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In thework presented in this contributionwe have investigated the reduction of dynamical
thermo-mechanical systems and we propose a new reduction method that can be seen
as an extension of the common Craig–Bampton method Craig and Bampton (1968) [2]
wheremulti-physics is now implicitly included in the projection basis. The efficiency of this
new approach has been evaluated in multiple configuration of a representative thermo-
mechanical model.

1. Introduction

Reducing complex models of multi-physical models is an important step in the design and optimization of high-tech
systems. For instance, one is interested in representing the dynamical behaviour of components with low order models in
order to integrate thesemodels in a functional analysis of thewhole systemor to apply optimization strategies. The principle
of model reduction has been established long time ago [1,2] and substructuring is widely used in structural mechanics.
However, novel applications require the reduction methods to be generalized and enhanced in order to efficiently address
multidisciplinary problems. In this paper we will discuss an efficient way to build a reduction basis for thermo-mechanical
systems. First we shortly summarize the concepts of model reduction and component mode synthesis. Then we outline the
thermo-mechanical equations and discuss a special enrichment of the internal modes in order to efficiently represent the
dynamic response of a structure to a thermal load. Finally we investigate the efficiency of the proposed basis on simple
model of heat actuator.

2. Concept of model reduction

Let us consider a finite element model characterized by the second order differential matrix equation in which q
represents the vector of degrees of freedom (DOF), K , D and M respectively the stiffness, damping and inertia matrices,
and f the vector of forces

Mq̈+ Dq̇+ Kq = f . (1)

The driving idea of reduction methods is to make an approximation on the model DOF and express them in terms of a
linear combination of representativemodes. It is clear that in order to obtain a reducedmodel, the number ofmodesmust be
much smaller than the number of DOF in themodel. The previous system is then rewritten in terms of ‘‘generalized’’ DOF that
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physically correspond to the amplitude of the consideredmodes. Mathematically this consists in building an approximation
of the DOF vector according to a ‘‘trial’’ subspace defined by the modes, assumed to be linearly independent.

q = Rq̂. (2)

In this approximation, R is a matrix which columns contain the vectors spanning the approximation space. Replacing this
expression in the full set of equations leads to the following equation

MR ¨̂q+ DR ˙̂q+ KRq̂ = f + r. (3)

The residual load appears because, due to the approximation on the DOFs, the equation cannot be satisfied exactly in
general (unless the approximation space represented by R spans the exact solution, which is never the case in practice). It
can be noted that once an approximate solution is computed (as described below) the equation above can always be used to
evaluate the associated error in the exact problem. Clearly, there are more equations to satisfy than degrees of freedom in
the reduced space. Obviously the idea is to find the set of reduced DOF that minimizes the residue. In the Petrov–Galerkin
method one wants to ensure that the residue is null when projected in a given subspace of the problem. Hence in order to
get an approximation of the problem, the equation is also projected onto a ‘‘test’’ subspace

R̃T
{
MR ¨̂q+ DR ˙̂q+ KRq̂

}
= R̃T {f + r} (4)

and the equation governing the behaviour of the reduced model is obtained by requesting the projection of the residue to
be zero

M̂ ¨̂q+ D̂ ˙̂q+ K̂ q̂ = f̂ (5)

M̂ = R̃TMR D̂ = R̃TDR K̂ = R̃TKR f̂ = R̃Tf . (6)

The choice of representative trial and test bases is the key of the method and is directly related to the quality of the
approximation. Indeed, if the trial base defines a subspace that contains the exact solution of the problem, then the residual
term is null and the reduced model is exact. On the other hand one needs to use a test bases such that the error remaining
after solving the reduced problem (the error being in the space orthogonal to R̃) does not significantly alter the solution.
Often (such as in symmetric problems) the test and trial bases are taken as identical. This case corresponds to a Galerkin
technique (equivalent to a Rayleigh–Ritz method for dynamic problems) and can be interpreted as a virtual work principle
(see [3]).

2.1. Static and dynamic condensation

The well-known Guyan–Irons static condensation algorithm [1], can be seen as a projection method using static
deformation shapes as trial and test bases. Nevertheless, in the case of dynamic analysis, the dynamic behaviour of the
internal domain of the model, that means the condensed DOF, is not taken into account. The improvement proposed in [2]
consists in adding to the trial and test bases a given number of modes directly related to the dynamic behaviour of the
internal part of the model. Craig proposed to consider the internal eigen modes φ of the model, computed by constraining
the retained DOF to zero. These modes indeed represent the dynamic neglected in the quasi-static modes. In a general way,
the modes added to the trial and test bases, respectivelyΦ and Φ̃ , can be different. Nevertheless, when using internal eigen
modes, the common practice consists in considering the same modes in the two bases. In the Craig–Bampton method the
following trial and test bases are considered

q =
(
qr
qc

)
= R

(
qr
γ

)
= Rq̂ (7)

R =
[

I 0
−K−1cc Kcr Φ

]
R̃T =

[
I −KrcK−1cc
0 Φ̃T

]
(8)

where we denote with a subscript c the DOF that are condensed (i.e. the ones internal to a substructure) and by r the
remaining ones (the DOF on an interface).

3. Reduction of thermo-mechanical models

In the case of thermo-mechanical problems, the DOF representing the model contains structural and thermal DOF,
respectively noted ü and θ , and reordering the equations according to the physical nature of the DOF leads to the classical
formulation of thermo-mechanical problems[

Muu 0
0 0

](
ü
θ̈

)
+

[
Duu 0
Dθu Dθθ

](
u̇
θ̇

)
+

[
Kuu Kuθ
0 Kθθ

](
u
θ

)
=

(
fu
fθ

)
. (9)
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In the previous expression, Muu, Duu and Kuu correspond to the structural inertia, damping and stiffness matrices, that
are symmetric. The Dθθ and Kθθ matrices are symmetric, and, in the context of second order equations in time, can be seen
as damping and stiffness terms. Physically however they describe respectively the heat capacitance and conduction effects.
The two remaining matrices Dθu and Kuθ characterize the thermo-mechanical coupling. Due to these terms, the complete
system is unsymmetric. Partitioning again the DOF vector in terms of the retained part qr and condensed part qc , each of
them containing both structural and thermal DOF, the equations of the complete system can thus be reordered and rewrittenM

uu
rr 0 0 0
0 0 0 0
0 0 Muucc 0
0 0 0 0



q̈ur
q̈θr
q̈uc
q̈θc

+

Duurr 0 Duurc 0
Dθurr Dθθrr Dθurc Dθθrc
Duucr 0 Duucc 0
Dθucr Dθθcr Dθucc Dθθcc



q̈ur
q̇θr
q̇uc
q̇θc

+

K uurr K uθrr K uurc K uθrc
0 K θθrr 0 K θθrc
K uucr K uθcr K uucc K uθcc
0 K θθcr 0 K θθcc



qur
qθr
quc
qθc

 =

f ur
f θr
f uc
f θc

 . (10)

3.1. Static projection modes

Wewant to stress that, unlike for purely structuralmodels, the staticmodes in the trial and testmatrices are not identical
when handling thermo-mechanical models. Indeed, in (8) the block−K−1cc Kcr is not simply the transpose of KrcK

−1
cc since Kcc

is not symmetric and since Krc is not the transpose of Kcr . Also a particular attention must be paid to the structure of the
matrices in order to implement an efficient reduction algorithm. Indeed, it is preferable to factorize both K uucc and K

θθ
cc rather

than factorize the entire Kcc matrix. It must also be noted that despite the symmetry of the mass matrix in the complete
model, the reduced mass matrix of a thermo-mechanical system is non-symmetric. This comes from the fact that the test
and trial spaces are not identical.

3.2. Internal projection modes

The choice for the internal modes could be based on the state-space form of the internal problem, similarly to what was
proposed for highly damped structures [4]. However, our main concern was to deal with systems composed of a structural
and a thermal part that have well separate time constants, namely the period of the lowest pure structural frequencies is
much smaller than the time constant of the thermal diffusion in the system. In this case, a quasi-static behaviour of the
structure can be assumed as a good approximation. Therefore, we conjectured that the dynamic coupling between thermal
and structural problem can be neglected in the process of internal mode computation. This last one is thus performed by
solving two decoupled eigen problems. The structural symmetric eigen problem characterizes the dynamic response of the
system to structural time dependent loads.

K uucc Φ
u
u = M

uu
cc Φ

u
uΩu. (11)

The ‘‘thermal-driven’’ internal modes are computed in two steps. First, the decoupled thermal eigen problem, also
symmetric, that is representative of the thermal response to thermal loading is solved

K θθcc Φ
θ
θ = D

θθ
cc Φ

θ
θΩθ . (12)

By doing this, the coupling between the two physics is not considered, leading to poor quality approximations. Therefore,
in accordance with the assumption of quasi-static behaviour of the structure with respect of the thermal excitations, a
correction is proposed. This new approach, which is innovative regarding the current practice, consists in adding a coupling
termΦuθ to the thermal internal modes that corresponds to the static structural response to the thermal eigen modes.

Φuθ = −
(
K uucc

)−1 K uθcc Φθ
θ . (13)

According to the quasi-static approximation, the trial and test basis are defined by the following projection operators in
which the last column of the matrices will be called the ‘‘thermal-driven modes’’

R =


I 0
0 I

0
0

0
0

−

[
K uucc K uθcc
0 K θθcc

]−1 [
K uucr K uθcr
0 K θθcr

]
Φuu
0

Φuθ
Φθ
θ

 (14)

R̃T =


I 0
0 I −

[
K uurc K uθrc
0 K θθrc

] [
K uucc K uθcc
0 K θθcc

]−1
0 0
0 0

Φuu
T 0

Φuθ
T

Φθ
θ

T

 . (15)
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Fig. 1. Schematic view of the thermal actuator model.

Table 1
Mechanical and thermal time constants of the model.

Model length Heat capacitance Mechanical time constant Thermal time constant Ratio

200 m 1.64× 106 1.22929× 101 5.5022× 108 107

200 m 1.64× 103 1.22929× 101 5.5022× 105 104

200 µm 1.64× 106 1.22929× 10−5 5.5022× 10−4 101

200 µm 1.64× 103 1.22929× 10−5 5.5022× 10−7 10−2

4. Applications

The efficiency of this approach has been evaluated using a simplified model of heat actuator, illustrated on Fig. 1. The
model ismade of thermo-mechanical volume elements and a symmetry condition has been applied on the lower face so that
the motion of the actuator is in the plane of the structure. The two anchors are clamped and an iso-temperature constraint
is applied on each of them.
The whole structure is thermally loaded using volume heat source to simulate a Joule heating effect. To simulate the

physics, a different value of the heat generation rate is considered in the two arms of the structure. In terms of model
reduction, twomechanical DOF and two thermal DOF are retained. Themechanical retained DOF correspond to the in-plane
displacements of the actuation point located at the corner of the structure tip, in the symmetry plane. The retained thermal
DOF, named T1 and T2, are the anchor’s temperatures. Note that the thermal DOF retained for the reduction will no longer
be unknowns when the reduced model is used for the analysis since the anchor temperatures are then imposed.

4.1. Projection modes

The projection modes corresponding to our reduction approach are presented on Fig. 2. The first two modes correspond
to the retained mechanical DOF modes (‘‘static modes’’). As these modes represent a static mechanical behaviour, they do
not involve any thermal component.
The internal thermal-driven projectionmodes correspond to the eigenmodes of the thermal condensedDOF towhich the

corresponding quasi-static mechanical response is added. The reduced model involves ten internal thermal-driven modes
even if only the four first modes are illustrated.

4.2. Transient response

In order to evaluate the efficiency of the proposed reduction basis, transient analyses has been performed for different
configuration of the model. A geometrical scaling of the model and two values of the heat capacitance of the material have
been considered. Table 1 summarizes themechanical and thermal time constants of themodel in the different configurations
of analyses.
For each studied configuration, the lateral displacement of the actuation point is compared for the initial 3D model, the

reducedmodel generated using thermal-driven internal modes and a reducedmodel generated using pure thermal internal
modes (no structural modes are used here). The simulation of the models in meter demonstrates that, even if the ratio of
time constants is huge, the thermal-driven approach provides significantly more accurate results only when a low value of
heat capacitance is considered, as illustrated on Fig. 3.
The simulation of the models in micron for real value of heat capacitance, presented on Fig. 4, show that the two

reduction methods lead to accurate results, even if the ratio of time constants is small. However, in the same geometrical
configuration, if the heat capacitance is significantly reduced the thermal-driven approach provides again more accurate
results, as illustrated on Fig. 5.
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(a) Mechanical static mode (Ux). (b) Mechanical static mode (Uy).

(c) Thermal static mode (T1). (d) Thermal static mode (T2).

(e) Thermal-driven mode 1. (f) Thermal-driven mode 2.

(g) Thermal-driven mode 3. (h) Thermal-driven mode 4.

Fig. 2. Projection modes (temperature on deformed shape).

Firstly, these results demonstrate that, even if the ratio betweenmechanical and thermal time constants correspond to a
relevant property in terms of thermoelastic damping [5], this value is not a significant indicator in terms of model reduction
strategy. Secondly, for usual values of heat capacitance, the two reduction methods provide similar results very close to the
reference values.
However, for low values of heat capacitance, the thermal-driven approach reveal significantly more accurate than the

reduction strategy based on uncoupled pure thermal internal modes. Therefore, taking into account the low additional
computation cost required by the thermal-driven approach, we suggest using thermal-drivenmodeswhen building reduced
models of thermo-mechanical systems.
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Fig. 3. Transient analysis of 200 mmodel.
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Fig. 4. Transient analysis of 200 µmmodel with real heat capacitance.
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5. Conclusion

In this paper we have proposed an extension of the classical Craig–Bampton reduction method to thermo-mechanical
systems. This new algorithm introduces an enrichment of the reduction basis allowing a more accurate approximation of
the thermo-mechanical response. The idea consists in adding to the pure thermal modes their corresponding quasi-static
structural response. It has been shown using a simple model of heat actuator that the quasi-static structural enrichment of
the thermal modes can significantly improves the fidelity of the reducedmodel dynamic response. However, it also appears
that the efficiency of this improvement depends on the system configuration that is not only characterized by the ratio
between structural and thermal time constants. Further investigations are required on this subject to understand in which
configuration the thermal-driven mode reduction method is particularly well suited.
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