ht, ξ(t))
denotes the instantaneous R-R mean that can be modeled as

a generic function of the past (finite) R–R values. Indeed,

this is something unique of the point-process approach. This

study poses a solid basis for devising a tool capable of

performing accurate assessments of CHF morbidity and mor-

tality, which still remain unacceptably high despite effective

ongoing drug therapies. Future endeavors will focus on the

study of a comprehensive set of features gathered from

multiscale analyses, as well as investigating the multiscale

and multifractal properties of instantaneous parasympathetic

activity assessed by point-process estimates of HF power.
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