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S. Charlemagne · C.-H. Lamarque · A. Ture Savadkoohi

Vibratory control of a linear system by addition of a chain
of nonlinear oscillators

Abstract An N -degree-of-freedom model consisting of a single-degree-of-freedom linear system coupled to
a chain of (N − 1) light nonlinear oscillators is studied. The connection between the chain and the single-
degree-of-freedom system is supposed to be linear. Time multi-scale system behaviors at fast and slow time
scales are investigated and lead to the detection of the slow invariant manifold and equilibrium and singular
points. These points correspond to periodic regimes and strongly modulated responses, respectively. These
analytical developments are used to provide evidence of transfer of vibratory energy of the main system to
the chain in the form of localized modes during periodic regimes and extreme energy exchanges between
modes when the overall structure faces singularities. Furthermore, analytical predictions at slow time scale
and nonlinear normal modes of the system are compared with numerical results obtained from direct time
integration of the system equations, showing a good agreement between them. Finally, we present a procedure
showing how these analytical developments can be used to study a system where the main structure is replaced
by a multi-degree-of-freedom linear system, by projecting its dynamics on one of its modes.

1 Introduction

Passive control of structural systems by addition of nonlinear devices has been extensively studied. Numerous
works investigate the dynamics of two degree-of-freedom systems where a nonlinear oscillator called as
nonlinear energy sink (NES) is used to localize vibratory energy of a main structure [1–4], among which some
consider a linear main system and a NES with a cubic restoring force [5–9], leading to applications in various
fields such as aerospace [10] or acoustical [11] engineering. Other types of nonlinearities of the NES have been
studied as well, e.g., non-polynomial NES [12], vibro-impact NES [13] or piece-wise linear NES with time-
varying mass [14], while some works focus on vibratory energy mitigation of nonlinear main systems such
as hysteretic oscillators [15,16]. The aforementioned theoretical studies have been validated by experimental
investigations. As an example, McFarland et al. [17] and Kerschen et al. [18] found experimental evidence of
passive control of a linear structure performed by a cubic NES. In parallel, nonlinear oscillators have proven to
be of interest in the control ofmulti-degree-of-freedom (MDOF) or continuous systems. They can engage either
in sequential resonance captures of several modes of the primary system, known as resonance capture cascades
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[19,20], or in relaxation oscillations, known as strongly modulated response (SMR) cycles when modes of the
main system are closely spaced [21]. One can find other examples in the work of Gendelman and Manevitch
[22], Vakakis et al. [23], Manevitch et al. [24], and Rothos and Vakakis [25] who study energy pumping
achieved by a nonlinear attachment connected to semi-infinite continuous string and rod and semi-infinite and
infinite linear chains of oscillators, respectively.
Nonetheless, it can be convenient for design reasons to couplemultipleNES to the structure. It could for instance
contribute to the robustness of the control in case one of the NES is damaged. Some studies considered several
NES in parallel of the main system. Vaurigaud et al. [26] prove that a set of tuned parallel NES provides
good performances in terms of energy transfer along with a better distribution of the mass. Experimental
testings carried out by Ture Savadkoohi et al. [27] on a four degree-of-freedom structure coupled to two NES
corroborate these conclusions. Meanwhile, some works investigated localization of energy of main systems
in a set of three NES in series [28–30]. Those MDOF nonlinear attachments have been shown to be very
efficient to absorb energy from a MDOF linear system under impulsive excitation. Indeed, those devices are
able to dissipate energy from several modes simultaneously, involving a different mechanism as compared to
single-degree-of-freedom (SDOF) NES. Similarly, Wierschem et al. [31] performed experimental testing on a
six-story structure coupled to a NESmade of two nonlinear oscillators in series. Finally, a comparable idea has
been investigated by Starosvetsky and Vakakis [32] who study shock mitigation thanks to an n-beads granular
interface placed between two rods.

In this paper, we aim to extend this idea to the study of a higher number of nonlinear light oscillators
in series. A main linear system, subjected to external excitation, is coupled to a chain of (N − 1) nonlinear
oscillators in order to mitigate its vibratory energy. This study presents a fully analytical method, based on
complexification-averaging technique, to design a chain of nonlinear coupled oscillators as a passive controller
and/or energy harvester of linear primary systems subjected to narrow-band harmonic excitation, thus involving
a single mode of the main system under the assumption that all modes are well separated.
The present work is organized as follows. The studied system is presented in Sect. 2, along with the analytical
method implemented for the treatment of the equations. System behaviors at fast and slow time scales are
described in Sect. 3. Analytical predictions are compared to numerical simulations obtained thanks to direct
time integration of the system equations in Sect. 4, while Sect. 5 aims to find evidence of passive control of the
main linear structure. In Sect. 6, a procedure to apply the developed analytical method to the study of a system
where the main SDOF linear structure is replaced by a MDOF linear system is presented. Finally, concluding
remarks are given in Sect. 7.

2 Description of the system and explanation of the analytical method

The studied system is presented in Fig. 1. It consists of a linear SDOF structure with the mass M , the stiffness
K , the damping C , under external excitation F(t), which is linearly coupled to a chain of nonlinear oscillators
via a damping c and a linear spring ρ. The chain consists of (N − 1) nonlinear oscillators, each one has the
mass m = εM , 0 < ε � 1. The connection between each of these oscillators is made up by a linear damping
c and a restoring force V which contains linear and nonlinear contributions. The SDOFmain system can result
from the projection of an MDOF linear system on one of its normal modes which we would aim to control.
This assumption will be verified in Sect. 6.

Displacements of the main system and the nonlinear oscillators are called as v and u j , j = 1, . . . , N − 1,
respectively. Let us define relative displacements w j as new variables of the system:

w1 = u1 − v,
w j = u j − u j−1 j = 2, . . . , N − 1. (1)

Fig. 1 N -DOF model consisting of a forced linear structure coupled to (N − 1) nonlinear oscillators (m = εM , 0 < ε � 1)
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Furthermore, the following rescaled parameters are introduced:
K

M
= ω2

0,
ρ

M
= εr ,

V (z)

M
= ε(Bz + Dz3),

C

M
= εc,

c

M
= εc1, and

F(t)

M
= ε f 0 sin(ωt). The linear stiffness r is chosen different from B because it has

a direct impact on the energy transfer from the main structure to the chain. The nonlinear contribution of the
restoring force V in the chain is chosen to be cubic. Furthermore, we aim to investigate the dynamics of the
system around resonance of the main structure, so we assume that ω is close to ω0, i.e., ω2 = ω2

0(1 + σε),
where σ is a detuning parameter. The governing equations of the system now read:

ÿ + (C0 + εC1)ẏ + (B0 + εB1)y + DN (y) = εF(t) (2.1)

where

B0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2
0 0 0 . . . . . . . . . . . . . . . 0

−ω2
0 r −B

. . .
...

0 −r 2B −B
. . .

...
...

. . . −B 2B −B
. . .

...
...

. . . −B 2B −B
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . −B
0 . . . . . . . . . . . . . . . 0 −B 2B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.2)

C0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . . . . 0

0 c1 −c1
. . .

...

0 −c1 2c1 −c1
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . −c1 2c1 −c1

0 . . . . . . 0 −c1 2c1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.3)

B1 =

⎛
⎜⎜⎜⎜⎝

0 −r 0 . . . 0
0 r 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠

, C1 =

⎛
⎜⎜⎜⎜⎝

c −c1 0 . . . 0
−c c1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . . 0
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠

, (2.4)

N (y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−w3

2

2w3
2 − w3

3

−w3
2 + 2w3

3 − w3
4

...

−w3
j−1 + 2w3

j − w3
j+1

...

−w3
N−3 + 2w3

N−2 − w3
N−1

−w3
N−2 + 2w3

N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, y =

⎛
⎜⎜⎝

v
w1
...

wN−1

⎞
⎟⎟⎠ , F(t) =

⎛
⎜⎜⎜⎜⎝

f 0 sin(ωt)
− f 0 sin(ωt)

0
...
0

⎞
⎟⎟⎟⎟⎠

(3)

AsB0 is diagonalizable, there exists a matrixP0 such thatP
−1
0 B0P0 = �2

0, i.e.,B0 and�2
0 are similar matrices.

Furthermore, we define �̃0 as �̃
2
0 = �2

0 − ω2IdN , where IdN is the N × N identity matrix. System (2.1) can
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be rewritten as:

ÿ + ω2y + (C0 + εC1)ẏ + P0�̃
2
0P

−1
0 y + εB1y + N (y) = εF(t). (4)

To treat this system of N nonlinear equations, the method described in [33] is used, keeping the equations in
a discrete form. Three analytical tools are implemented:

– A timemultiple scales method [34] is used: time is embedded to fast τ0 = t and slow τk = εk t , k = 1, 2, . . .
time scales. The system equations will be derived at different orders of ε in order to study the dynamics at
corresponding time scales.

– Complex variables of Manevitch [35] are introduced to the system (4):

�eiωt = ẏ + iωy,

with � =
⎛
⎜⎝

ϕ1
...

ϕN

⎞
⎟⎠ and i = √−1

. (5)

– A Galerkin technique is carried out in order to obtain a Fourier series truncated at first harmonic. For a
generic function s(τ1, τ2, . . .), it reads:

S = ω

2π

∫ 2π
ω

0
s(τ1, τ2, . . .)e

−iωτ0dτ0. (6)

To apply (6), we suppose that � is independent of τ0, which will be eventually verified at least for an
asymptotic state, i.e., at slow time scales. We also keep �̇ in the equations.

Finally, system (4) reads:

�̇ + 1

2
(C0 + εC1)� + 1

2iω
(P0�̃

2
0P

−1
0 + εB1)� − 3i D

8ω3 Nm(�) = εFm(t), (7)

Nm(�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−|ϕ3|2ϕ3

2|ϕ3|2ϕ3 − |ϕ4|2ϕ4
−|ϕ3|2ϕ3 + 2|ϕ4|2ϕ4 − |ϕ5|2ϕ5

...

−|ϕ j−1|2ϕ j−1 + 2|ϕ j |2ϕ j − |ϕ j+1|2ϕ j+1
...

−|ϕN−2|2ϕN−2 + 2|ϕN−1|2ϕN−1 − |ϕN |2ϕN

−|ϕN−1|2ϕN−1 + 2|ϕN |2ϕN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Fm(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f 0

2i

− f 0

2i
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(8)
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3 Characterization of the system at different time scales

3.1 System behavior at fast time scale τ0

The system behavior at fast time scale is described by the system (7) derived at the ε0 order:

∂�

∂τ0
+ 1

2
C0� + 1

2iω0
P0�̃

2
0P

−1
0 � − iDNm(�) = 0

⇔ ∂�

∂τ0
+

⎛
⎜⎜⎝

0
H2(�)

...

HN (�)

⎞
⎟⎟⎠ = 0

(9)

where D = 3D

8ω3
0

. Thus, ϕ1 is independent of τ0 time scale.

The fixed points of system (9) verify limτ0→+∞
∂�̃

∂τ0
= 0 where �̃ = ( φ1 . . . φN )T . They define the slow

invariant manifold (SIM) of the system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H2 = iω0

2
φ1 +

(
iω0

2
+ c1

2
− ir

2ω0

)
φ2 + αφ3 + iD|φ3|2φ3 = 0

H3 =
(

−c1
2

+ ir

2ω0

)
φ2 + iω0

2
φ3 + α (−2φ3 + φ4)

+ iD (−2|φ3|2φ3 + |φ4|2φ4
) = 0,
...

H j = α
(
φ j−1 − 2φ j + φ j+1

) + iω0

2
φ j

+ iD (|φ j−1|2φ j−1 − 2|φ j |2φ j + |φ j+1|2φ j+1
) = 0

j = 4, . . . , N − 1,
...

HN = α (φN−1 − 2φN ) + iω0

2
φN + iD (|φN−1|2φN−1 − 2|φN |2φN

) = 0

(10)

where α = −c1
2

+ i B

2ω0
.

Equation (10) consists of (N − 1) complex equations with N complex unknown variables. Introducing
polar coordinates φ j = N jeiδ j , j = 1, . . . , N , expressions of magnitudes of (N − 1) variables φ j along with
all phase differences can be derived with respect to the magnitude of the remaining variable. For example, for
a given value of NN , values of N j , j = 1, . . . , N − 1 as well as Δ j = δ j − δ j−1, j = 2, . . . , N can be
computed. If the value of one phase δ j is set, then all phases can be calculated as well. To summarize, the
SIM collects all possible asymptotic regimes of the system. However, one needs another complex equation in
addition to the SIM to determine completely the system, i.e., to calculate the two remaining unknown variables
(we will assume that these two real variables are NN and δ1). This extra information is given in Sect. 3.2 with
the study at slow time scale τ1.

Stability of the SIM can be traced by an infinitesimal linear perturbation of � in system (9) around the
SIM as:

⎛
⎜⎝

ϕ2
...

ϕN

⎞
⎟⎠ →

⎛
⎜⎝

φ2
...

φN

⎞
⎟⎠ + ��̃ , ��̃ =

⎛
⎜⎝

Δφ2
...

ΔφN

⎞
⎟⎠ . (11)

5



As ϕ1 is independent of τ0, it is not perturbed. Linearizing the obtained system by keeping only the first-order
terms in ��̃ leads to the following matrix system:

⎛
⎜⎜⎜⎜⎝

∂��̃

∂τ0

∂��̃
∗

∂τ0

⎞
⎟⎟⎟⎟⎠

= �

⎛
⎝

��̃

��̃
∗

⎞
⎠ (12)

where .∗ stands for the complex conjugate and � is a (2N − 2) × (2N − 2) matrix. Points where at least one
eigenvalue of � has a positive real part determine unstable zones of the SIM.

3.2 System behavior at slow time scale τ1

Let us consider first the equation of system (7) derived at the ε1 order:

∂ϕ1

∂τ1
+ 1

2
(iσω0 + c) ϕ1 + 1

2

(
ir

ω0
− c1

)
ϕ2 + i f 0

2
= 0. (13)

This equation provides necessary additional information to detect equilibrium and singular points at slow
time scale around the SIM. Equilibrium points predict periodic regimes of the system: In this case, each
mass oscillates at a given constant amplitude determined by the values of N j and δ j ( j = 1, . . . , N ) on the
equilibrium point. Singular points can lead to strongly modulated response (SMR) [36] which is characterized
by persistent bifurcations of the system around its unstable zones. Equation (13) and the SIM read:

∂φ1

∂τ1
+

(
iσω0

2
+ c

2

)
φ1 +

(
ir

2ω0
− c1

2

)
φ2 + i f 0

2
= 0,

⇔

⎧⎪⎪⎨
⎪⎪⎩

∂N1

∂τ1
= − c

2
N1 +

(
r

2ω0
sin(Δ2) + c1

2
cos(Δ2)

)
N2 − f 0

2
sin(δ1) = E1

∂δ1

∂τ1
= −σω0

2
−

(
r

2ω0
cos(Δ2) − c1

2
sin(Δ2)

)
N2

N1
− f 0

2N1
cos(δ1) = E2.

(14)

As equilibrium and singular points are sought on the SIM, variables N1, N2, and Δ2 are replaced in system
(14) by their expression obtained from Eq. (10). Moreover, one can obtain from the equations of the SIM:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂H j,r

∂τ1
= 0

∂H j,i

∂τ1
= 0

j = 2, . . . , N ,

⇔ S2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂N2

∂τ1
...

∂NN

∂τ1

∂δ2

∂τ1
...

∂δN

∂τ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −S1

⎛
⎜⎜⎜⎝

∂N1

∂τ1

∂δ1

∂τ1

⎞
⎟⎟⎟⎠

(15)
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where H j,r and H j,i are real and imaginary parts of H j , respectively, and:

S1 = ω0

2

⎛
⎜⎜⎜⎜⎜⎜⎝

− sin(δ1) −N1 cos(δ1)

cos(δ1) −N1 sin(δ1)
0 0
...

...
0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

S2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂H2,r

∂N2
. . .

∂H2,r

∂NN

∂H2,r

∂δ2
. . .

∂H2,r

∂δN

∂H2,i

∂N2
. . .

∂H2,i

∂NN

∂H2,i

∂δ2
. . .

∂H2,i

∂δN
...

...
...

...
∂HN ,r

∂N2
. . .

∂HN ,r

∂NN

∂HN ,r

∂δ2
. . .

∂HN ,r

∂δN

∂HN ,i

∂N2
. . .

∂HN ,i

∂NN

∂HN ,i

∂δ2
. . .

∂HN ,i

∂δN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

Multiplying by the adjugate matrix of S2, i.e., adj(S2), and replacing
∂N1

∂τ1
and

∂δ1

∂τ1
by their expressions

obtained from system (14), system (15) reads:

det(S2)Id2N−2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂N2

∂τ1
...

∂NN

∂τ1

∂δ2

∂τ1
...

∂δN

∂τ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −adj(S2)S1

⎛
⎝

E1

E2

⎞
⎠

︸ ︷︷ ︸
G

(17)

where Id2N−2 is the (2N −2)× (2N −2) unit matrix and G is a (2N −2) column vector. System (17) enables
to detect both equilibrium and singular points. Equilibrium points verify [33]:

{
det(S2) �= 0
E1 = E2 = 0 ⇔

{
det(S2) �= 0
G = 0. (18)

Singular points verify:
{
det(S2) = 0
G = 0. (19)

4 Comparison of numerical results to analytical predictions

In this Section, numerical examples are confronted with analytical predictions. All numerical results are
obtained via direct integration on the system equations (2.1). A Runge–Kutta scheme has been used thanks
to the Matlab® function ode45. A 50-DOF system (N = 50, the main structure is coupled to 49 nonlinear
oscillators) is studied in this Section using the following parameters: ε = 0.001, ω0 = 1, r = 5, c = 0.2,
B = 2, c1 = 4, and D = 50. The forcing amplitude f 0 and the detuning parameter σ will vary to describe
different behaviors of the system.

7



0 50 100 150 200 250 300
0

20

40

60

80

100

f0

N
1

Fig. 2 N = 50, ε = 0.001, ω0 = 1, r = 5, c = 0.2, B = 2, c1 = 4, D = 50, and σ = 0 - N1-amplitude of equilibrium
and singular points depending on the forcing amplitude f 0. Stable and unstable equilibrium points are plotted in blue and red,
respectively, while the presence of singular points is denoted by black solid lines (colour figure online)

Table 1 N1-amplitude of equilibrium points for three different forcing amplitudes and for the following parameters: N = 50,
ε = 0.001, ω0 = 1, r = 5, c = 0.2, B = 2, c1 = 4, D = 50, and σ = 0

f 0 N1-amplitude of equilibrium points

15 4.51
60 21.22 49.21 64.26
280 29.88 36.96 96.87

Values in bold and italic shapes relate to stable and unstable equilibrium points, respectively

4.1 Periodic regimes

We first aim to highlight the system behavior around equilibrium points, i.e., periodic regimes. As f 0 varies,
the amplitude of equilibrium points changes, and singular points appear. Figure 2 depicts N1-amplitude of
equilibrium and singular points as a function of the forcing amplitude. It reveals the coexistence of multiple
solutions for a wide interval of f 0 and the existence of unstable equilibrium points, i.e., points located on
unstable branches of the SIM.

In this Subsection, three different values of forcing amplitude f 0 are chosen to describe three periodic
regimes of the system. These values and the corresponding N1-amplitudes of equilibrium points are given in
Table 1.

Figure 3 shows, for the first case f 0 = 15, the SIM and the position of the equilibrium point (no. 1) of
the system projected in the plane (N50, N1). Starting from given initial conditions, y(t = 0) = (60, 0, . . . , 0),
the system should oscillate around the SIM and finally stabilize its behavior around the equilibrium point
at low energy. Evolution of N1 versus time taken from numerical results is plotted in Fig. 4a. It shows that,
after a transient state, the system reaches equilibrium point no. 1. Comparison between numerical results at
τ1 time scale and analytical predictions is provided in Fig. 4b. Blue circles denote the numerical amplitude
of oscillation of each mass of the system at τ1 time scale, while red lines represent amplitudes of oscillation
computed from equilibrium point no. 1. A qualitative agreement is verified since the general geometry of
both profiles is similar. Besides, the prediction of the amplitude of the main system is quantitatively good
as the relative error is about 3%. Figure 4c plots the evolution of the amplitudes of oscillation of each mass
of the chain (from the second to the last oscillator) on the equilibrium point no. 1. Analytical developments
thus predict that energy will propagate through the chain along nonlinear characteristic curves. Corresponding
numerical results given in Fig. 4d show a similar behavior.

For the second example, the system with f 0 = 60 possesses three equilibrium points (no. 1, 2, and 3) and
two singular points located at the edge of the first unstable branch of the SIM as shown in Fig. 5. This implies
that the system could either undergo SMR or stabilize its behavior around one of the three equilibrium points.
As shown in Fig. 6a–b, starting from initial conditions y = (20, 0, . . . , 0), the numerical behavior tends to
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Fig. 3 N = 50, ε = 0.001, ω0 = 1, r = 5, c = 0.2, B = 2, c1 = 4, D = 50, σ = 0 and f 0 = 15—SIM of the system
(black line) and position of the equilibrium point (blue point). Red dotted lines denote unstable branches of the SIM. The system
possesses one equilibrium point (no. 1) (colour figure online)

equilibrium point no. 1. Besides, the analytical method gives a precise prediction of the asymptotic dynamics
of the system. Such agreement is observed in Fig. 6b as well as in the comparison of Fig. 6c with Fig. 6d. They
both show the same modal behavior of the chain.

For the third example, the system with f 0 = 280 has three equilibrium points: nos. 1 and 2 are unstable,
while no. 3 is stable. It also possesses six singular points at the boundaries of the three unstable branches of
the SIM (see Fig. 7). Note that the second unstable branch is hard to detect as it is encased between the two
abscissas N50 = 0.873 and N50 = 0.8765. Figure 8 shows that the system behavior tends to equilibrium point
no. 3. Initial conditions are y = (60, 0, . . . , 0). As in the previous case, analytical and numerical results are in
good agreement. The behavior illustrated at high energy shows that the chain is split in two groups of masses
oscillating in an opposite phase relationship, separated by a minimum of amplitude of vibration located around
the middle of the chain.

N.B. One should keep in mind that all parameters have been derived at orders of ε, implying that f 0 (as
well as other parameters) must be at ε0 order. As ε = 0.001 and f 0 = 280, the current example is a borderline
case.

4.2 Nonlinear normal modes

Figures 6 and 8 of the previous Subsection depict a vibration in unison of the system. Therefore, it seems
legitimate to wonder if the behaviors illustrated around equilibrium points are related to nonlinear normal
modes of the system, defined as synchronous periodic motion of the underlying unforced Hamiltonian system
[37–39]. As a result, we search periodic solutions of the form:

y = Y cos(Ωt) , Y =

⎛
⎜⎜⎝

V
W1
...

WN−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

V
U1 − V

...
UN−1 −UN−2

⎞
⎟⎟⎠ (20)

where variables Wj are the amplitudes of relative displacements in the chain, variables Uj are the amplitudes
of displacement of the nonlinear oscillators, and V is the amplitude of the main structure.
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Fig. 4 N = 50, ε = 0.001, ω0 = 1, r = 5, c = 0.2, B = 2, c1 = 4, D = 50, σ = 0, and f 0 = 15—a N1 versus time obtained
from direct time integration of system (2.1), b comparison between system amplitudes obtained from analytical predictions
corresponding to equilibrium point no. 1 (red lines) and numerical results at τ1 time scale with all harmonics (blue circles), c
evolution of the amplitudes of oscillation of each mass of the chain obtained from analytical predictions (equilibrium point no.
1), d evolution of the amplitudes of oscillation of each mass of the chain obtained from numerical results at τ1 time scale (colour
figure online)

Inserting (20) in (2.1) where damping and external excitation are set to zero and neglecting the third
harmonic generated by cubic nonlinearities, one obtains the following system of algebraic equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ω2
0 − Ω2)V − εrW1 = 0,

((1 + ε)r − Ω2)W1 − ω2
0V − BW2 − 3

4
DW 3

2 = 0,

(2B − Ω2)W2 − rW1 − BW3 + 3

4
D(2W 3

2 − W 3
3 ) = 0,

...

(2B − Ω2)Wj − B(Wj−1 + Wj+1) + 3

4
D(−W 3

j−1 + 2W 3
j − W 3

j+1) = 0,

...

(2B − Ω2)WN−1 − BWN−2 + 3

4
D(2W 3

N−1 − W 3
N−2) = 0.

(21)

This system of N equations in N + 1 unknowns enables to plot a representation of the nonlinear modes in the
(Ω − WN−1) plane, as shown in Fig. 9 where the parameters are the ones used in the previous Subsection for
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Fig. 5 N = 50, ε = 0.001, ω0 = 1, r = 5, c = 0.2, B = 2, c1 = 4, D = 50, σ = 0, and f 0 = 60—SIM of the system
(black line) and position of equilibrium and singular points (blue points and black crosses, respectively). Red dotted lines denote
unstable branches of the SIM. The system possesses three equilibrium points (no. 1, 2 and 3) and two singular points (colour
figure online)

the three first examples. Figure 9b shows a zoomed-in view of Fig. 9a around Ω = 1, which is the excitation
frequency considered in Sect. 4.1.

There are eleven solutions at Ω = 1, just above the horizontal line, corresponding to eleven possible
excited modes at this frequency. Behaviors highlighted in examples 2 and 3 of Sect. 4.1 occur at N50 = 0.713
and N50 = 1.188, respectively. As a consequence, modal shapes at points A and B (see Fig. 9b) are expected
to describe the general profiles depicted in Figs. 6 and 8. These modal shapes are represented in Fig. 10.
They show a good qualitative agreement with analytical predictions (i.e., behaviors at equilibrium points), and
numerical results exhibited previously. Therefore, we can assume that the system response at different levels
of energy, i.e., for equilibrium points located on different branches of the SIM, is characterized by some of its
nonlinear normal modes around the resonance of the main structure.

4.3 Strongly modulated responses

To highlight SMR, the following forcing parameters are used: f 0 = 250 andσ = 6. The position of equilibrium
and singular points around the SIM is depicted in Fig. 11a. The system possesses one unstable equilibrium
point and six singular points. As a consequence, it will face SMR around one of the unstable zones of the
SIM. A schematic representation of the latter behavior around unstable zone number 3© is described in Fig.
11b (number 2© zone’s size is not significant for the dynamics of the system). From initial conditions, the
system moves toward the SIM and makes repeated bifurcations forming a closed-loop cycle. Nonetheless,
more complicated cycles involving unstable zones number 1© and 3© could occur with the appropriate forcing
amplitude.

Figure 12a, b plots N1 versus time and the evolution of the behavior of the chain obtained from numerical
simulations. It appears that the system is facing SMR around the third unstable zone. Time series of several
oscillators of the chain depicted in Fig. 13, where the final time corresponds to the one of Fig. 12b, show that
this behavior lasts for a long time. During a bifurcation, the chain of nonlinear oscillators suddenly switches
from one modal behavior to another (see Fig. 12b). These behaviors actually correspond to the ones which
the system would face if it had reached an equilibrium point on the corresponding branch of the SIM, namely
behaviors described in the last two examples of Sect. 4.1 (see Figs. 6, 8). Thus, we can define SMR here as
persistent bifurcations between nonlinear normal modes of the chain of oscillators. In this case, two modes
are involved. However, in the presence of more complex geometries of the SIM, and convoluted SMR cycles
as described above, three or more modes could appear in these quasi-periodic regimes.
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Fig. 6 N = 50, ε = 0.001, ω0 = 1, r = 5, c = 0.2, B = 2, c1 = 4, D = 50, σ = 0, and f 0 = 60—a N1 versus time obtained
from direct time integration of system (2.1), b comparison between system amplitudes obtained from analytical predictions
corresponding to equilibrium point no. 1 (red lines) and numerical results at τ1 time scale with all harmonics (blue circles), c
evolution of the amplitudes of oscillation of each mass of the chain obtained from analytical predictions (equilibrium point no.
1), d evolution of the amplitudes of oscillation of each mass of the chain obtained from numerical results at τ1 time scale (colour
figure online)

5 Application to control

Investigation of equilibrium and singular points and design of geometry of the SIM are linked to problems
of passive control of structural systems by addition of a nonlinear chain. The geometry of the SIM provides
all possible energy paths which the overall system can experience during interaction between its oscillators
while equilibrium and singular points give information about all possible periodic regimes or SMR at slow
time scale(s).

This Section aims to give evidence of passive control of the main system considering the same parameters
as in Sect. 4. To this end, six amplitude–frequency graphs (i.e., N1 − σ graphs) corresponding to six different
forcing amplitudes are plotted in Fig. 14. Stable and unstable equilibrium points are illustrated in blue and red
points, while singular points are marked by black dashed-dotted lines. Furthermore, the maximum amplitude
that the main system would face without the chain of oscillators, called as “maximum linear amplitude”, is
written in each Figure. This is actually the amplitude of the linear system at the exact resonance, i.e., at σ = 0.
At low forcing amplitude f 0 = 15 (see Fig. 14a), it is clear that a major part of vibratory energy has been
transferred in the chain as the maximum amplitude of the main system in the presence of the chain is equal to
6.13% of the maximum linear amplitude. Increasing the value of f 0 to 28 (see Fig. 14b), an isolated branch
appears and reduces the control efficiency as the maximum amplitude raises to 13.95% of the maximum linear
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Fig. 7 N = 50, ε = 0.001, ω0 = 1, r = 5, c = 0.2, B = 2, c1 = 4, D = 50, σ = 0, and f 0 = 280—SIM of the system
(black line) and position of stable/unstable equilibrium points (blue/red points) and singular points (black crosses). Red dotted
lines denote unstable branches of the SIM. The system possesses one stable (no. 1) and two unstable equilibrium points (no. 2
and 3) and six singular points (colour figure online)

amplitude. This value reaches 26.36% at f 0 = 60 as singular points appear and then drops to 20.16, 14.65, and
11.02% for the cases f 0 = 90, f 0 = 150, and f 0 = 250, respectively (see Fig. 14c–f). Besides, for the four
latter cases, the presence of singular points can lead to SMR, depending on initial conditions and distribution
of equilibrium points, and thus confine the oscillations of the main system between N1-amplitudes of the black
dashed-dotted lines.

As a summary, considering given detuning parameter σ and forcing the amplitude f 0 intervals, i.e., from
−10 to 10 (−15 to 15 for f 0 = 250) and from 15 to 250, respectively, the amplitude of the linear system has
been significantly reduced by addition of a chain of nonlinear oscillators and divided by almost 4 in the worst
case.

6 Multi-degree-of-freedom main structure

6.1 Analytical developments

All developments of the paper have been based on the consideration of an SDOF main system. However, this
SDOF system can be supposed as the result of the projection of the dynamics of an MDOF main structure on
one of its modes of interest (to be controlled or harvested). Let us consider the system presented in Fig. 15,
which consists of n forced linear oscillators in series coupled to the nonlinear chain presented in Sect. 2, with
the restoring force V (z) = ε(Bz + Dz3) and mass ε for each oscillator.

The governing equations of the n linear structures read:

MẌ + εCẊ + KX + εK1(X − U1) + εA1(Ẋ − U̇1) = εF̂ sin(ω̃t) (22)

where

M =

⎛
⎜⎜⎜⎝

M1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 Mn

⎞
⎟⎟⎟⎠ ,K =

⎛
⎜⎜⎜⎜⎜⎜⎝

K1 + K2 −K2 0 . . . 0

−K2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . Kn−1 + Kn −Kn
0 . . . 0 −Kn Kn

⎞
⎟⎟⎟⎟⎟⎟⎠

,

13



0 1 2 3 4 5 6 7
x 104

0

20

40

60

80

100

120

t

N
1

5.904 5.906 5.908

x 10
4

95.64

95.66

95.68

(a)

0 10 20 30 40 50
0

20

40

60

80

100

dof number

||.
|| ∞

(b)

(c) (d)

Fig. 8 N = 50, ε = 0.001, ω0 = 1, r = 5, c = 0.2, B = 2, c1 = 4, D = 50, σ = 0, and f 0 = 280—a N1 versus time obtained
from direct time integration of system (2.1), b comparison between system amplitudes obtained from analytical predictions
corresponding to equilibrium point no. 3 (red lines) and numerical results at τ1 time scale with all harmonics (blue circles), c
evolution of the amplitudes of oscillation of each mass of the chain obtained from analytical predictions (equilibrium point no.
3), d evolution of the amplitudes of oscillation of each mass of the chain obtained from numerical results at τ1 time scale (colour
figure online)

(a) (b)

Fig. 9 N = 50, ε = 0.001, ω0 = 1, r = 5, B = 2, and D = 50—a representation of the nonlinear normal modes of the system
in the (Ω − WN−1) plane, b zoomed-in view around Ω = 1

14



0 10 20 30 40 50 60
−15

−10

−5

0

5

10

15

V
 −

 U
j

dof number

(a)

0 10 20 30 40 50 60
−60

−40

−20

0

20

40

60

V
 −

 U
j

dof number

(b)

Fig. 10 N = 50, ε = 0.001, ω0 = 1, r = 5, B = 2, D = 50, and Ω = 1—modal shape of the system at points A and B (see
Fig. 9b). a Point A, b Point B
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Fig. 11 N = 50, ε = 0.001,ω0 = 1, r = 5, c = 0.2, B = 2, c1 = 4, D = 50, σ = 6, and f 0 = 250—a SIM of the system (black
line) and position of the unstable equilibrium point (red point) and singular points (black crosses).Red dotted lines denote unstable
branches of the SIM. The system possesses one unstable equilibrium point and six singular points, b schematic representation of
the system behavior during SMR. “IC” “initial conditions,” while the circled red numbers enumerate the unstable zones (colour
figure online)

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1 + C2 −C2 0 . . . 0

−C2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . Cn−1 + Cn −Cn
0 . . . 0 −Cn Cn

⎞
⎟⎟⎟⎟⎟⎟⎠

,K1 =

⎛
⎜⎜⎝

0 . . . . . . 0
...

. . .
...

0 . . . 0 0
0 . . . 0 k

⎞
⎟⎟⎠ ,

A1 =

⎛
⎜⎜⎝

0 . . . . . . 0
...

. . .
...

0 . . . 0 0
0 . . . 0 a

⎞
⎟⎟⎠ ,X =

⎛
⎜⎝
X1
...
Xn

⎞
⎟⎠ ,U1 =

⎛
⎜⎜⎝

0
...
0
u1

⎞
⎟⎟⎠ , F̂ =

⎛
⎜⎝
F1
...
Fn

⎞
⎟⎠ . (23)

In order to compute the normal modes of the n-DOF linear system, we search for eigenvalues and eigen-
vectors of the matrix M−1K, namely (ω2

1, . . . , ω
2
n) and P = (P1, . . . ,Pn) where P is the matrix of the modal
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Fig. 12 N = 50, ε = 0.001, ω0 = 1, r = 5, c = 0.2, B = 2, c1 = 4, D = 50, σ = 6, and f 0 = 250—a N1 versus time obtained
from direct numerical integration of system (2.1), b evolution of the amplitudes of oscillation of each mass of the chain obtained
from numerical results during SMR

basis. Defining the modal coordinates Q = (Q1, . . . , Qn) as X = PQ, one can obtain the following system:

Q̈ + εC̃Q̇ + K̃Q + εP−1M−1K1(PQ − U1)

+ εP−1M−1A1(PQ̇ − U̇1) = εP−1M−1F̂ sin(ω̃t)
where
C̃ = P−1M−1CPK̃ = P−1M−1KP.

(24)

K̃ is a diagonal matrix whose elements are (ω2
1, . . . , ω

2
n). Furthermore, we assume that C̃ is also diagonal

(Basile hypothesis), with diagonal elements (C̃1, . . . , C̃n).
Now that the system has been projected in the modal basis, we assume that we excite the system around

the frequency of the lth mode, i.e., ω̃2 = ω2
l (1 + σ̃ ε). Then, two questions need to be addressed:

– Given the frequency of solicitation, one expects to excite only the lth mode of the system. Will the other
modes be excited too because of the coupling with the chain?

– Can the behavior of the overall system be predicted by the model developed in Sects. 2 and 3?
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Fig. 13 N = 50, ε = 0.001, ω0 = 1, r = 5, c = 0.2, B = 2, c1 = 4, D = 50, σ = 6, and f 0 = 250—time series of several
oscillators of the chain obtained from direct numerical integration of system (2.1) during SMR: a u1, b u10, c u20, d u30, e u40,
f u49
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Fig. 14 Amplitude–frequency graphs considering the following parameters: N = 50, ε = 0.001, ω0 = 1, r = 5, c = 0.2, B = 2,
c1 = 4, D = 50—a f 0 = 15, b f 0 = 28, c f 0 = 60, d f 0 = 90, e f 0 = 150, f f 0 = 250. Blue and red points depict stable
and unstable equilibrium points, while black dashed-dotted lines denote the presence of singular points (colour figure online)
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Fig. 15 MDOF forced main structure coupled to a chain of nonlinear oscillators (see Fig. 1 for details of the chain)

Fig. 16 Model of a five-story building with a chain of nonlinear oscillators attached on its roof

Table 2 Values of the parameters chosen for the numerical simulation performed on a five-DOF linear main structure coupled to
a chain of nonlinear oscillators

M1 M2 M3 M4 M5
0.5 1.5 1 0.5 1
K1 K2 K3 K4 K5
2 1 1.5 1.413 2
C1 C2 C3 C4 C5
0.4 0.2 0.3 0.28 0.4

Introducing M̃i j and Pi j as the elements of the i th line and the j th column of matrices P−1M−1 and P,
respectively, Eq. (24) reads as the following system of n linear equations:

Q̈ j + εC̃ j Q̇ j + ω2
j Q j + εM̃ jn

[
n∑

i=1

Pni (kQi + aQ̇i ) − (ku1 + au̇1)

]

= ε

n∑
i=1

M̃ ji Fi sin(ωl t
√
1 + σ̃ ε) j = 1, . . . , n.

(25)

We assume that the modes are well separated, i.e., the angular frequencies ω j are not too close from each
other. As u1 and u̇1 are supposed to vibrate at the forcing frequency (see Sect. 2), it seems reasonable to assume
that the dynamics of the n-DOF linear system will be mainly described by its lth mode. This assumption will
be verified thanks to numerical simulations in Sect. 6.2. As a consequence, we consider that all other modes
will have a small contribution in the response of the overall system, i.e.,
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Fig. 17 ε = 0.001, k = 0.8, a = 1.3, B = 2, D = 50, σ̃ = 0, and Fi = −150.7, ∀i—a–e evolution of modal coordinates Q j
versus time obtained from direct numerical integration of system (22) (blue lines). In d, evolution of Q4 without coupling of the
chain is depicted in green—f comparison of system amplitudes obtained from analytical predictions (red lines) and numerical
results at τ1 time scale with all harmonics (blue circles) (colour figure online)
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Q j (t) = O(ε) ∀ j ∈ [|1, n|]\{l}. (26)

Neglecting terms of ε2 order, the lth equation of system (25) reads:

Q̈l + εC̃l Q̇l + ω2
l Ql + εM̃ln

[
Pnl(kQl + aQ̇l) − (ku1 + au̇1)

]

= ε

n∑
i=1

M̃li Fi sin(ωl t
√
1 + σ̃ ε).

(27)

Equation (27) has the same form as Eq. (2.1). Thus, we can identify the expressions of the parameters of the
latter equation as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v = Pnl Ql ,

ω2
0 = ω2

l ,

r = M̃ln Pnlk,
c = C̃l ,

c1 = M̃ln Pnla,

f 0 = Pnl

n∑
i=1

M̃li Fi ,

σ = σ̃ .

(28)

We have obtained the rescaled parameters that should be used to implement the analytical method described
in Sects. 2 and 3.

6.2 Numerical verifications

In order to confirm the assumptions made in Sect. 6.1, a system consisting of a five degree-of-freedom linear
structure coupled to 20 nonlinear oscillators in series is investigated. Such system could be used to model, for
instance, a five-story building with a chain of 20 nonlinear oscillators attached on its roof in order to control
one of its modes. Figure 16 depicts an idealizedmodel of such building that corresponds to the model described
in Sect. 6.1 with n = 5. Analytical predictions stemming from Sect. 2 and the 3 and the design procedure of
Sect. 6.1 are compared with results obtained from direct numerical integration of system (22).

The values of the parameters relative to the main system are given in Table 2. One can compute the normal
modes of the system and obtain the following angular frequencies: ω1 = 2.95, ω2 = 2.51, ω3 = 1.80, ω4 = 1,
andω5 = 0.36. The system is excited around the fourthmode, i.e., ω̃2 = ω2

4(1+σ̃ ε). All remaining parameters
are chosen as follows: ε = 0.001, k = 0.8, a = 1.3, B = 2, D = 50, σ̃ = 0, and Fi = −150.7,∀i . All masses
are at rest at initial time. Rescaled parameters as defined in Eq. (28) are used for analytical predictions. Figure
17a–e plots the evolution of modal coordinates Q j over time. Only the fourth mode is excited, while the other
modes remain almost at rest, which validates the hypothesis made in Sect. 6.1. Moreover, the evolution of Q4
versus time without addition of the chain is plotted in Fig. 17d. The maximum amplitude obtained is about
three times larger than the amplitude obtained with coupling of the nonlinear chain. Since only one mode is
excited, the amplitudes of displacement of each mass of the main system are proportional to Q4, meaning
that displacements of each DOF have been divided by 3. Finally, Fig. 17f compares the system amplitudes
obtained from numerical simulation with results obtained from analytical developments which predict that
the system will reach a periodic regime at τ1 time scale whose amplitudes are represented by red lines. Once
again, analytical developments are in good agreement with numerical results.

7 Conclusions

A general methodology of the analytical treatment of an N -degree-of-freedom system, consisting of a linear
structure linearly coupled to a chain of (N − 1) nonlinear oscillators, is presented. Time multi-scale behaviors
of the system are investigated: the study at fast time scale provides the slow invariant manifold of the system,
while equilibrium and singular points, corresponding to periodic regimes and strongly modulated responses,
respectively, are detected by the study at slow time scale.Numerical results obtained fromdirect time integration
of the system equations are compared with analytical predictions. At low energy, they show a qualitative
agreement for the behavior of the chain of nonlinear oscillators and a quantitative one for the main structure.
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At higher energy, the numerical behavior of the overall system at slow time scale is precisely predicted by
analytical time multi-scale developments. Besides, it has been proven that the response of the chain can be
described by a nonlinear normal mode approach: during periodic regimes at relatively high energies, one
mode is excited, while during strongly modulated regimes the behavior of the chain is the result of repeated
bifurcations between nonlinear modes of the system. Then, the detection of the geometry of the slow invariant
manifold and equilibrium and singular points is used to provide evidence of passive control of the linear
oscillator. It is shown on a given example that energy of the main structure can be transferred in the chain
of oscillators in order to mitigate its vibrations. Finally, a discussion on how the explained methodology can
be used to study a multi-degree-of-freedom main linear system coupled to the same chain by projecting its
dynamics on one of its modes of interest is given. These developments can be used for designing an appropriate
nonlinear chain for localizing or focalizing the vibratory energy of targeted modes of main systems into the
chain.

As stated above, the modal behaviors of the chain have been studied in this work, whereas the existence
of localized waves and breathers has not been addressed. An abundance of works on such solutions in sole
nonlinear chains (without coupling the main system) can be found in the literature. For example, the existence
of breathers has been discussed by Cretegny et al. [40], Iooss and James [41], or by James et al. [42] in Fermi–
Pasta–Ulam chains with Hertz contact, and more generally in nonlinear lattices by Aubry [43]. Similarly,
Starosvetsky and Manevitch [44] have studied localization and energy exchange in a periodic dimer Fermi–
Pasta–Ulam chain, while Perchikov and Gendelman [45] have discussed existence and stability of discrete
breathers in a chain with vibro-impact potentials. However, in the above-mentioned studies, contrary to the
present work, the dynamics of the chain alone is considered. It would then be interesting to see if spatially
localized solutions such as breathers or solitons can exist in the present system where the coupling with the
main system shall play an important role.
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